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We characterize the KK-groups of G. G. Kasparov, along with the
Kasparov product KK(A, B) X KK(B, C) -> KK(A, C), from the point
of view of category theory (in a very elementary sense): the product is
regarded as a law of composition in a category and we show that this
category is the universal one with "homotopy invariance", "stability"
and "split exactness". The third property is a weakened type of half-ex-
actness: it amounts to the fact that the KK-groups transform split exact
sequences of C*-algebras to split exact sequences of abelian groups. The
method is borrowed from Joachim Cuntz's approach to KK-theory, in
which cycles for KK(A, B) are regarded as generalized homomorphisms
from A to B: the results follow from an analysis of the Kasparov product
in this light.

Introduction. This paper is a study of the groups KK(A, B), where
A and B are separable C*-algebras, introduced by G. G. Kasparov in
[15]. These groups have received widespread attention since their introduc-
tion, due mainly to the possibilities they afford for the application of
C*-algebra techniques to problems in geometry and topology, but also
because of their utility within the field of C*-algebras. The groups arise
from, and generalize, the topological K-theory of spaces—thus if X is a
compact metric space then the groups KK(C,C(X)) and KK(C(X)X)
are respectively the topological K-theory and X-homology of X— and as
such their introduction has led to, for example, simplifications and a
conceptualization of the proof of the Atiyah Singer Index Theorem (see
[4], [13], [9]). More importantly, by using non-commutative C*-algebras as
arguments for the XX-groups the index theorem can be generalized in a
number of interesting directions (for example, to foliations [9]). As another
example of an application of these groups in topology, the group
KK(C*(G), C) serves as an appproximation to the group K(BG) (where
G is say the fundamental group of a manifold) and a study of it as such
has led to progress in the generalized Novikov conjecture (see e.g. [18] for
a discussion of this). As a tool in the study of C*-algebras, they are of
importance as a relatively computable invariant, as well as in the study of
extensions of C*-algebras developed in [6] and [15].

The definition of the KK-groups originates in the close relationship
between X-theory and the index theory of elliptic operators. An elliptic
differential (or pseudodifferential) operator on a smooth closed manifold
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M determines a homomorphism

yD: K(X X M) -> K(X) (X a compact space),

as follows: given a vector bundle E over X X M9 by "twisting" D by £
we obtain a family of elliptic operators over M, parameterized by X: the
index of the family is yD([E]) e #(X) (see [2], [3]). It follows from
duality theory in algebraic topology that D defines an element of the
X-homology group K0(M) (in such a way that yD is obtained via the
J5Γ-theory slant product). Furthermore, one can show that every element of
K0(M) can be obtained in this fashion, and leading from this, Atiyah
suggested the possibility of a definition of iΓ-homology in terms of elliptic
operators. He proposed the following notion of a "cycle" for K0(X) (from
which K0(X) would be obtained by means of a suitable equivalence
relation), consisting of a pair of Hubert spaces, H±9 a representation φ±

of C(X) on each of these spaces, and a Fredholm operator F from H+ to
H_ which essentially intertwines the two representations φ ± of C( X), in
the sense that the operators

Fφ+(f)-Φ-(f)F and φ _ ( / ) F - φ + ( / ) F , (where / e C(X))

are compact. In the case of the elliptic operator D, H± are Sobolev spaces
of functions, or sections of vector bundles over M\ the algebra C(M) acts
on H ± by pointwise multiplication of functions; F is D of course (the
Fredholm character of F following from the ellipticity of D); and the
intertwining condition expresses the following "pseudolocaΓ property of
a pseudodifferential operator: if fx and f2 in C(M) have disjoint support
then fιDf2 is a compact operator (compare [13], Proposition 3.4]; in fact
fxDf2 is a smoothing operator). The data (H±9 φ ±, F) comprising a cycle
is sufficient to define an index homomoφhism γ as in the elliptic operator
case. If E is a bundle over X X M which is of the form F X M—trivial in
the M direction—then γ([2?]) i s the index of the family

IX9FG B(FX ® H+,FX® H_) (x e X),

where Fx is the fibre of F over JC e X Roughly speaking, in the case of a
more general i?, the bundle is at least trivial in the M direction locally in
M, and the family whose index is y([E]) can be constructed locally as
above, and then the pieces glued together by means of a partition of unity
for M—a procedure which works because of the pseudolocal nature of F9

and which makes plausible this definition of cycle.
A cycle for the group KK(A, B) consists of a pair of representations

of A on "Hubert 5-modules" HB±, together with an operator F from
HB+ to HB_ which is Fredholm, in the appropriate sense, and which
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intertwines the two representations of A, modulo compact operators,
appropriately defined (a precise definition is given in §2). This is the
natural extension of notion of cycle discussed above, and of course, in the
case B = C and A = C(X) we get the jfiΓ-homology cycles of Atiyah.
Consider also the case A = C, and B = C(X): a cycle amounts to a
"Fredholm" operator between C( X)-modules, and by "localizing" at each
point x e X, this is the same thing as a family of Fredholm operators
between Hubert spaces. We can obtain a more complicated example by
combining these two cases: a family of elliptic operators on a smooth
closed manifold M parameterized by a compact space X determines a
cycles for KK(C(M\ C(X)) (see [9]).

Central to Kasparov's work, and this paper, is the construction (in
[15], §4) of a fundamental product mapping

KK(Al9Cx Θ £ ) <S> KK(A2 ® B,C2) -> KK(AX ® A29CX ® C 2 ) .

This product contains, and generalizes, a number of constructions from
jK-theory and index theory. For example, we sketched above how an
elliptic operator on a manifold M gives rise to an index homomorphism

After identifying ^-theory with KK(C, -), and associating with the el-
liptic operator a cycle for KK(C(M), C), this map is given by the
Kasparov product. More generally, the same is true for the index homo-
morphism

K(XXM) -> K(XX Y)

determined by a family of elliptic operators over M parameterized by Y.
Indeed, the product can be regarded as a sort of systematic calculus for
these index maps (generalized beyond the case of spaces to the context of
arbitrary C*-algebras), and this is its importance.

The idea behind the definition of the product lies again, not surpris-
ingly, in the index theory of elliptic operators. We do not wish to go to
great lengths discussing this but let us quickly illustrate the idea with the
following special case:

X) ® KK(C(M2)X) -> KK{C{Mλ X M2),C).

Recalling the connection between elliptic operators and cycles, the prob-
lem roughly amounts to finding a suitable "product" operator on M1 X
M2, given elliptic operators D1 and D2 on Mλ and M2. The solution is to
construct from D1 and D2 an operator on Mλ X M2 whose principal
symbol is the product, in the sense of ^-theory, of the symbols of Dλ and
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D2. (For more information see [13], especially Remark 4.3, and [9].) With
the help of some rather technical C*-algebra results, this construction
may be abstracted, first to the case of abstract ίC-homology cycles, and
then to general JOΓ-cycles (see [15], or the appendix to this paper).

We have presented OΓ-theory so far from the point of view of elliptic
operators and index theory, in line with its origins and most applications.
However, our approach in this paper has much more in common with the
account of XίΓ-theory given by Joachim Cuntz, in which elements of
KK(A, B) are regarded not as generalized elliptic operators but as (homo-
topy classes of) generalized homomorphisms from A to B: a • -homomor-
phism from A to B determines in a very simple way an element of
KK(A, B) (see §2.8), and building from this, Cuntz has given a descrip-
tion of KK-theory in terms of so-called "quasihomomorphisms" (see [10]
and [11]). Our starting point is the observation that the product, special-
ized slightly to the pairing

KK(A,B) ®KK{BX) -* KK(A,C),

defines a law of composition in a category K whose objects are separable
C*-algebras, and for which the set of morphisms from A to B is the
abelian group KK(A, B). It is natural to ask for some sort of description
of this category, and our goal is to characterize K by isolating three simple
properties it possesses, and showing that it is the "universal" category
with them. The first two are homotopy inυariance and matrix stability both
of which are natural and basic properties in the K-theory of C*-algebras.
The third is split exactness. This means that if

0 -> / -> D -* D/J -> 0

is a short exact sequence of separable C*-algebras and •-homomor-
phisms, and if D -> D/J has a right inverse D/J -> D, then the corre-
sponding sequences of .ΩΓ-groups are split exact. The main technical
device that we use is borrowed from Cuntz's work on quasihomomor-
phisms. This is the construction from a KK{A, l?)-cycle Φ of a split short
exact sequence

0 -* Jf® B -> Aφ -> A -» 0,

(Jf denotes the compact operators), together with two specific section
• -homomorphisms A -> Aφ, and from this (using the three properties of
the KK-gτoups listed above), a homomorphism from KK(D,A) to
KK(D, B). Our results follow from an analysis of this map, which turns
out to be the same as taking the Kasparov product of the cycle Φ with
elements of KK(D, A).



A CHARACTERIZATION OF KK-ΎHEORY 257

The plan of the paper is as follows. After dealing with some pre-
liminaries on multiplier algebras in §1, we give in §2 a definition of
KK(A, B) suitable for our purposes, and discuss the functoriality proper-
ties of the XX-groups (although we will be using many features of Cuntz's
treatment of KK, our definition will be essentially that of Kasparov). We
state the existence of the Kasparov product, together with its functoriality
and a normalization condition, and use this to obtain the properties of the
.RX-groups listed above. In §3 we study natural transformations from KK
to arbitrary functors with these properties, and from this, in §4, we obtain
the above mentioned characterization, and related results. For example,
the associativity of the product is a rather difficult point in Kasparov's
work, but here we get it as a simple consequence of the results of section
three. Finally in an appendix we briefly review Kasparov's construction of
the product, and prove those properties of it that we have used.

Part of the material presented here formed part of my M.Sc. thesis at
Dalhousie University, 1983. In addition to expressing my indebtedness to
Joachim Cuntz, I would like to thank Bob Pare for several discussions on
category theory, and my supervisor, Peter Fillmore, for his guidance and
encouragement.

MULTIPLIER ALGEBRAS

1.1. Let D be a C*-algebra and let Jί{D) denote its multiplier
algebra (see [1], [7] or [17]). Recall that Jί(D) contains D as a (closed,
two-sided) ideal, and is characterized by the property that if E is any
C*-algebra containing D as an ideal then the identity map on D extends
uniquely to a *-homomorphism from E into Jί(D). The kernel of this
* -homomorphism is the annihilator ideal of D in E:

Ann(D) = {x e E:x D = D JC = {0}}.

Thus if D is an essential ideal in E, that is, Ann(Z>) = {0}, then the
canonical map E -> Jί(D) embeds £ a s a subalgebra of Jί(D). Let us
note two instances of this. First, Dλ Θ D2 is an essential ideal in
®> Jt{D2) (see [1]; we use the minimal tensor product), and so

Jt(D2) c Jί(Dx ® D2). Secondly, if D is an essential ideal in Df then in
fact it is an essential ideal in Jί{D')\ hence Jί{Ώf) c Jί{D). We note
that Jl(D') consists of those elements x^Jί{Ό) such that x ΰ ' c f l '
and Df x c D'.
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1.2. EXAMPLES. (1) If X denotes the algebra of compact operators

on a separable Hubert space H then Jt(K) = 3#(H). In general it will be

useful to think of elements of Jt(D) and D as being respectively

"bounded" and "compact" operators. (This analogy is made precise in

[14].)
(2) If Mn denotes n X n matrices then clearly Jί(Mn(D)) =

Mn(Jί(D)). Also, if pE:Jί(D) is a projection then Jί(pΏρ)^

pJί(D)p.

1.3. Functoriality of Jί(D). If /: Dλ -> D2 is a *-homomorphism,

and if f(Dλ) contains an approximate unit for D2 then / extends uniquely

to a *-homomorphism from Jί(D^) (see [1], [17]). If there is a projection

p e Jt(D2) such that f(Dλ) c pD2p and f(Dλ) contains an approximate

unit for pD2p, then we obtain a canonical * -homomorphism from

Jί(Dx) to Jί(D2) by means of the composition

Jί(D^) -> Jt(pΏ2p) = pJί(D1)p <zJ?(D2).

This construction applies if Di = X® 2?. (i = 1,2), where Bλ is unital,

and / = 1 ® g for some g: ^ -> B2. For then 1 <g> g(l) tΞjί(K® B2)

plays the role of the projection p above. In this way Jί(X® B) is

functorial for unital C*-algebras B. To deal with non-unital algebras we

need the following result. Recall that two * -homomorphisms fθ9fλ:

D -» D' are said to be homo topic if they are obtained from a •-homo-

morphism f:D-*D'® C[0,1] by evaluating at 0 and 1.

1.4. LEMMA (cf. [5, Lemma 2.4]). Suppose that B has a countable

approximate identity (for example, suppose that B is separable). There

exists an isometry vλ e Jί(X® B) such that: (i) if B is an essential ideal in

B' then (X® B') υλ c X® B, and hence υxJi(X® B)υ\ c Jί(X® B')\

and (ϋ) the map A d ^ ) : Jί(X® B') -» Jί(X® Bf) is homotopic through

* -homomorphisms to Ad(w0 ® 1): M(X® Bf) —»Jί(X® 1?'), where w0

is some isometry in Jί(X).

Proof. Let sl9s29... be a sequence of elements in X® B such that

Σ™=ιS%sn = 1 (convergencein the strict topology [7]) and let w 0,w l 9 . . . be

a sequence of isometries in Jί(X) with disjoint range projections (i.e.

wfwj = 0 if i Φ j). Let uk = Σ^1(wn ® l)sn (k = 1,2,...) and note that

ufuu = Σt-i s*sn so that llwJl < 1 and utuk -> 1 in the strict topology. If

x e JT® 5 then

11"*+;* - " A ^ I I =
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and so the sequence {ukx}fssl converges in norm. If y e Jf<g> Bf then the
sequence { yuk}™=ι converges in norm (and so the limit is in K ® B since
the yuk are). To see this, note that if y(wn ® 1) = 0 for all but finitely
many n then the result is obvious, and then note that such y are dense in
Jf*<8> B\ from which the result follows since {uk}™=1 is a bounded
sequence. The strict topology is complete (see [7]), and therefore {u k }^ λ

converges to some v1 e^#(jf<g> B); since multiplication is strictly con-
tinuous on bounded sets, υ%υλ = 1. Also, (Jf® B') υλ ajf® B and
v^v1 = 0, where vQ = w0 ® 1. The path of isometries υt = (1 — t)ι/2v0 +
tι/2vι gives the desired homotopy. D

1.5. REMARK. There seems to be a slight problem of Kasparov's
treatment of the analogous point in [15] (see §1.19 of that paper): using
the notation of [15], it is not clear what the "restriction homomorphism
&(HD Θ HD) -+&(HBΘ HD)" is. In terms of algebras this would be a
map

(here B is an ideal in D, and

is the obvious subalgebra of M2(JC® D)— it is not an ideal).

THE KASPAROV GROUPS

2.1. DEFINITION, (i) Let A and B be separable C*-algebras. A
KK{A,B)-cycle is a triple (φ+,φ_,U), where φ ± : A -> Jί{X% B) are
*-homomorphisms, and U is an element of ^#(JΓΘ B) such that Uφ+(a)
- φ_(a)£/, φ+(a)(U*U - 1) and φ_(a)(UU* - 1) are elements of Jf Θ
5 for each a & A.

(ϋ) Two AX(^t,5)-cycles (*'+,*'_,I/') (i = 0,1) are homotopic if
there is a KK{A,B β C[0, l])-cycle (φ+,φ_, ί/) (a homotopy) such that
(ε^φ+, ε^φ_, Si(U)) = (φ+, φ'_, ί/*)> where ε,: ^ ( JΓ® JS Θ C[0,1]) ->
^#(JfΘ B) is evaluation at i.

(in) A KK(A, J5)-cycle (ψ+,ψ_,F) is degenerate if the elements
P — 1), and ψ_(α)(FF* — 1) are all zero.

This definition of cycle was motivated in the introduction. Note that
we require U to be not only "Fredholm", but in fact "essentially unitary"
in the sense that φ+(a)(U*U - 1) and φ_(a)(UU* - 1) are elements of
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B for all a e A. This is not really necessary but is included here so as

to conform to Kasparov's definition in [15]. (For a comparison with

Kasparov's defintion, which differs from ours in some minor ways, see the

appendix.)

2.2. DEFINITION, (i) The sum (φ+,φ_,ί7) Θ (ψ+,ψ_,F) of two

KK(A9 5)-cycles is the KK(A, £)-cycle

0 φj'\ 0 ψ_
U 0
0 V

(where the algebra M2{Jί(X® B)) is identified with Jί(X® B) by

means of some isomorphism M2(Jt) = X— unique up to homotopy).

(ϋ) Two cycles (φ+jφ'.jί/') (i = 0,1) are said to be equivalent if

there exist degenerate cycles (ψ+, ψ'_, V) (i = 0,1) such that

ίφ°u,Φ°_,ί/0) θ(ψ° ψ°.,F°) and (φ\ ,φι_ , t/1) θ ί ψ 1 . , ^

are homotopic. The set of equivalence classes is denoted by KK{A, B)\ we

will write {(φ+, φ_, ί/)} for the class of (φ+, φ_, t/) in JOΓ(^4, 5).

It is clear that the above is indeed an equivalence relation, in fact the

least one which incorporates homotopy and the equivalence of a cycle

with the sum of itself and a degenerate cycle. The following lemma shows

that the relation includes unitary equivalence.

2.3. LEMMA (cf. [15], §4, Theorem 1). The set KK(A, B) is an abelian

group, via addition of cycles. If v+, v_& Jί{X® B) are isometries then

(Φ+,Φ_, ί/) is equivalent to the cycle (Ad(y+)φ+, Ad(y_)φ_, v_Uv%).

Proof. For the first statement we will just verify that inverses exist,

simultaneously with proving the second statement. The sum

φ-
0

0

Ad(o+ )Φ+

/Φ+
0

Ad(ϋ_)φ_

[/*

0
0 \
Uυ*

is homotopic to a degenerate cycle via the operator homotopy

cos(t)U* -sin(/)t;*

in(/)z;_ cos(t)v_Uv*_

Consequently {(φ_,φ+,ί7*)} is an inverse for both {(φ_,φ+, ί/)} (set

v+= v_= 1) and that class conjugated with any υ+ and v_. D

2.4. Functoriality. From a *-homomorphism /: Af -> A we obtain a

mapping/*: KK(A,B) -> Xί:(^', 5) by the formula/*{(φ_,φ+,ί/)} =

{(Φ+°fyφ-°fyU)}. This makes KK(-yB) into a contravariant functor

from (separable) C*-algebras to abelian groups.
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If g: B -> B* is a *-homomorphism between separable C*-algebras
and if B is unital then we obtain a homomorphism g*: KK{A,B) -»
KK{A,B') by the formula g*{(Φ-,Φ+> ̂ ) ) = {(g#°Φ+ Jg t°Φ_, g#(t/))},
where g#: ^#( JΓ® 5) -> ̂ ( J f ® 5") is the canonical extension of g (see
1.3). This makes KK(A, B) covariantly functorial for unital B. Non-unital
algebras are dealt with by means of the following device.

2.5. DEFINITION. Denote by B the C*-algebra obtained by adding a
unit to B (if B is already unital we set B = B). A special KK(A, 5)-cycle
is a cycle (φ+,φ_, E/) for which φ±(^4) and U are contained in the
subalgebra J({Jf<8> 2?) of ^ ( J f Θ J?).

2.6. LEMMA. Any KK{A, B)-cycle is equivalent to a special one, and if
two special cycles are equivalent then there exist degenerate special cycles
and a homotopy in J!f(Jf® B 0 C[0,1]) which give the equivalence.

Proof. Conjugation with the isometry vλ of Lemma 1.4 sends any
cycle to a special cycle to which, by Lemma 2.3 (with v+= v_= vx) it is
equivalent. If (φ'+, φ'_, U*) (i = 0,1) are equivalent special cycles then by
conjugating the homotopy in the equivalence with

we obtain a "special" equivalence as desired, but between the cycles
(Ad(ϋ1)φ'+, Ad(^1)φ/_, υfl'v*). However, by Lemma 1.4, these cycles are
homotopic within Jί(X® B ® C[0,l]) to the (φ^^Φ-, t/z) conjugated
with some w0 Θ 1, and then by connecting w0 e Jί{jf) to 1 by a strictly
continuous path of isometries we obtain the desired equivalence. •

We can now define g*: KK{A,B) -> KK(A,B'), where 5 is non-
unital by g*{(Φ_,Φ+,t/)} = {(g t foφ+?g#oψ _,g#(ί/))}, where (φ_,φ+,C/)
is a special cycle, and g#: J?(Jf® B) -> Ji(X® B') is the map induced
by g: B -* B'. By the lemma this is well defined, and KK(A, -) becomes
functorial for non-unital 5. It remains to be seen that the unital and
non-unital cases are compatible, so consider a composition of *-homo-

8i Si

morphisms Bλ-* B2~* By If Bx is unital and B2 is nonunital then since
the composition of g2 with gλ is equal to g2 o gχ it follows that g2* °
= (g 2 ° gi)* In the reverse case, where Bλ is nonunital and B2 is unital,
#2* ° £i* a n ( l (?2° ^i)* a r e obtained from the two homomorphisms

and (g2g1)
p:
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where p e B3 is the projection g2(l). So functoriality follows from the
following proposition.

2.7. PROPOSITION. If p e Jf{B') is a projection and g: B -> B' maps
B into pBfp then the maps KK(A, B) -> KK(A, B') induced by the *-ho-
momorphisms

B)

and

g^\ Jt{X® B) -* Jt(tf% pB'p) tiJt(X® B')

are equal.

Proof. The projection q = 1 ® p ^Jί(X% B') reduces gtf in the

sense that it commutes with g$(b) for every b e B. Thus we may write:

h = hq + Hd-qY N o t e t h a t #** = 8pp s o c o nJugating with the unitary

shows that for any special cycle (φ+,φ_, ϊ/), the sum of gfl(Φ+,Φ_, ί/)
and a zero cycle is equivalent to the sum of gp$(Φ+,Φ-,U) and

4)(Φ+>Φ-> ί̂ ) B u t this l a s t cycle is degenerate since g^ι-q) maps
B to zero, and so g$(Φ+, Φ_, t/) is equivalent to g^(Φ+, φ_, £/). •

2.8. Cycles obtained from *-homomorphisms. We now come to an
examination of the simplest KK-cycles, those obtained from * -homomor-
phisms. First of all, we introduce some notation which will be used
frequently from now on. Define a * -homomorphism e: B -> JΓΘ B by
e(b) = e ® b, where e is a rank one projection in JΓ. (The particular
choice of the projection e has no real relevance since all such e's are
homotopic, in fact unitarily equivalent, and the same can be said about
the associated homomorphisms.) Now, if φ ± : A -> B are *-homomor-
phisms then define (φ + , φ_) to be the KK(A, 5)-cycle (^ ° φ + , ̂  o φ_? l).
Let us note that the choice F = 1 in this cycle is unimportant because a
choice of any other F would give an equivalent cycle (since the * -homo-
morphisms e © φ ± map into JΓ® 5 a straight line between i 7 and 1 would
be an operator homotopy). If 1: A -+ A denotes the identity map then
define 1A e KK(A9 A) to be the class of the cycle (1,0). We will need the
following simple relation:
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To see this, note first that {(Φ,0)} = Φ*βA) = Φ*(1B); also, {(0,φ)} =

-{(Φ,0)}. The result follows since (φ+,0) Φ (0,φ_> is homotopic to

(Φ+,Φ_) θ (0,0) by rotating

0 0 \ /Φ_ 0

o Φ-) to U o
In a sense, our goal is to obtain a similar expression for an arbitrary cycle

(compare Theorem 3.5).

Next we discuss the Kasparov product. The following theorem sum-

marizes those of its properties that we need. These amount to the

existence of a functorial pairing, which satisfies a normalization condition,

so as to rule out the zero product: the particular structure of the product

is of no interest to us yet. We will use the product principally to obtain

the split exactness of the .OΓ-groups; later on we will reverse the proce-

dure and recover the product from split exactness. For a proof of

Theorem 2.9, see [15], [19], or the appendix.

2.9. THEOREM. There exists a bilinear pairing from KK(A,B)X

KK(B,C) to KK(A,C), denoted (>, y) -> x ®By, with the following

properties:

(1) ///: A'^A thenf*(x 9By)=f*(x) ®By;

(2) // g: B -» B' then g*(x) ®B, z = x %B g*(z), where z e

KK(B\C);

(3) Ifh: C -> C thenh*(x ®By) = x ®BK(y)\ and

(4) lA®Ax = x®BlB = x. D

We now turn to the three properties of the J£K-groups mentioned in

the introduction. Since homotopy is built into the definition of KK(A, B)

we obviously have:

2.10. PROPOSITION {Homotopy). The functor KK is homotopy invariant

in both variables. D

2.11. PROPOSITION (Stability, see [15] §5, Theorem 1). The homomor-

phisms e*: KK(A, B) -* KK(A, X® B) and e*: KK(Jf® B,C)-+

KK(B,C) are isomorphisms.

Proof. Let j: X® B -> Jί(X® B) be the inclusion and let a =

{(7,0,1)} e KK(Jt® B9B). Then em(a) = l^B and e*{a) = 1B9 so by

Theorem 2.9, Kasparov product with a on the right and left is inverse to

e* and e* respectively. D
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2.12. PROPOSITION (Split exactness). If

0 -> / ^ D ό D/J -> 0
/>

ώ # split exact sequence of separable C*-algebras and *-homomorphisms
then the following are split exact sequences of abelian groups:

0 -> KK(A9 J) ^ KK(A9 D) £ KK(A9 D/J) -> 0

0 -> KK(D/J9 B) £ KK(D, B) £ KK(J9 B) -> 0

We require a simple computation:

2.13. LEMMA. Lei / be an ideal in D and let (φ+,φ_,U) be a
KK(C9D)-cycle for which Uφ+(a) - φ_(a)U, φ+(a)(U*U - 1)9 and
φ_(a)(UU* - 1) are elements of Jf® J. If r: Jί(X® D) ->Jί(Jίr® J)
denotes the canonical map (see §1.1) then j*{(r ° φ+9 r ° φ_, r(U))} =

Proof. The lemma is easily verified if D is of the form J Θ /, or (using
Lemma 1.4) if / is an essential ideal in D. The general case follows from
considering the sequence / < / Θ Ann(/) < D. D

Proof of 2.12. Note that D maps into Jί(X% J) via

Denote by π e KK(D,J) the class of the cycle (l,s°p,l). It is
clear that j*(π) = 1J9 whilst by the lemma, y#(ίr) = {(1, s °p)},
which equals 1D — s*p*(lD). So by Theorem 2.9, taking the Kasparov
product with *n gives a homomorphism KK(A, D) -> KK(A, J) which is
left inverse to j * and whose kernel is the image of the homomoφhism
s+: KK(A, D/J) -> KK(A, D); therefore the covariant sequence is
exact. The contravariant sequence is dealt with similarly. D

NATURAL TRANSFORMATIONS

In this section we will be studying covariant functors F from separa-
ble C*-algebras to abelian groups, all of which will be assumed to be
homotopy invariant, stable, and split exact. In other words:

(i) F is a homotopy functor;
(ii) for every separable C*-algebra B the homomorphism e*\ F(B)

-» F(Jf<8> B) is an isomorphism; and
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(iii) if 0 -> / -> D ±* Z>// -» 0 is a split exact sequence of separable
C*-algebras then the sequence 0 -> F(/) -> F(D) ** F(D/J) -* 0 is also
split exact.

Define a natural transformation between two such functors, Fx and
F29 to be a collection of functions aA: Fλ(A) -> F2(A) (not homomor-
phisms, a priori), one for each separable C*-algebra, such that if /:
A -» JS then the diagram

«A UB

/*
commutes (i.e., /^α^ = αβ/*). This is the same as the conventional defini-
tion:

3.2. LEMMA. The functions aA: F^A) -* F2(A) are group homomor-
phisms.

Proof, Denote by j v j 2 , πλ and ττ2 the inclusions into, and projections
onto, the first and second factors of A θ A, and define δ: A θ A ->
M2(A) by

The *-homomorphisms δ° jvδ° j 2 : A -> M2(A) are homotopic via rota-
tion and therefore δ^y1+ = δ^y2+; furthermore, by stabihty, δ^j)^ is an
isomorphism. From the split exactness of Fλ applied to

A ^A θ A £>A

we see that j^π^ + j2*π2* = lFl^AeAy9 by composing with δ* on the
left we see that ττls|ί + ττ2* = (δji)^1 ° δ^ and from this we see that

(*!• + V2*)aA®A = «^(^i* + ^2*) G i v e n ^1^2 e

+ 72J|s(x2). Then ^*(x) = xz, and so

We will classify natural transformations AX"(>4,-) -> i7, using the
following constructions, which are essentially due to Cuntz [11].



266 NIGEL HIGSON

3.3. DEFINITION. If Φ = (φ + ,φ_,l) is a KK(A, 5)-cycle (for which

U = 1), then let

Aφ= {a® x<ΞA Θ^(jf<8> B): φ+(a) = x, modulo Jf<8> 5 } .

Define φ ± : 4̂ -> Aφ by φ+(α) = a Θ φ+(α); define y: JfΘ 5 -> ̂ 4Φ by

j(x) = 0 θ x ; and define /?: Aφ -> ̂ 4 by /?(α θ c) = <s.

These maps combine to form a short exact sequence

which is split by either of the maps φ ± : A -+ Aφ. Using this construction,

we get a homomorphism from F(A) to F(2?) as follows.

3.4. DEFINITION. Let Φ*: F(A) -* F(5) be the following composition

of homomorphisms:

F ( ^ ) Φ + -Ψ"*F(AΦ) - F(JTβ 5) S F(B),

where TΓ: F ( ^ ) -> F(Jf® B) is a left inverse of j+: F(JΓΘ B) -> ̂ (^φ)

(this exists by split exactness; also, since φ + + — φ_a|c maps into the kernel

of /?*, Ψ^ does not depend on the particular choice of π).

For example, consider the cycle (1,0) of §2.8 whose class in KK(A, A)

is 1A. The C*-algebra Aφ is A θ Jf<8> ̂ , φ+(α) = Λ θ e(α), φ_(α) =

α θ O , and TΓ: i^(^o) -> -F( JΓ<S> ̂ 4) may be chosen to be #*, where

q(a θ x) = x. It follows that (1,0)* = 1^^). This illustrates the follow-

ing result.

3.5. THEOREM. The homomorphism Φ*: KK(A9 A) -> KK(A9 B) maps

lAto{Φ).

Proof. By §2.8 the image of 1A under φ+Hc — φ_* is {(φ+,φ_)}, and

by Lemma 2.13 the image of this under π is {(r ° e ° φ + , r ° e ° φ_, 1)},

where r: Jί(X% Aφ) -> Jf(Jf® X% B) is the canonical map. Now, this

is equal to the class o f ( r ° e ° φ + , r o e o φ _ , e ® 1) and modulo interchan-

ing the copies of X in Jf 0 Jf (a unitary equivalence) this is equal to the

image of (φ + ,φ_,l) under the map Jt(X® B) ^Jl(X®X® B). But

by Proposition 2.7 this last map induces e*\ KK(A, B) -> KK(A, Jf® B),

andsoe*{Φ} = τr°(φ+slc - Φ_*)(l^); hence {Φ} = Φ*(l^). D

3.6. LEMMA. Any KK(A, By cycle is equivalent to one of the form

(Φ + , Φ_, 1), which may also be chosen to be special. If two cycles for which

U = 1 are equivalent there exist degenerate cycles and a homotopy imple-

menting the equivalence for which also U = 1.
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Proof. By replacing an arbitrary KK(A, i?)-cycle (φ+, φ_, £/) with the
equivalent cycle

o\ (φ_ o\ / u l - t/t/* \\
0 0/' \ 0 0Γ \1-U*U (U*U-2)U*JJ

we may assume that U is invertible (this trick is due to Connes [8]). Next,
the path C/((l - /) + tWV1) (* G [°> 1]) deforms [/ to its unitary part in
the polar decomposition, so we may assume that U is unitary. Finally,
by replacing (φ + , φ_, U) with the unitarily equivalent cycle
(Ad({/)° φ+,φ_,l) we obtain the desired cycle (if we started the proce-
dure with a special cycle clearly we would have finished with one). The
second part of the lemma follows by applying the same procedure to the
equivalence. D

3.7. THEOREM. If X G F(A) then there exists a unique natural transfor-
mation a: KK(A, -) -> Fsuch that ^(1^) = x

Proof. If α: KK(A,-) -> F is a natural transformation and Φ is a
cycle as in 3.3 then it is easy to see that α ^ φ ^ = φ ^ o ^ . Hence
«*({φ}) = « 5 ( φ *(^)) = Φ * ( ^ ( ^ ) ) ? and so ̂ ( l j determines aB({Φ}).

If x ^ F(A) define α5(Φ) = Φ*(x). Let us show that <xB(Φ) depends
only on {Φ}. If ^ = (φ,φ, 1) is a degenerate cycle with U = 1 then
bearing in mind that ^4φ φ ψ is equal to

( α θ ( x •) (ΞA (B M2(J?(JΓ® B)):

φ+(a) 0
0 φ(a)

, mod M2(jf® B) ,

we can define

/ Aφ —> Aφφψ by j\a

As the diagram

A

Φ Θ Ϋ
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commutes (for suitable choices of e), it follows that (Φ Θ Ψ)* = Φ*.
Also, if Φo and Φx are homotopic via a homotopy Φ with u = 1 then
Φ/* = εi* ° Φ* where ef. B ® C[0,1] -> 5 is evalution at i = 0,1. Hence
ΦOί|c = Φls|c by homotopy invariance. So it follows from Lemma 3.6 that
aB gives a map α 5 : KK(A9 B) -» ^(5) . Notice that by the computation
following Definition 3.4, aA(lA) = x. Finally, if Φ is special then it is easy
to check that (g#Φ)* = g*° Φ* if g: B -> 2?'; so α is a natural transfor-
mation. D

We end by noting that all these results have contravariant analogues.
For example, corresponding to 3.5 there is the following result.

3.10. LEMMA. // Φ*: KK(B, B) -> KK(A, B) is the composition

KK(ByB)e^KK(jf® B9B)^KK(AΦ,B)Φ+^Φ~KK(A,B),

then Φ*(l 5) ={Φ}.(σ i ί right inverse toj*.)

Proof. Let TT G KK(AΦ, Jf® B) be^the element corresponding to the

split exact sequence 0 -> JΓ<S> J ? - ^ ^ 4 φ ^ ^ 4 ^ 0 . We may take σ to be

Kasparov product with τr; having done so, it is easy to check that

Φ*(l jB) = φ*(lA) from which the lemma follows. D

CHARACTERIZATION OF KK

We begin by examining the product in the light of the above results.

4.1. THEOREM. The Kasparov product is associative.

Proof. Let x e KK(A,B) and y e KK{B,C). The two homomor-
phisms from KK(C,D) to KK(A,D) given by z -> (x ®By) ®cz and
z *-* x ®B(y <8>cz) are both natural in D and both map l c to x ®By.
Therefore they are equal by Theorem 3.7. D

4.2. THEOREM. If Φ is a cycle as in 3.3 then ( i ) j c ^ { Φ } = Φ*(*),
and (ή) {Φ} ®Bx = Φ*(x).

Proof. This follows from the functoriality of the product, 3.5 and
3.10. D
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In particular, 4.2 shows that it is possible to recover the product from
the homotopy invariance, stability, and split exactness of KK(A, -).

4.3. THEOREM. There is a unique bilinear pairing γ: KK(A,B) X
KK(B, C) -» KK(A,C) which is functorial in A and C and which satisfies
the normalization condition γ(l#,1B) = 1B.

Proof. By functoriality and 4.2,

4.4. The associativity of the product allows us to construct a category
K from KK-theory. The objects of K are separable C*-algebras, the set
K(A, B) of morphisms from A and B is KK(A,B); and the law of
composition is the Kasparov product: y ° x = x ®By (the element 1A e
KK{A,A) serves as the identity morphism). In fact K is an additive
category, which means that each K(A,B) is abelian group and the
composition law is bilinear. There is a canonical functor C from the
category of separable C*-algebras and *-homomorphisms (henceforth
denoted C*-Alg) to K, namely C(f) = f*(lA) if /: A -> 5.

Now, let F: C*-Alg -* A be any functor into an additive category A
such that if X is any object of A then A( X, F(-)) is a homotopy invariant,
stable and split exact functor into abelian groups. Equivalently, suppose
that F satisfies the following three properties:

(i) F: C*-Alg -• A is a homotopy functor;
(ii) the morphism e*\ F(B) -> F(X<E> B) is invertible; and

(in) if 0 -» / -> D ±* D/J -> 0 is a split exact sequence then F(D) is
P

the direct sum (coproduct) of F(J) and F(D/J) via the maps j+ and s*.
(Compare [16], §1.18)

4.5. THEOREM. There exists a unique functor F: K -» A such that

Proof. Obviously, on objects, F is given by F(A) = F(A). If x e
KK(A, B) then define F(x): F(A) -> F(B) to be the image of x under
the natural transformation KK(A, -) -> A(F(^4), F(-)) which maps 1^ to
lF(Ay Using the description of the product in 4.2 it follows that F is a
functor; uniqueness follows from uniqueness of the above transforma-
tion. D

Thus C: C*-Alg -» K is characterized as the universal functor with
properties (i), (ii) and (in). This has an interesting consequence: by purely
algebraic methods one may construct such a universal functor; this must
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of course be equal to C: C*-Alg -> K, and hence it is possible to construct
the Kasparov groups and the product purely formally—without any
reference to functional analysis at all! We will discuss this, and related
issues, in a future paper. We finish here with an application.

4.7. Tensor products. By considering the (minimal) tensor product of
C*-algebras along with the tensor product of *-homomorphisms we
obtain a functor ®: C*-Alg X C*-Alg -> C*-Alg. By applying Theorem
4.5 we can carry this over to the category K. As a result, for example, we
obtain the more general product

KK(A19 Bx ® D) ® KK(A2 ® D, B2) -> KK(Aλ 9 A2, Bλ ® B2)

mentioned in the introduction.

4.8. THEOREM. There exists a unique functor El: K X K such that the
diagram

Cx C
C*-Alg X C*-Alg -> K X K

® | I El

C*-Alg -> K
c

commutes.

Proof. Since the minimal tensor product preserves split exact se-
quences, the functors C*-Alg -> K defined by

and

satisfy the conditions of 4.4, and so extend to functors 1D El _ and _^ 1E

from K to itself. Let x G Xir(^1? 5X) and let g: 5 2 -> B'2. Then it follows
from Theorem 3.7 that (1 ® g)*(x El 15,) = (1 ® g)*(x El 1^) since both
of the functions

and x * (1 ® g)m(x

are natural in Bλ and both send x = lAχ to (1 ® g)JlAl9B2)' It follows
from this, and the functoriality of the Kasparov product that both of the
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maps

{yeKK(A2,B2))

(where <E> denotes Kasparov product), are natural in B2. Since both map
1A to xx M 1A it follows from Theorem 3.7 again that they are equal.
Hence:

\1Λ ^ v ) ®(x C3 I D ) — \X E3 \ A ) < 8 ) ( 1 D CSI v )

and mapping ( c, j ) to either of these expressions gives a suitable functor.
Uniqueness follows from the uniqueness of the functors 1 13 _ and J3 l.D

APPENDIX

For the purpose of describing the product it is useful to work with a
slightly different definition of KK(A, l?)-cycle, using (if only in a minor
way) the notion of a Z/2-grading on a C*-algebra E. This is a de-
composition E = 2s(0) Θ £ ( 1 ) of E into a direct sum of two closed,
self-adjoint, complementary subspaces ("degree zero" and "degree one"
elements) such that E{i) E{i) c E{i+J) with (/ +7) taken modulo 2.

Examples are: (1) the trivial grading, that is: £ ( 0 ) = E and E(l) = 0;
and (2) the grading included by a symmetry X e £ (a self-adjoint
unitary), for which the degree zero elements are those which commute
with X and the degree one elements are those which anticommute with it.

Al. DEFINITION. A KK(A, i?)-cycle is a triple (X, φ, F) where X is a
symmetry in ^ ( J f ) , φ: ̂ 4 —>.y#(JΓ® 5) is * -homomorphism which is
grading preserving with respect to the trivial grading on A and the grading
on Jί{$f% B) induced by X® 1, and F is a degree one element of
Jl(X® B) such that [φ(α),F], φ(α)(F2 - 1), and φ(α)(F - F*) are
elements of Jf ® B, if α e 4̂.

Let us relate this to Definition 2.1. To obtain from a cycle (X, φ, F)
as above a cycle of the type considered there, we can proceed as follows.
Let P = (2X <8) 1) - 1, the projection onto the + 1 eigenspace of X Θ 1.
Because φ is grading preserving, the symmetry X ® 1, and so also the
projection P, commutes with every φ(α) (α e v4). Therefore P reduces φ
and we can write φ = φP + φ1_F. On the other hand, F anticommutes
with X ® 1 and therefore with respect to the decomposition 1 = P +
(1 - P) it is a matrix of the form (^ ^). We obtain the triple

0 (T
U 0,
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which is a cycle in the sense of Definition 2.1. (Note that from the relation
Φ(a)(F - F*) <ΞX® B, it follows that U* = V modulo X® B and
multiplication by φp(a) and Φ(i_/7)(β).)

Addition of cycles is given by

0

0 0

and exactly as in §2 we obtain the group KK(A,B) from the equiva-
lence relation generated by addition of degenerate cycles (cycles for
which [φ(a),F], etc., equal zero) and homotopy (which is given by
KK(A, B ® C[0, l])-cycles); it is the same group, of course. Functoriality
is obtained via special cycles as in §2.

We should also compare our definition with that of Kasparov ([15],
Definition 4.1). This is given in terms of Hubert modules, and is related to
ours by the fact that the algebra of adjoinable operators on the standard
Hubert module HB is (*-isomorphic to) J({X® B). (For information on
Hubert modules see [14] and [15].) When written in terms of algebras
rather than modules, Kasparov's definition is the same as ours, except that
the element of Jΐ(X® B) which determines the grading—the symmetry
X ® 1 in our scheme—is allowed to be any symmetry at all. However, by
virtue of the stabilization theorem ([14], Theorem 3.2) the same group
KK(A, B) is obtained.

A2. DEFINITION. Let (Xvφ,F) be a special KK(A, JS)-cycle and
let (X2, ψ,G) be a KK(B,C)-cycle. Define the • -homomorphism
ψ: Jί{X® B) -> Jί(X® X® C) to be the composition

C)) ->Λf(jf®JΓΘ C),

and let F = ψ(F), G = Xτ <8> G ^.M{X®X® C). A Kasparov prod-
uct of (XL,φ,F) and ( X ^ G ) is a KK(A9C)-cycls of the form
(Xλ (8) X 2 ,ψ°φ ? M 1 / 2 F+JV 1 / 2 G) where M and iV are positive, degree
zero elements of Jί(Jt® X® C) such that M + N = 1, and:

(i) M and N commute, modulo X® X® C, with all elements of the
subspace ^aJί{X®X® C) generated by ψ(φ(a)) (for all a e A\ F
and G;

(ii) M Ex c jf® jf® C, where i^ is the C*-subalgebra of
X® C) generated by [ψ(φ(a)), F], ψ(φ(α))(F2 - 1) and

( F - F * ) (α e ^ ) ; and
(iii) N - E2 aX® X® C, where £ 2 is the C*-subalgebra of

Jί(X® X® C) generated by^ [ψ(φ(α)), G], ψ(φ(β))(G2 - 1),
ψ(φ(α))(G - G*) (a e ^4), and FG + OF.
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Some discussion of this definition is perhaps in order. To begin with,
suppose given two degree one symmetries, Fλ and F2, on graded Hubert
spaces (XVHX) and (X2,H2) (the Xt e SS{Ht) are grading operators).
Then aι/2Fx ® 1 + βι/2Xλ ® F2 is a degree one symmetry on (Xλ ® X,,
-HΊ Θ /f2), if α a n d β are non-negative numbers such that a + β = 1:
multiplying out we get

8>1 +βι/2X19F2)
2

= α + o^

and since i^ anticommutes with Xl9 the two middle terms cancel out. This
helps motivate the choice of the operator Mι/2F +7V1/2G in the definition
of the product. Of course, F and G only "approximately" anticommute
(except in special circumstances: for example, if G commutes with ψ(B));
however this problem is overcome by the particular choice of the opera-
tors M and iV in the definition.

Let us comment on the use of Z/2-gradings in the product. Put in
terms of Definition 2.1? the product is a cycle of the form

0

0

0

o
- ^ ( l ® V*)\\

V) Mι^Z{U*) I/
It is evident then that Z/2-gradings provide a very concise and natural
method of bookkeeping. The rather strange formula for the operator in
the above cycle is quite familiar from .K-theory: for example given two
essentially unitary operators U and V, the operator

\N1/2(1 0 V)

for suitable M and N Is the natural operator obtained from U and V for
which

Index(C/#F) = Index(ί/) - Index(F).

In fact, the space of all Fredholm operators forms a classifying space for
AΓ-theory and the product in ^-theory may be obtained from a construc-
tion such as this. (Of course, we are just describing a special case of the
Kasparov product.)

At a more basic level, conditions (i), (ii) and (in) above on M and N
are simply the obvious sufficient ones to make a Kasparov product

Mι/2F+Nι/2G) into a KK(A,C)-cycte (as checking
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Definition Al immediately reveals). Within these constraints, the choice
of (M, N) is unimportant, for if (M\ N') is another admissible pair then
the path of pairs, (tλf + (1 - t)M\ tN + (1 - t)N') (t e [0,1]) links the
corresponding Kasparov products by a homotopy, and so they determine
the same element of KK(A, C).

The existence of products follows from the following separation result
(see [15] or [12]). The graded commutator of elements in a graded algebra
is [*, y]gr = xy- (-l)dc^άe^yx (see [15]).

A3. THEOREM. Let D be a separable graded C*-algebra, let J / and 98
be separable graded C*-subalgebras of Jί(D), and let & be a separable
graded subspace. If [J^, s/]gr

 c si and si - 3$ c D then there exist positive
degree zero elements M,N e Jί(D) such that M + N = 1, [M, &\ c D,
M - s/c. D and N - SS c D. Furthermore, if D is an essential ideal in D'
and s/, 3S, and !F are contained in the subalgebra Jί{Df) of Jί{D) then
M andN may be chosen in Jt{D'). D

We take D = Jf® JfΘ C, J / = ψ(JfΘ B) + D (noting that Ex c
B)), 38= E2, and J^=J^; the hypothesis of Theorem A3 are

easily verified.
We will close by proving Theorem 2.9, considering first the functorial-

ity of the product.

A4. THEOREM. The product gives a well-defined bilinear mapping
KK(A, B) X KK(B, C) -> KK(A, C) which is natural in A, B and C in the
sense of Theorem 2.9.

Proof. Let (Xv φ, F) be a special KK(Ay £)-cycle and let (X2, ψ, G)
be a .ΩΓ(i?,C)-cycle. If (Xvφ,F) is degenerate we may take M = 1,
N = 0, and then the product is degenerate. Similarly, if (X2,ψ,G) is
degenerate we may take M = 0, N = 1 and the product is again
degenerate. By taking the product of (Xl9 φ, F) with a homotopy (a
KK(B,C ® C[0, l])-cycle), we see that the product only depends on
the homotopy class of (X2,ψ,G); by taking the product of a homo-
topy with the KK(B ® C[0,1],C <8> C[0, l])-cycle (X2, ψ Θ 1, G 0 1) we see
that the product also only depends on the homotopy class of (Xl9φ, F).
Therefore, since it is clearly additive, the product passes to the jOT-groups.
Functoriality in A and B is obvious; to obtain functoriality in C, we
need only consider the case where (X2,φ,G) is special. Then by the



A CHARACTERIZATION OF KK-TΉEORY 275

last part of Theorem A4 we may choose M and N from the subalgebra
Jt( JΓΘ JT® C) of Jf(X® JΓΘ C), from which the result follows. D

We pass on to the normalization condition. Note that the "identity"
element 1A e KK(A,A) is given by the cycle (1, e, 0), where e: A ->

A5. THEOREM. Ifx e iΏSΓ(̂ , 5) ί/w?/i 1^ Θ^ JC = x = x ®B \B.

Proof. Let (X,φ,F) be a special KK(A, 5)-cyde, and let JC =
, φ, i7)}. Let us consider 1̂  ®^ x first. We may take say M = (1 - e)

® 1 in the construction of the product, and then the cycle so obtained is
(1 ® X, φ o e, (e 0 l)φ(iΓ)). Since the map φ <> e is equal to

e ® φ: Λ ̂  e ® φ(α)

we may write the product as (1 ® X, e 0 φ, ̂  ® jp), which is equal to
(X,φ,F) plus a zero cycle. Hence lA <8>A x = x by the definition of
equivalence in KK(A9B). In the construction of x <8>5 1 5 we may take
M = 1, which gives the cycle (X ® 1, <? <> φ, e(F)). The projection P = 1
® e ® 1 reduces e: ̂ T(Jf<8> 5) -> uT(Jf0 Jf<8> 5), (so β = eM + e ( 1_M ))
and therefore we may write

(X® l , * o φ , e(F)) = (JΓ® 1, ( e o φ ) p , Pe(F))

+ {X9l9(eoφ)(L-P)9(l-P)e(f)).

Since JΓ<E) 5 is contained in the kernel of £ ( 1 _ M ) , the second cycle is
degenerate. Thus the product is equivalent to ( Z ® l , (e °φ) P , Pe(F))9

which, after interchanging the copies of Jf in Jf® JΓ, is (1 0 X, e <8> φ,
^ O F). This is equivalent to (e ® X, ^ ® φ, e ® i7) which is equivalent to
the original cycle (X, φ, F). D
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