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Natural maps are defined here which allow many questions about E.
Becker’s “orderings of higher level” to be reduced to questions about the
value groups of the real-valued places they induce. A simple construction
is given of the set of orderings of higher level which induce a given
real-valued place (this set is bijective with the set of subgroups of the
value group of the place whose factor groups are cyclic of 2-power order).
This construction leads to straightforward valuation-theoretic characteri-
zations of real closed fields and of real closures of fields at orderings of
higher level. The sets of isomorphism classes of real closures of a field
which induce a given real-valued place, a given ordering of any level, or
even a given family of orderings are each explicitly computed.

1. Introduction. Throughout this paper, F will denote a field. An
ordering of higher level (abbreviated: “ordering”) of F is a subset of F
which is maximal with respect to exclusion of -1 and closure under
addition and multiplication (i.e., a Harrison prime) which contains F?’
for some n [B]. If T is such an ordering, then T"= T\ {0} is a subgroup
of the multiplicative group F'= F\ {0} and F/T" is cyclic of order 2™
for some integer m (m is called the exact level of T) [B]. Following Lam
[L, §12], we will call the orderings of exact level one ordinary orderings;
these are precisely the orderings appearing in the classical Artin-Schreier
theory of formally real fields. Orderings of exact level greater than one
will be called orderings of “higher exact level”.

Orderings of higher level have received considerable attention since
being introduced by Becker in 1978 [B, B1, BHR, Cr, H, KR]. Our exposi-
tion, while inevitably overlapping earlier work, is largely independent of it
and is at least to some extent distinguished from it by an increased
emphasis on natural constructions and mappings.

Our starting point is the fact, essentially due to Harrison and Warner
[HW, Theorem 1.1] and independently rediscovered by Becker [B, p. 18],
that each ordering is associated in a canonical way with a place into the
field R of real numbers, i.e., with a “real-valued” place.

LEMMA. Let H be an ordering of F. There is a unique real-valued place
T on Fwith v(H) > 0.
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262 RON BROWN

(To deduce the lemma from [HW], first note that any subfield of the
complex numbers C not contained in R is in fact dense in C and hence
clearly has elements whose 2”th powers are not real (where n is the level
of our ordering H). But the residue class field of the unique place
71 F > CU {0} associated with A [HW, Theorem 1.1} has all its 2"th
powers in R (since 7(F?") C 7(H) C R U {0}). Hence T must in fact be
real-valued.)

If 7 and H are as in the above Lemma, we say that H induces 7.

Throughout this paper, o, with associated valuation v: F'— T, will
denote a real-valued place on F. The following computation of the set
“X” of all orderings H of F inducing o (i.e., with o( H) > 0) will play a
fundamental role in our study. Let S denote the set of all subgroups A of
T such that I" /A is cyclic of order a power of 2.

1.1. THEOREM. Let P € X be an ordinary ordering. The correspondence
Yp: H— v(P N H) maps X bijectively onto S.

In the statement of the above theorem we have used the convention
that “v(A4)” will denote v(F'N A) for all 4 C F. Theorem 1.1 is proved
(in a slightly stronger form) in §2, where we also show very explicitly how
to construct the inverse map. Applications of it appear in [Br3], where we
show that Harman’s “chains of orderings” inducing ¢ [H] correspond
bijectively under the above map to precisely the filtrations on I in the set
“F” introduced below. We have very recently learned of some work of
Becker, Harman and Rosenberg [BHR]. They emphasize orderings of
higher level (in a generalized sense) as characters, and give independently
a computation of the set X.

A real closure of F at an ordering H is defined by Becker [B, p. 58] to
be a maximal algebraic field extension of F admitting an ordering of the
same exact level as H which contains H. F is called real closed if it is its
own real closure with respect to some ordering. Real closures and real
closed fields with respect to ordinary orderings are just the real closures
and real closed fields of the Artin-Schreier theory [L, §3]; we will call
them ordinary. The next two theorems characterize the real closures and
real closed fields of higher exact level, i.e., those which are not ordinary.
The first extends a theorem of Becker (cf., Remark 4.3 B) to a characteri-
zation of real closed fields of higher exact level.

1.2. THEOREM. F is a real closed field of higher exact level if and only if
F is Henselian with respect to a real-valued place whose residue class field is
an ordinary real closed field and whose value group, say A, is such that
A/nA has exactly two elements if n = 2 and exactly one element if n is odd.
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The condition on A above is equivalent to saying that A is additively
isomorphic to the direct product of a divisible group and a nontrivial pure
subgroup of I,, the additive group of 2-adic integers. (See §3.) If A is
required to be divisible in the statement of 2.2, we get a familiar char-
acterization of real closed fields at ordinary orderings (e.g., see [Br 2, §4]).

In this paper, K will always denote an algebraic extension of F.

1.3. THEOREM. K is a real closure of F at some ordering of higher exact
level if and only if K is real closed and some element of F has odd value in
the value group of K.

In the above theorem, we have called an element of an (additively
written) ordered group A odd, if the element is not in 2A.

The above two theorems will be proved in §4, where we will give
explicit formulas for all the orderings of higher exact level of a real closure
K of F and show that K is in fact a real closure of F with respect to each
of these.

We next turn to the computation of “Iso”, the set of all F-isomor-
phism classes of real closures of F of higher exact level which induce on F
the real-valued place o. To this end, let P denote the set of all preorders T
of F (i.e., subsets of F closed under addition and multiplication and
containing F"? but not —1 [L, §4]) containing ¢ '(R?) and with v(T) of
index 2 in T and let F denote the set of all filtrations (I});,, of T by
subgroups T, of T having I'/T; cyclic of order 2’ for all i > 0.

1.4. THEOREM. The correspondence
®: K~ (K20 F,(v(K? 0 F)),_ )

maps Iso bijectively onto the set of all pairs (T,(I});.,) in P X F with
u(T)=T,.

In the statement of Theorem 1.4 (and frequently below) we have
denoted an element of Iso (that is, an isomorphism class) by some
member of that class.

The sets P and F (and the set of T € P with v(T') taking on a
specified value I')) are discussed in Remark 2.3B and in §3 below. For
example, we note there that elements of F correspond (almost!) bijectively
to homomorphisms from I' to the 2-adic integers, I,, and that elements of
P are simply intersections of pairs of distinct ordinary orderings inducing
o. Theorem 1.4 will be proved in §5, where we will also explicitly compute
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the inverse of the bijection. We will also compute the set of real closures
of F inducing a given ordinary ordering of F, and spell out the connec-
tion between the bijections of Theorems 1.1 and 1.4. Finally, in §6, we
give necessary and sufficient conditions for the existence of a real closure
of F inducing a given family of orderings of F, and we compute the set of
F-isomorphism classes of such real closures. The main result generalizes
Theorem 1.4, Becker’s computation of the set of F-isomorphism classes of
real closures of F at an ordering of higher exact level [B, p. 163], and
Harman’s theorem on the uniqueness of chain closures [H].

1.5. Notation. We give here, for the convenience of the reader, a list of
some notations which are used in sections other than those in which they
are first introduced.

(A) o, with associated valuation v: F'— T, is a real-valued place on a
field F. K is an algebraic extension of F.

(B) X is the set of orderings of F inducing o (i.e., orderings H with
o(H) = 0), S is the set of subgroups A of I'" with I'/A cyclic of 2-power
order, and Iso is the set of F-isomorphism classes of real closures of F at
orderings of higher exact level inducing 6. For each m > 1, X(m) = { H
€ X: H has exact level m}, and for each m > 0, S(m) = {A € S: T'/A
has 2™ elements}. P is the set of preorders 7 on F with v(7T") € S(1) and
T D o~ '(R?). F is the set of filtrations (T}),, ,of T with I; € S(i) for all
i>0.

(©) Z,0Q,R, and I, denote the sets of integers, rationals, reals, and
2-adic integers, respectively. |4| denotes the cardinality of the set 4, and
A\ B the complement of the set B in A. Finally, S"denotes S\ {0} if S
is an ordering, and S denotes the group of multiplicative units of S if S is
a unitary commutative ring.

2. Orderings of higher level. We now prove a slight refinement of
Theorem 1.1. Let X(m) denote the set of orderings in X of exact level m
(for all m > 1) and let S(m) denote the set of all groups in S, c.f., 1.5B, of
index 2" in I" (for all m > 0). For each (P, H) € X(1) X X let Yp(H) =
Y(P,H)=v(P N H).

2.1. THEOREM. Let P € X(1). Y, maps X(1) bijectively onto S(0) U S(1)
and, for each m > 1, Y, maps X(m) bijectively onto S(m).

The proof of Theorem 2.1 will provide an explicit formula for the
inverse of Y, (see Remark 2.3A below). The precise dependence of the
map ¥, upon the choice of the ordering P is discussed in Remark 6.4A
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below. We might also remark here that the map ¢ generalizes the map
X(1) X X(1) » Hom(T', Z°) of [Br, Proposition]. (Each homomorphism
into Z" is determined by its kernel.) It can be generalized to map certain
pairs in X X X (namely, the set of all (S,7) with v(S) D v(T) and
v(S) # v(T) unless T € X(1)) to S. For a step in this direction see
Lemma 6.3B.

We begin the proof of Theorem 2.1 by collecting some standard facts
about induced real-valued places; for the convenience of the reader proofs
will be sketched.

2.2. REMARK. Let H € X(m). Then ¢ (R) N H = o7 (R?). The
inclusion 0 "}( R) — F"and the valuation v induce a short exact sequence

(1) 1 - R/R? - F/H—> T /u(H) - 0.
Finally, v( H) has index 2™ ' in T.

Proof of 2.2 (sketch). To prove the first assertion one observes that
Ho !(R?) is a preprime and hence equals H (H is maximal preprime),
whence H D o7 (R?). (To show that Ho !(R?) is closed under addition
note that if a, b € H and ¢, d € 6"(R?), say with v(a) > v(b), then
ac + bd = b(ab'c + d) and o(ab~'c + d) > 0.) To verify the exactness
of (1), recall that the kernel of v is 6 7}(R), and the kernel of the natural
map o~ Y(R) » F/H'is HN ¢ }(R) = 6 }(R™?). The last sentence of 2.2
follows from the exactness of (1).

We now prove Theorem 2.1. Note that ¢ ,(P) = v(P) =T € S(0).
Let H € X(m), H+ P, m > 0. We show ¢,(H) € S(m). The natural
map P/H N P'- F'/H' is injective, so P/H N P’ is cyclic of 2-power
order. The map P/H N P'— I' /u(H N P) induced by v is clearly surjec-
tive, so I'/u(H N P) is cyclic of 2-power order, ie., yp(H) € S. It
remains to show that both the above maps are bijective, so that Y ,(H) €
S(m). The surjectivity of the first is easy (P has index 2 in F and P'H'is
bigger). To show that the second is injective, consider any a € P with
v(a) = v(b) for some b € H N P. Then

a=b(ab)e H-(Pno(R))=H-o(R?)CH,

proving injectivity.
Next suppose A € S(m), m > 0. It suffices to show there exists a
unique element of X(m) mapped by ¢, to A. Set

S=(Pnovi(A)U—(Pnovi(Aa\A4))
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where A’ = A + 2™ 1I". That S is a subgroup of F" follows from the fact
that A’ /A is cyclic of order 2. (If @, b € P N v™}(A’\ A), then ab € P N
v7I(A) since v(ab) € (A’\ A) + (A’ \ A) C A. We leave the other cases
to the reader.) Clearly -1 & S D F?" (since v(-1) & v(A’\ A) and
-1 ¢ P and F?" c P nv}(A)). S is closed under addition: if a, b € S
with v(a) = v(b) then a + b=5b(1 +ab') e S - (R?) CS.
We again have isomorphisms P/S NP — F/S and P/SNP —-T/A
induced by the inclusion P'— F' and by v (note that P'# S since
S D —(PNovY(A’\ Q) and that P N v~}(A) = S N P by the definition
of §). Thus F/S is cyclic of order 2", so S U {0} € X(m) and
Yp(S U {0}) = A. This proves existence. Now suppose H € X(m) has
Yp(H) = A; we must show H'= S. By maximality, it suffices to show
H'c S. Since by Remark 2.2 I'/v(H) and TI'/A’ are homomorphic
images of the cyclic group I'/A of the same order, we have A" = v(H).
If ac HN P, then a€ PNuv}(A)c S. Suppose a € H\ P. Then
v(a) &€ A (otherwise v(a) = v(b) for some b € HN P, so a = b(ab™?)
€ P - o67}(R?) C P, a contradiction). Thus a € (-P) N v }(A’\ A) C S.
The theorem is proved.

2.3. REMARKS. (A) The proof of 2.1 shows that if A = S(m) (and
A" = A + 2™71T), then

V(8) = (0} U(P N 07 (8)) U = (P n o7 (4\ A)).
(B) What can be said about the sets X(1), P, and for each A € S(1),
P,={TeP:v(T)=A4}

which play a key role in Theorem 1.4 (and in §5)? Theorem 2.1 gives a
bijection between X(1) and Hom(T', Z") (which is bijective with S(0) U
S(1)). P is naturally bijective with the set of subsets of X(1) containing
exactly two elements; indeed, elements of P are precisely the intersections
of pairs of distinct elements of X(1). P, consists precisely of the intersec-
tions of pairs of orderings P and P’ in X(1) with v(P N P’) = A. Thus we
have a natural 2:1 covering of P, by X(1) given by the map P - P N
v I(A) = P N Y3p}(A) (for all P € X(1)).

3. Filtrations on value groups. We present some lemmas here which
will be needed below. We use the notation of §1, although the lemmas
may be regarded as dealing with an arbitrary torsion free abelian group I'.

3.1. LEMMA. For any m > 0, the natural map ¥ — S(m) (namely,
map (I,), ., to T,,) is surjective.
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Proof. 1t suffices to show that if A € S(m), then A contains some
element of S(m + 1). The exact sequence

0-2"Z/2"*Z - 22" Z - Z/2"Z - 0

gives rise to a surjection Hom(T', Z/2"*1Z) - Hom(T', Z/2™Z). (Apply
[CE, VII 6.2, p. 136], or use [F, Theorem 27.5] to apply [M, Theorem 3.4,
p. 74].) A is the kernel of some surjective map in Hom(T, Z/2™Z), which
is thus induced by some surjection g € Hom(T, Z/2™*'Z). Then A D
kerg € S(m + 1).

Let QT denote some fixed divisible hull of T (i.e., a minimal divisible
extension of I'). For the remainder of this section (and never again!) we
will call a subgroup A of QT special if it contains I" but not (1/2)T", and
closed if A is isomorphic to a direct product D X I where D is divisible
and I is a pure subgroup of I, (see 1.5C for notation).

The next lemma describes two ways in which we can generate all the
elements of F.

3.2. LEMMA. (A) Let A be special and closed. Then (T N 274),,, € F.

(B) Let f € Hom(T,, 1), say with 1 € f(T). Then.(f'(2'I,));., € F.

(C) Let (I));, o € F. Then there exists f € Hom(T', I,) with 1 € f(T')
and fY(2'L,) = T, for alli > 0. Moreover, the set

I'*:={qveQl:qe Q,yeTandgf(y) € L,}

is the unique special closed group with T N 2'T* =T, for alli > 0.

3.3. Note. In Lemma 3.2(C), f is unique up to multiplication by a
unit of 7,. Indeed the construction of 3.2(C) gives a bijection

F U{(T),50} » Hom(T', I,)/ ~

where the codomain is the set of equivalence classes of maps f &
Hom(T', I,) under the equivalence relation: f ~ g if and only if af = bg
for some nonzero a, b € I,. (Correspond the constant sequence ('), , to
the class of the zero map.) The point of view in this note is central to the
paper [Br 3] and a proof of the above remark can be found there (see [Br
3, §2, Claim 2}).

Proof of 3.2. (A) Write A = I X D where D is divisible and I is pure
in I,. Since A is special, I is not 2-divisible. Hence A /2"nA (= 1/2™]) is
cyclic of order 2™ for any positive integer m and odd integer n. Since A is
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special, there is a generator of A/2°A in T, so that T + 2'A = A. Hence
the natural injection T'/T' N 2A - A/2'A is an isomorphism. Thus
(T' n 24),., € F, as required.

(B) Straightforward.

(C) Let y € '\ I}. Then y + I, generates I' /T for all i > 0. Hence
there are homomorphisms f: ' > Z/2'Z with kerf, =T, and f,(y) =
1+ 2Zforalli > 0. Let f: T — I, be the inverse limit of this family of
maps (identify I, with liin Z/2'Z), so kerf= N, ,I; and f(y)=1
Clearly f}(2'I,) = kerf, =T, for all i > 0. f has a unique extension f’ to
a map from QI to Q, (the 2-adic numbers; let f'(y/n) = f(v)/n for
y €T and 0 # n € Z). Then T* = f'"!(1,). Let f* be the restriction of
f’ to I'*. The kernel of f* is divisible, so I'* splits into the direct product
of ker( f*) and f*(I'*). It follows easily that I'* is a special closed group.
Moreover, I N 2'T* =T N f*}2'I,) = f1(2'I,) =T, for all i > 0. Sup-
pose now that I is another special closed group with I, = I' N 2'T” for
all i = 0. Then y ¢ 2I", so there is a homomorphism g: I — I, with
g(y)=1 and g }2L,) =21’ for all i >0 (argue as above with T
replaced by I and T, by 2T”). Then g restricts to f on I' since the
restriction of g to I' induces all the maps f,. Thus f’ is the canonical
extension of g to a homomorphism from QT to Q,. Hence I'* D I". That
I'* = T" follows from the next lemma (whose proof uses only the existence
part of 3.2(C)).

The last lemma of this section contains a characterization of the value
groups of real closed fields (cf., Theorem 1.2).

3.4. LEMMA. Let A be a special group. The following are equivalent:
(1) A is closed,

(2) A/nA has 2 elements if n = 2 and 1 element if n is odd,

(3) A is maximal among special groups (with respect to inclusion).

Proof. “(1) = (2)” follows from the definitions.

(2) = (3). Suppose A’ is a special group containing A. Just suppose
there exists 6 € A’\ A. There exists a least positive integer m with
md € A. Then m is even, since otherwise mé € A = mA whence 8§ € A.
Thus m8 & 2A (by the choice of m). Since A’ is special, there exists
y € '\ 24" € A\ 2A. Since |A/2A| = 2, we therefore have

y € md + 24 C 24,

a contradiction.
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(3) = (1). Since A is special, there exists y € I'\ 2A. The Z /2 Z-vec-
tor space A/2A has a subspace of index two missing y + 2Z. Hence A
has a subgroup of index 2 not containing A. Hence there exists a filtration
(A;);»o of A with A; not containing I' and with A/A; cyclic of order 2°
for all i > O (apply Lemma 3.1 to A). By the part of Lemma 3.2C proved
above, there exists a closed subgroup A* of QT with A* D A and with
A N 2A* = A,. Then A* is special, so A* = A by hypothesis. Hence A is
closed.

4. Characterization of real closures. In this section we prove slightly
strengthened versions of Theorems 1.2 and 1.3, which give valuation-theo-
retic characterizations of real closed fields and of real closures of a field.
We continue, of course, the notation of §1.

4.1. LEMMA. Let T'* be as in Lemma 3.2(C), and let T € P have
v(T) = I',. Then there exists a Henselian algebraic extension (F*,o*) of
(F,0) such that o* has real closed residue class field (at an ordinary
ordering), o* has value group T'*, and F*> N F = T.

Proof. Let Fp, with real-valued place op, be a real closure of F at an
ordinary ordering P containing 7. Then o, extends o. Since F, is
Henselian, it has a Henselian subfield E with value group I' and (ordinary)
real closed residue class field. (E is simply the Henselization of F at the
prime value associated with ¢ [Br2, Example 1.1C and §4]. Alternately: F,
contains a Henselization of F at v [R, p. 175] and hence an unramified
extension of this with the same residue class field as F, [M1, p. 427
“separable algebraic case”].) E may be extended to a subfield F* of F,
with value group I'* by making a sequence of totally ramified extensions
involving adjoining appropriate roots a'/*™ in F2, where m is odd,
a€ T, and v(a) €I, for s > 0. F* is Pythagorean with exactly two
orderings (since |[I'* /2T'*| = 2), both of which contain T (since 2T* N T’
= p(T)). Thus F** N F = T, as required.

4.2. THEOREM. The following three statements are equivalent:

(1) F is real closed at some ordering of higher exact level,

(2) for each m > 1, the set F*" U —(F¥ '\ F*") is the unique
ordering of F of exact level m and F is real closed with respect to it;

(3) F is Henselian with respect to a real-valued place with an (ordinary)

real closed residue class field and with a value group, call it A, having
A/nA =1lifnisoddand |A/2A| = 2.
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4.3. REMARKS. (A) Groups A satisfying the condition in 4.2(3) were
characterized in Lemma 3.4.

(B) Theorem 24 of [B, p. 58] can be easily deduced from Theorem 4.2
above and even slightly strengthened: a field F which is real closed at an
ordering of higher exact level is the intersection of any pair of ordinary real
closed fields K and E lying in an algebraic closure of F and containing F and
inducing distinct orderings on F. To see this, first note that F has exactly
two ordinary orderings (use 4.2(3) to apply either [Br] or Remark 2.3B);
thus both extend to K N E. Suppose b € F has v(b) € 20(K N E). We
may then assume b lies in all ordinary orderings of K N E (possibly
replacing b by -b), and hence in both ordinary orderings of F. Thus
v(b) € 2v(F). Since v(F) is odd divisible, it follows that the ramification
index of the extension K N E of the Henselian field F is 1. Since the
ramification degree is also clearly 1 (apply 4.2(3)), we have K N E = F by
Ostrowski’s theorem [R, p. 236]. An easier application of Ostrowski’s
theorem also shows that F has no extensions of odd degree.

(C) Here is a “relative”criterion for being real closed at an ordering of
higher level: F is real closed at some ordering of higher level (possibly
ordinary) if and only if F is Henselian with respect to a valuation with
value group, call it A, divisible by all odd integers and with a residue class
field, call it E, which is real closed at some ordering of higher level
(possibly ordinary) and which satisfies

|E/E?| +|A/2A] < 5.

The proof is a routine application of 4.2 and is left to the interested
reader.

We now prove Theorem 4.2. First suppose F is real closed at an
ordering H inducing o of exact level m > 2. Let P € X(1). By Lemma 3.1
(and Theorem 2.1) there exists (I}),., € F with I, =v(P N H). By
Lemma 4.1 we have an algebraic extension F* of F which is Henselian at
a real-valued place (say with associated valuation also denoted by v)
extending o, with value group I'* (as in Lemma 3.2(C)), with an (ordinary)
real closed residue class field, and with an ordinary ordering, P* say,
containing P. By Remark 2.3A, the set

(P* N o (2"T*)) U —(P* N o7 (2771T*\ 27T*)) U {0}
is an ordering of F* of exact level m, and its intersection with F is

(PN ov™(T,)) U —(P oYL, ,\T,)) U0} = H.

m
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Hence if F is real closed at H, we must have F = F* (by the definition of
real closure). Thus (1) implies (3). Since (2) implies (1) trivially, it remains
to show that (3) implies (2). Suppose (3) holds. Let m > 2. Since F admits
a unique real-valued place ([Br2, §4], or [P, 7.2.2]), we might as well
denote it by o and use the notation of §1. Let P € X(1). Since S(m) =
{2"T'} (Lemma 3.4), the unique ordering of F of exact level m is
(P novt(2mA)) U —(P o277\ 2"T)) U {0}

(by Theorem 2.1 and Remark 2.3A), which equals F2" U —(F¥" '\ F?").
(E.g., if a € P N v '(2™T), then for some b € F, a/b*>" € PN a"}(R)
C F?",so a € F*") Let H denote this ordering; it remains to show that
F is real closed at H. Let (K, I) denote a real closure of (F, H). By the
proof of “(1) = (3)” above, K is Henselian at a real-valued place (say
with valuation v: K'— Q) extending ¢ which has the same residue class
field as o does. Since I and H have the same exact level (cf., §1), the
natural map F/H — K'/I'is an isomorphism. Thus if a € F’ represents a
generator of the cyclic group F/H,, then it also represents a generator of
K'/I', and hence of its homomorphic image £,/2Q. Thus @ contains T,
but not (1/2)T. Hence I' = 2 (Lemma 3.4). Thus K = F, as required [R,
Ostrowski’s Theorem, p. 236].

4.4. THEOREM. Let K be an algebraic extension of F, and suppose K is
real closed at an ordering of higher exact level. The following are equivalent:

(1) K is a real closure of F at some ordering of higher exact level,

(2) for each m > 2, the unique ordering of K of exact level m induces an
ordering of F of exact level m and K is a real closure of F with respect to this
ordering;

(3) some element of F has odd value in the value group of K.

Proof. Let w be the canonical valuation on K. Let H be an ordering
of K of exact level m > 2. Then H N F is an ordering of F, say of exact
level s (after all, there is a natural injection F/F'N H — K'/H', so
F'/F NH is cyclic of order dividing 2™). (K, H) is a real closure of
(F,FN H) if and only if s = m. If indeed s = m, then F/F'N H —
K'/H' is surjective, so K = HF. Hence some element of F has odd value
in the value group of K (elements of H can only take even values, i.e.,
values in 2w( K)). This shows that (1) implies (3). Conversely, suppose (3)
is true. Then the natural map w(F)/w(F N H) —» w(K)/w(H) is surjec-
tive. But w(K)/w(H) has 2™ ! elements (cf., Remark 2.2), while
w(F)/w(F N H) has 2°~! elements. Thus 2°~! > 2™~ Since s cannot be
larger than m, we have s = m. This proves (2). Since the implication
“(2) = (1)” is trivial, the Theorem is proved.
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5. Isomorphism classes of real closures. In this section we compute
the set Iso of F-isomorphism classes of real closures of F at orderings of
higher exact level inducing o, and relate this computation to that in §2 of
the orderings of F inducing o. Let us fix a subgroup A of I' of index 2.
We “relativize” some of the basic notation of §1 by setting Iso, = { K €
Iso: v(K*NF)=A}, i, ={(T);s0€F: I, =A} and P,={T€P:
v(T) = A}. The sets Iso, F, and P are each the disjoint union over all
A € S(1) of the sets Iso,, F, and P,, respectively. (E.g., each K € Iso
canonically induces an element of S(1), namely, v(K? N F).) Thus Theo-
rem 1.4 follows immediately from the next theorem.

5.1. THEOREM. The correspondence K — (K 2N F,fil(K)) (where
fi(K) = (v(K? N F)),,,) induces a bijection ®,: Iso, - P, X F,.

The map @ of Theorem 1.4 is just the union of the maps ®, above.
The proof of Theorem 5.1 will show that ®;! is given by the construction
in Lemma 4.1. For m > 2, we also set S(m), = {Q € S(m): A D @} and
X(m), = {H € X(m): v(H) C A}.

Proof. Let K represent an element of Iso,. 6 and v have canonical
extensions to K which we also denote by ¢ and v. K is Pythagorean
(Theorem 4.2 (3)), so K2 is a preorder of K. Hence K2 N F is a preorder
of F inducing ¢ and A. Thus K? N F € P,. Next, note that for all
m> 0,

(1) o(K2" O\ F) = o(F) 0 2"0(K).

After all, if v(a) = 2™v(b) for a € F and b € K, then a = b*"(a/b*") €
K»6Y(R) € +K?". Hence the natural map I'/v(K*" N F) >
v(K)/2"v(K) is not only surjective (cf., Theorem 4.4(3)), but also injec-
tive. Thus v(K?" N F) € S(m),. Thus ® maps into P, X F,. Now
suppose (T,(1});50) € Py X Ey. Let (F*,0*) be as in Lemma 4.1. Then
F* € Iso, and ®,(F*) = (T,(I}),.,) (apply 3.2(C) and (1) with K re-
placed by F*). Hence ®, is surjective. Finally suppose ®,(K) =
(T,(T,);5 o) It remains to show that K and F* are F-isomorphic. We use
the notation of the proof of Lemma 4.1. We may suppose that K C F,,
since K is contained in a real closure of F at P which is F-isomorphic to
F,. Then K D E. After all, KX (respectively, E) is precisely the fixed field
of F,[V-1] under the group of all automorphisms = with |o’(7(a))| =
lo’(a)| for all a € F,[V-1] which leave K (respectively, F) fixed [Br2,
§4]. Here, o’ can be either of the two complex-valued places on F,[y—1]
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which extend the unique real-valued place on F,. (That K D E can also
be shown using the “usual” notion of Henselization [R]; an alternate
proof of this sort appeared parenthetically in the proof of 4.1.) Now let
a € P, say with v(a) € T,,, and let s be a positive odd integer. Note that
K*=K. Let t =2™s. Since v(K'N F)=T,, there exists c € K N F?
with ¢’/a € ¢'""(R)N F;* N F = ¢ % R?). Hence c¢'/a = b' for some
b € KN FZ? (K is Henselian). Hence a'/* = ¢/b € K (here, a*/* denotes
the unique positive z-th root of a in F,). Similarly, a'/* € F*. Thus
v(a)/2"s is in the value group of F* N K. Hence F* N K is a Henselian
valued field (after all, it contains E) with the same value group and
residue class field as its extensions F* and K. Hence F* = F* N K = K
[R, Ostrowski’s Theorem, p. 236].

It will be useful to formally establish a connection between the
bijections {p,: X = S of Theorems 1.1 (and 2.1) and the bijections
®,: Iso, » P, X F, above. Let m > 2. Theorem 2.1 implies that the
correspondence (T, H) — (T,v(T N H)) gives a bijection

¥t Py X X(m) s = Py X S(m),.

This is because if P € X(1) contains T € P,, then for any H € X(m),, we
have Y ,(H) = v(T N H) since

(2) PNnH=PnvYA)NH=TnNH.

Next, we have a surjection C,: Py, X F, - P, X S(m), given by
C,.(T,(L),5) =(T,T,) (Lemma 3.1) and a map D,: Iso, —
P, X X(m), given by D,(K)=(K*N F,H,(K) N F) where H,(K) is
the unique ordering of K of exact level m (cf., Theorem 4.4(2)). The next
proposition (and the above remarks) show that the map D,, is a surjection.

5.2. PROPOSITION. For eachm > 2, C,®, = {,,D,,. That is, the follow-
ing diagram commutes.
Dy
Iso, - P, X K,
D, 1 Gn
Y
PAXX(m)A - PAX S(m)A.
Proof. Let K represent an element of Iso,. Then K> N H, (K) = K*"
(cf. Theorem 4.2(2)). Hence

C,9,(K)=(K*n F,u(K* N F))
= (K*nF,0(K*NnH,(K)NF))=4y,D,(K).
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5.3. COROLLARY. Let F;, be a real closure of F at an ordinary ordering
P inducing o.

(A) The correspondence K — fil( K) (cf. (5.1)) gives a bijection from the
set of elements of Iso represented by subfields of F, to F.

(B) Let H € X(m), m > 2. The correspondence K — fil(K) gives a
bijection from the set of F-isomorphism classes of real closures of H con-
tained in F), to the set of (I,),., € FwithT,,=v(P N H).

Notice that (B) above (together with Lemma 3.1) implies that H has
at least one real closure contained in F, (and hence a real closure
admitting an ordinary ordering extending P). The above corollary (and
Theorem 5.1) are of course closely related to Becker’s computation of the
real closures of F at an ordering of higher level [B, p. 163]. Theorem 6.1
below will generalize both the above corollary and Becker’s results.

Proof. (A) The inverse map carries any (I}),. , € F to ®;(7,(T}),. )
where A =T, and T = P N v7}(A) (the key fact is that if P extends to
K € Iso, then K2N F= P N v }(A) where A = v(K?> N F)).

(B) Suppose K — (I});,., under the correspondence in (A). Let
T=K?>N Fand A =v(T). Then K will be a real closure of F at H if
and only if D, (K) = (T, H) (Theorem 4.4(2)) and hence if and only if

(T,0(HNT))=4,D,(K)=C2(K)=(T,T,),

ie, o(HNT)=T,. But, T=P N o'(A). Thus the bijection of (A)
precisely corresponds the real closures of F at H in F to the filtrations
(I);soinFwith T, =v(P N H).

6. Families of orderings. Let H be a nonempty subset of X. We
compute here the set of real closures of F which induce all the elements of
H, ie., real closures K of F such that every element of H is the
intersection with F of an ordering of K. We may as well suppose that we
can index the elements of H, say as H = (H,),_; ., (where n is a positive
integer or o0), so that if we denote the exact level of H; by m(i), then

m(0) < m(1) < m(2) < m@3) < ---

and m(0) = m(1) only if m(1) = 1. (Otherwise no element of Iso will
induce all the H,, cf. §4.)

6.1. THEOREM. The set of all K € Iso inducing all the elements of H is
bijective, by the correspondence K — fil( K) (cf., 5.1), with the set of
filtrations in F such that v(H, N H,) appears as a group in the filtration
whenever 0 < i <j < n.
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When n =1 and m(0) > 2, the above theorem reduces to Becker’s
computation of the set of F-isomorphism classes of real closures of F at
H, [B, Theorem 13, p. 163]. Theorem 5.1 and parts (A) and (B) of
Corollary 5.3 are special cases of the above theorem corresponding,
respectively, to when n = 2 and m(0) = m(1) = 1, to when n = m(0) = 1,
and to when n = 2 and m(1) > m(0) = 1.

6.2. REMARK. Let J = {i € Z: 0 < i < n} and let E be a nonempty
subset of J X J such that J and E form the set of nodes and the set of
edges, respectively, for a connected graph. The proof of 6.1 will show that
the image of the bijection in 6.1 is precisely the set of filtrations in F such
that v(H; N H;) appears as a group in the filtration whenever (i, j) € E.
Thus the image of the bijection can be described as the set of filtrations in
F containing v(H, N H,) whenever 0 < i < n (take E = {(0,i): 0 <i <
n}) or, when n > 1, as the set of filtrations in F containing v(H; N H,,)
whenever 0 < i+ 1 <n (take E = {(i,i + 1): 0 <i+ 1 <n}). (Theo-
rem 6.1 itself results if we take E = J X J. Strictly speaking, the sets “E”
above should be sets of unordered pairs of elements of J.)

We begin the proofs of 6.1 and 6.2 with a lemma.

6.3. LEMMA. (A) Suppose A € S(m(0)) and v(H,) D A. Then
there exists a uniqgue T € P with v(T N Hy) = A, namely, T = F?-
(Hy 0 07(A)).

(B) There exists a real closure in Iso inducing both H, and H, if and
only if v(H,) D v(H,), in which case v(H, N H,) € S(m(1)).

Proof of 6.3. Let S = F*(Hy, N v7}(A)). Then we claim that -1 & S.
Let P € X be any ordinary ordering of F. Set T = v(P N H,); then
T € S(m(0)). By Remark 2.3A,

Hy=(Pno (1)U —(Pnov(v(H)\T)),
so that
Hynv(A)=(Pno(AnT)U —(PNno(A\T)).
Just suppose -1 € S. Since -1 €& P D F}(PNuv ' (ANT)), we have
-1 € F*((-P) N v"}(A\ T)). Therefore 2T N (A \ T) is nonempty. Hence
A+ T.Thus A + T = v(H,) (A and T are distinct subgroups of v( H,) of

index 2). Hence T'/(A + T) has 2"©@~1 elements. It follows that I'/A N T
has 2@+ elements (consider the exact sequence

0->T/ANTST/AXT/T5T/(A+T) -0
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where ¢ and ¢ are induced by the diagonal map I' - I' X I" and the
subtraction map I' X I' - T, respectively). I'/A N T is not cyclic (since
A/ANT and T/A N T are distinct subgroups with cyclic factor groups
of the same order), but it does have a cyclic factor group of order 2"
(namely A/A N T). Hence T /A N T is isomorphic to G = (Z/2"PZ) x
(Z/2Z). Let y € 2I' N (A\ T). Since A/A N T has order 2 (consider the
exact sequence A/ANT->T/ANT ->T/A), y+ AN T generates a
subgroup of T'/A N T (namely A/A N T) of order 2 with cyclic factor
group. Hence G must have an element in 2G of order 2 generating a
subgroup with cyclic factor group. This is easily checked to be impossible
(if 2G has an element of order 2, it must be (2"@~1 + 27Oz 0 + 27)).
This proves our claim that ~1 & S. Note that v(S) = 2T + A, so T /v(S)
has two elements and S # F. But S":= S\ {0} is a subgroup of F
containing F0~!(R?), so S is a preorder [L, Proposition 11.5] (or argue
as in the proof of [BK, Lemma 7, p. 169]). From the exact sequence

1> R)/SNe(R)> F/S>T/v(S)—>1

we deduce that |F/S| = 4. Hence S € P. Clearly v(S N Hy) D A, so
v(S N Hy) = A (they have the same index in I, cf., Theorem 2.1 and
formula (2) in §5). If (TN Hy))=A for some T€ P, then T D
F?(HyN T)D F*(Hy N v'(A)) = S (cf., Remark 2.3A and formula (2)
of §5). Hence T = S; (A) is proved. Next suppose K € Iso induces H,
and H,; then v(H,) = o(K*"”" 0 F)y2 v(K*”"" N F) = v(H,) (Theo-
rem 4.2) and v(H, N H,) = v(K*"" N F) € S(m(1)). Conversely, sup-
pose that v(H,) D v(H,). If H, is an ordinary ordering, then so is H,
and so clearly some K € Iso induces both (Theorem 5.1). Otherwise,
m(1) > m(0), so by (A) above there exists a T € P with o(T N H)) =
2mOT + v(H,). There exists (I}),., € F with o(T N H,) =T, ) (The-
orem 2.1 and Lemma 3.1). Clearly ® X(7,(T),.,) induces both H, and
H, (Proposition 5.2).

6.4. REMARKS. (A) How do the bijections ¢,: X — S of Theorem 1.1
depend on the choice of P? First, if P, P’ € X(1), then ¢, and . agree
on the set of orderings J € X with v(J) C A where A = v(P N P’) (cf,
the discussion of ¢, preceding Proposition 5.2). Secondly, if P € X(1)
and J € X, there exists a unique P’ € X(1) such that ¢y (J) = ¢p(J)
(apply 6.3A with H, = J and A = {y,(J); then P and P’ are the unique
ordinary orderings containing the unique 7' € P with (7 N J) = A).
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(B) Suppose 0 < i < j < n. Suppose v(H; N H,) is one of the groups
in a filtration (T},),,. o in F (cf.,, Theorem 6.1 and Remark 6.2). By the
basic properties of cyclic groups, v(H;) and v(H,) are comparable and
hence, by Lemma 6.3B, if i <j then v(H; N H;) = T, ;. If i = j, then
v(H;N H;)=T, ;_; (Remark 2.2).

We now prove Theorem 6.1 and Remark 6.2. Suppose K and K’ in
Iso both induce all the orderings in H, and that ®(K) = (T,(I}),.,) and
®(K') = (T',(T});0)- Then v(T" N Hy) = T, = v(T N Hy) (apply 5.2
if m(0) > 1). Thus T" = F%- (H, N U'l(l‘m(o))) = T (Lemma 6.3A). Hence
K and K’ are F-isomorphic (Theorem 1.4). This shows the map in 6.1 is
injective; it remains to compute its image. By Theorem 4.2(2), v(H; N H))
is,;,U0<i<j<n)orL,, _,({f0<i=j<n). This shows that if
(T,.) >0 1s any filtration in the image of the map in 6.1 then v(H; N H)
equals an element of (T,,),,., Whenever 0 <i <j < n, ie., whenever
(i, j) 1s an edge in the (connected) full graph on {i: 0 <i < n}. Con-
versely (cf., Remark 6.2) suppose (I,),,. o is a filtration in F such that
v(H; N H)) equals an element of (I,),, . o for all (7, j) in the set of edges
E # & of some connected graph with nodes J = {i: 0 <i < n}. Then
for any node i € J there exists j € J with (i, j) € E and hence with
v(H; N H;) equal to an element of (I},),, . o- Hence v(H;) D T, ;) (by the
properties of cyclic groups and the fact that v(H,) has index 2™ ~! in
T'). Thus there exists T, € P with o(T; N H;) = T, ;) (Lemma 6.3A). If
(i, j) € E with i < then by Lemma 6.3,

T, = F(H,Nn v \(T,)) 2 F(H,0 v(T,,)) = T,

(To obtain the middle inclusion, note that by 6.3B, v(H; N H;) € S(m(j)),
sov(H,N H) =T, . Thenif a € H N v(T,,)), we have v(a) = v(b)
for some b € H, N H;, whence a = b(a/b) € H,- '(R?) C H,.) Thus
T, = T,. Since the graph (with edges E) is connected we conclude that
there exists S € P with S = T, whenever 0 < i < n. Since v(S N H,) =
T,.; whenever 0 < i < n, we conclude that ®~'(S,(T,),,,) induces all

m

the elements of H (Proposition 5.2).

6.5. COROLLARY. The following are equivalent:

(1) Some element of Iso induces all the orderings in H;

(2) v(H; N Hy) D v(H,, ) whenever 0 < i+ 1 < n;

3) v(H,_,NH)>v(H,NH, ) whenever 1 <i+1<n, and
v(H,) D v(H,;,,) whenever 0 <i+ 1 <n.
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Proof. Suppose (1) is true. Then by Theorem 6.1, v(H; N H,) and
v(H,;,.,) both lie in some filtration in F; that v(H; N H,) contains
v(H,, ) follows then from the fact that its index in I' is not larger than
that of v(H,,,). That (1) implies (3) is proved similarly. Conversely
suppose (2) holds. Then

v(H,) D v(H,NnHy) Dv(H, ,)Dv(H, NH)ES

whenever 0 < i+ 1 <n (use Lemma 6.3B for the last assertion). Then
some element of F contains all the groups v(H, N Hy), 0 < i < n (apply
3.1 if n < o0). Thus H is in the image of the bijection of 6.1 (see Remark
6.2). Similarly, (3) implies (1) (the hypothesis v(H,) > v(H, ;) 1s included
to guarantee that v(H, N H, ;) € S).

6.6. COROLLARY. Any real closure of F is determined up to isomorphism
by any infinite set of orderings it induces on F. Thus if H is infinite, at most
one real closure (up to F-isomorphism) induces H.

Proof. If K € Iso induces (H,) o ;. then K= O T,(T);.,)
where A = 2T + v(H,), where T = F?*(H,N v7'(A)) (Lemma 6.3(A)),
and where (I7),. , is uniquely determined by the conditions that v(H,) =
[, y-1foralli>0.

m

6.7. COROLLARY. Suppose 1 <n < oo and H is induced by some
element of Iso. The set of elements of Iso inducing H is bijective (by the
usual map K — fil(K)) with the set of all (I,),.o€F with T, ;)=
v(Hy N H,,,_1)). Moreover all the elements of Iso which induce H induce
on F precisely the same set of orderings of degree i for all i < m(n — 1).

Proof. The first assertion follows from Theorem 6.1 (and Lemma
6.3(B)). The second follows from Lemma 6.3(A) (for orderings of exact
level 1) and Proposition 5.2 and Theorem 2.1 (for orderings of higher
exact level).
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