A CHARACTERIZATION THEOREM FOR COMPACT UNIONS OF TWO STARSHAPED SETS IN \mathbb{R}^3

Marilyn Breen
A CHARACTERIZATION THEOREM FOR COMPACT UNIONS OF TWO STARSHAPED SETS IN R^3

MARILYN BREEN

Set S in R^d has property P_k if and only if S is a finite union of d-polytopes and for every finite set F in $bdryS$ there exist points c_1, \ldots, c_k (depending on F) such that each point of F is clearly visible via S from at least one c_i, $1 \leq i \leq k$. The following results are established.

1. Introduction. We begin with some definitions. Let S be a subset of R^d. Hyperplane H is said to support S locally at boundary point s of S if and only if $s \in H$ and there is some neighborhood N of s such that $N \cap S$ lies in one of the closed halfspaces determined by H. Point s in S is called a point of local convexity of S if and only if there is some neighborhood N of s such that $N \cap S$ is convex. If S fails to be locally convex at q in S, then q is called a point of local nonconvexity (lnc point) of S. For points x and y in S, we say x sees y via S (x is visible from y via S) if and only if the segment $[x, y]$ lies in S. Similarly, x is clearly visible from y via S if and only if there is some neighborhood N of x such that y sees via S each point of $N \cap S$. Set S is locally starshaped at point x of S if and only if there is some neighborhood N of x such that x sees via S each point of $N \cap S$. Finally, set S is starshaped if and only if there is some point p in S such that p sees via S each point of S, and the set of all such points p is called the (convex) kernel of S.

A well-known theorem of Krasnosel'skii [3] states that if S is a nonempty compact set in R^d, S is starshaped if and only if every $d + 1$ points of S are visible via S from a common point. Moreover, "points of S" may be replaced by "boundary points of $S" to produce a stronger result. In [1], the concept of clear visibility, together with work by Lawrence, Hare, and Kenelly [4], were used to obtain the following
Krasnosel'skii-type theorem for unions of two starshaped sets in the plane: Let S be a compact nonempty set in R^2, and assume that for each finite set F in the boundary of S there exist points c, d (depending on F) such that each point of F is clearly visible via S from at least one of c, d. Then S is a union of two starshaped sets.

In this paper, an analogous result is proved for set S in R^3, where S satisfies the additional hypothesis of being a finite union of polytopes. Furthermore, while not every compact union F of two starshaped sets in R^3 satisfies this hypothesis, F will be the limit (relative to the Hausdorff metric) for a sequence whose members do satisfy it. This in turn leads to a characterization theorem for compact unions of two starshaped sets in R^3.

The following terminology will be used throughout the paper: $\text{Conv} S$, $\text{cl} S$, $\text{int} S$, $\text{rel int} S$, $\text{bdry} S$, $\text{rel bdry} S$, and $\text{ker} S$ will denote the convex hull, closure, interior, relative interior, boundary, relative boundary, and kernel, respectively, for set S. The distance from point x to point y will be denoted $\text{dist}(x, y)$. For distinct points x and y, $L(x, y)$ will be the line determined by x and y, while $R(x, y)$ will be the ray emanating from x through y. For $x \in S$, A_z will represent $\{x: z$ is clearly visible via S from $x\}$. The reader is referred to Valentine [7] and to Lay [5] for a discussion of these concepts and to Nadler [6] for information on the Hausdorff metric.

2. The results. The following definition will be helpful.

Definition 1. Let $S \subseteq R^d$. We say that S has property P_k if and only if S is a finite union of d-polytopes and for every finite set $F \subseteq \text{bdry} S$ there exist points c_1, \ldots, c_k (depending on F) such that each point of F is clearly visible via S from at least one $c_i, 1 \leq i \leq k$.

Several lemmas will be needed to prove Theorem 1. The first of these is a variation of [2, Lemma 2].

Lemma 1. Let $S \subseteq R^d$, $z \in S$, and assume that S is locally starshaped at z. If $p \in \text{conv} A_z$ and $p \neq z$, then there exists some point $p' \in [p, z)$ such that $p' \in A_z$.

Proof. As in [2, Lemma 2], use Carathéodory's theorem to select a set of $d + 1$ or fewer points p_1, \ldots, p_k in A_z with $p \in \text{conv}\{p_1, \ldots, p_k\}$. Say $p = \sum \lambda_i p_i: 1 \leq i \leq k$, where $0 \leq \lambda_i \leq 1$ and $\sum \lambda_i: 1 \leq i \leq k = 1$. Observe that for any $0 \leq \mu \leq 1$, point $\mu z + (1 - \mu)p$ on $[z, p]$ is a convex combination of the points $\mu z + (1 - \mu)p_i, 1 \leq i \leq k$. Also $\mu z + (1 - \mu)p_i \in [z, p_i], 1 \leq i \leq k$. By the definition of locally starshaped,
together with the definition of clear visibility, we may choose a spherical neighborhood N of z, $p \notin N$, such that z and each p_i see via S every point of $N \cap S$. We may choose μ_0, $0 < \mu_0 < 1$ and μ_0 sufficiently near 1 that each point $\mu_0 z + (1 - \mu_0)p = p'_i$ belongs to N. Define

$$p' = \sum \{ \lambda_ip_i' : 1 \leq i \leq k \}$$

$$= \mu_0 z + (1 - \mu_0)p \in \text{conv}\{ p'_1, \ldots, p'_k \} \cap (z, p) \cap N.$$

We will show that p' satisfies the lemma. For $x \in N \cap S$, $[x, z] \subseteq N \cap S$, p_1 sees $[x, z]$ via S, and hence $\text{conv}\{ p'_1, x, z \} \subseteq N \cap S$. By an easy induction, $\text{conv}\{ p'_k, \ldots, p'_1, x, z \} \subseteq N \cap S$. Since $p' \in \text{conv}\{ p'_k, \ldots, p'_1 \}$, $[p', x] \subseteq S$. We conclude that p' sees via S each point of $N \cap S$, $p' \in A_z$, and Lemma 1 is established.

Lemma 2. Let S be a closed set in \mathbb{R}^d. Let P be a plane in \mathbb{R}^d, B a component of $P \sim S$, with S locally star shaped at $z \in \text{bdry}B$. Assume that line L in plane P supports B locally at z and that $B \cap M$ is in the open halfplane L_1 determined by L for an appropriate neighborhood M of z. Then $(\text{conv} A_z) \cap P \subseteq \text{cl} L_2$, where L_2 is the opposite open halfplane determined by L.

Proof. Suppose on the contrary that there is some point $p \in (\text{conv} A_z) \cap P \cap L_1$, to obtain a contradiction. Then $p \neq z$, so by Lemma 1 there exist point $p' \in [p, z)$ and convex neighborhood N of z such that p' sees via S each point of $N \cap S$. For convenience of notation, assume that $N \subseteq M \subseteq P$.

By a simple geometric argument, we may choose a point $b \in B \cap N$ such that $R(\ p', b)$ meets $N \cap L$ at some point w. Since $B \cap N \subseteq B \cap M \subseteq L_1$, $w \notin B$, so (b, w) meets $\text{bdry}B$ at a point c. We have $c \in [b, w] \subseteq N$ and $c \in \text{bdry}B \subseteq S$, so $c \in N \cap S$. Therefore, by our choice of p', $[p', c] \subseteq S$. Hence $b \in [p', c] \subseteq S$, impossible since $b \in B \subseteq P \sim S$. We have a contradiction, our supposition is false, and $(\text{conv} A_z) \cap P \subseteq \text{cl} L_2$. Thus Lemma 2 is proved.

Lemma 3. Let S be a compact set in \mathbb{R}^3, and assume that S is a finite union of polytopes. Let P be a plane in \mathbb{R}^3, with b a bounded component of $P \sim S$. For z a point of local convexity of $\text{cl} B$, z in edge $e \subseteq \text{rel} \text{bdry} \text{cl} B$, there exists a plane H such that the following are true:

1. $H \cap P$ is a line containing e.
2. The two open halfspaces determined by H can be denoted H_1 and H_2 in such a way that for N any neighborhood of z such that $(\text{cl} B) \cap N$ is convex, $B \cap N$ lies in H_1 while $A_z \subseteq \text{cl} H_2$.

Proof. Notice that S is locally starshaped at each of its points and that $\text{bdry} \, B$ is a closed polygonal curve in P. Let J be a plane, $J \neq P$, such that J contains edge e of $\text{bdry} \, B$. If N is any neighborhood of z such that $(\text{cl} \, B) \cap N$ is convex, then J supports $(\text{cl} \, B) \cap N$ at e, and $B \cap N$ necessarily lies in one of the open halfspaces J_1 determined by J. If $A_z \subseteq \text{cl} \, J_2$, then J satisfies the lemma. Otherwise, $A_z \cap J_1 \neq \emptyset$.

For convenience of notation, let P_1 and P_2 denote distinct open halfspaces in R^3 determined by plane P, let $L = P \cap J$, and label the halfplanes in P determined by L so that $B \cap N \subseteq L_1 \equiv J_1 \cap P$. (See Figure 1.) Observe that $\text{conv} \, A_z$ is necessarily disjoint from one of $J_1 \cap P_1$ or $J_1 \cap P_2$, for otherwise $(\text{conv} \, A_z) \cap J_1 \cap P = (\text{conv} \, A_z) \cap L_1 \cap P \neq \emptyset$, contradicting Lemma 2. Thus we may assume that $(\text{conv} \, A_z) \cap J_1 \cap P_2 = \emptyset$, and since $(\text{conv} \, A_z) \cap L_1 = \emptyset$, $(\text{conv} \, A_z) \cap J_1 \subseteq P_1$.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Figure 1}
\end{figure}

Examine the points of $A_z \cap J_1 \subseteq P_1$. For $x \in A_z \cap J_1$, x sees via S a nondegenerate segment s_z at z contained in edge e, thus generating a planar set $T_x \equiv \text{conv}(s_x \cup \{x\})$. Since none of the T_x sets lie in P, each determines with $\text{cl} \, L_1$ an angle of positive measure $m(x)$. Define $m \equiv \text{glb} \{m(x): x \in A_z \cap J_1\}$. Since S is a finite union of polytopes, the T_x sets lie in a finite union of polytopes, each meeting edge e in a nondegenerate segment at z, each contained in $P_1 \cup L$. This forces m to be positive. Using a standard argument, select sequence $\{x_t\}$ in $A_z \cap J_1$ so that $\{m(x_t)\}$ converges to m. Some subsequence of $\{x_t\}$ also converges, say to x_0. Moreover, the angle determined by $\text{conv}(e \cup \{x_0\})$ and $\text{cl} \, L_1$ has measure m, and $x_0 \in (\text{cl} \, A_z) \cap J_1 \subseteq P_1$. Let H be the plane determined by $\text{conv}(e \cup \{x_0\})$. Of course $H \cap P = L$. Furthermore, for an
appropriate labeling of halfspaces determined by H, $L_1 \subseteq H_1$ so $B \cap N \subseteq H_1$.

It remains to show that $A_z \subseteq \text{cl} H_2$. Suppose on the contrary that $y \in A_z \cap H_1$. If $y \in P_1$, then the angle m chosen above would not be minimal. If $y \in P$, then $y \in A_z \cap P \cap L_1$, contradicting Lemma 2. If $y \in P_2$, then since $y \in P_2 \cap H_1$ and $x_0 \in P_1 \cap H$, $[y, x_0]$ would meet $P \cap H_1 = L_1$. Moreover, since $x_0 \in \text{cl} A_z$, there would be a point $x'_0 \in A_z$ sufficiently near x_0 that $[y, x'_0]$ would meet $P \cap H_1 = L_1$ also, say at point w. Then $w \in (\text{conv} A_z) \cap P \cap L_1$, again contradicting Lemma 2. We conclude that $A_z \cap H_1 = \emptyset$, and $A_z \subseteq \text{cl} H_2$, finishing the proof of Lemma 3.

The final lemma follows immediately from [4, Theorem 1].

Lemma 4 (Lawrence, Hare, Kenelly Lemma). Let S be a closed set in R^d. Assume that every finite set F in $\text{bdry} S$ may be partitioned into two sets F_1 and F_2 such that each point of F_i is clearly visible from a common point of S. Then $\text{bdry} S$ may be partitioned into two sets S_1 and S_2 such that for every finite set F in $\text{bdry} S$, each point of $F \cap S_i$ is clearly visible from a common point of S, $i = 1, 2$.

We are ready to prove the following theorem.

Theorem 1. Let $S \subseteq R^3$. If S satisfies property P_2, then S is a union of two starshaped sets.

Proof. Using Lemma 4, select a partition S_1, S_2 for $\text{bdry} S$ such that for every finite set F in $\text{bdry} S$, each point of $F \cap S_i$ is clearly visible via S from a common point. For $i = 1, 2$, define $\mathcal{T}_i = \{\text{cl} A_z : z \in S_i\}$. Then each \mathcal{T}_i is a collection of compact subsets of S. Moreover, by our choice of S_1 and S_2, each \mathcal{T}_i has the finite intersection property. Hence $\bigcap\{T : T \text{ in } \mathcal{T}_1\} \neq \emptyset$, and we may select points c and d with $c \in \bigcap\{T : T \text{ in } \mathcal{T}_1\}$ and $d \in \bigcap\{T : T \text{ in } \mathcal{T}_2\}. \text{ Observe that for } z \in \text{bdry} S = S_1 \cup S_2, \text{ one of } c \text{ or } d, \text{ say } c, \text{ belongs to } \text{cl} A_z. \text{ Then } [c, z] \subseteq S. \text{ We conclude that each boundary point of } S \text{ sees via } S \text{ either } c \text{ or } d.$

We will show that each point of S sees via S either c or d. Portions of the argument will resemble the proof of [1, Theorem 1]. Let $x \in S$ and suppose on the contrary that neither c nor d sees x, to reach a contradiction. Certainly $x \not\in \{c, d\}$, and by a previous observation. $x \in \text{int} S$. As in [1, Theorem 1], choose the segment at x in $S \cap L(c, x)$ having maximal length, and let p and q denote its endpoints, with the order of
the points $c < p < x < q$. Then $p, q \in \text{bdry} S$, neither is seen by c, so d sees via S both p and q. Notice that $d \notin L(c, x)$ since d cannot see x. Similarly, choose a segment at x in $S \cap L(d, x)$ having maximal length, and let r and s denote its endpoints, $d < r < x < s$. Then point c sees via S both r and s. (See Figure 2.)

Since points c, d, x are not collinear, they determine a plane P in R^3. In the next part of our proof, we restrict our attention to P. Since $[d, x] \not\subseteq S$, there is a segment in $(d, r) \sim S$, and this segment lies in a bounded component K of $P \sim S$, $K \subseteq \text{rel int} \text{conv} \{d, p, q\}$. Likewise, there is a segment in $(c, p) \sim S$ belonging to a bounded component J of $P \sim S$, $J \subseteq \text{rel int} \text{conv} \{c, s, r\}$. Letting $L(c, r) \cap L(d, p) = \{v\}$, it is not hard to show that J and K lie in opposite open halfplanes of P determined by $L(v, x)$.

For future reference, observe that for any line U from c meeting K, $d \notin U$, d cannot see via S all points of $\text{bdry} K$ on the opposite side of U from d, so c sees via S some of these points. Thus if line U' from c supports $\text{conv} K$, by a convergence argument, c sees via S some point of $U' \cap (\text{bdry} K)$. We will use this observation in the next part of the proof.
Define line L' and associated point t as follows: Clearly $L(c,v) \cap J = \emptyset$. In case $L(c,v) \cap K \neq \emptyset$, let L_1 denote the open halfplane of P determined by $L(c,v)$ and containing J. Let L' be the line from c supporting $\text{conv}K$ at a point of L_1. Using our previous observation, $L' \cap (\text{bdry conv}K)$ contains some point t of $\text{bdry}K$ such that $[c,t] \subseteq S$. In case $L(c,v) \cap K = \emptyset$, rotate $L(c,v)$ about c toward d until $\text{bdry}K$ is met. Let L' be the corresponding rotated line. Again using our observation, there is some $t \in L' \cap (\text{bdry conv}K) \cap (\text{bdry}K)$ with $[c,t] \subseteq S$. Of course, in each case t may be chosen to be the furthest point from c having the required property. Moreover, $[c,t] \cap J = \emptyset$, and we may label the open halfplanes of P determined by L' so that $J \subseteq L'$. Then $K \cup \{d\}$ lies in the opposite halfplane L'_2.

Since S is a finite union of polytopes, $\text{bdry}K$ is necessarily a simple closed polygonal curve in plane P. By our choice of t, clearly t is a point of local convexity of $\text{cl}K$. Also, t must be a vertex of $\text{bdry}K$, so $\text{bdry}K$ contains two edges e_1 and e_2 at t. Moreover, for an appropriate labeling of these edges, $e_1 \subseteq \text{cl} L'_2$, $e_2 \subseteq L'_2 \cup \{t\}$, and for any neighborhood N of t with $(\text{cl}K) \cap N$ convex, $K \cap N$ and c lie in the same open halfplane of P determined by $L(e_2)$.

Using Lemma 3, select a plane H such that $H \cap P$ is a line containing e_2, $K \cap N \subseteq H_1$, and $A_t \subseteq \text{cl} H_2$. Similarly, select plane M for e_1 so that $K \cap N \subseteq M_1$ and $A_t \subseteq \text{cl} M_2$. Recall that by our choice of c and d, at least one of these points lies in $\text{cl} A_t \subseteq \text{cl} H_2 \cap \text{cl} M_2$. Since c and $K \cap N$ are in the same open halfplane of P determined by $L(e_2)$, $c \in H_1$. This forces d to belong to $\text{cl} H_2 \cap \text{cl} M_2 \cap P$. However, clearly $\text{cl} H_2 \cap \text{cl} M_2 \cap P \subseteq \text{cl} L'_1$, while $d \in L'_2$. We have a contradiction, our supposition is false, and every point of S must see via S either c or d. Hence S is a union of two starshaped sets, and Theorem 1 is established.

Theorem 2. For $k \geq 1$ and $d \geq 1$, let $\mathcal{F}(k,d)$ denote the family of all compact unions of k (or fewer) starshaped sets in \mathbb{R}^d, $\mathcal{C}(k,d)$ the subfamily of $\mathcal{F}(k,d)$ whose members are finite unions of d-polytopes. Then $\mathcal{C}(k,d)$ is dense in $\mathcal{F}(k,d)$, relative to the Hausdorff metric. Moreover, $\mathcal{F}(k,d)$ is closed, relative to the Hausdorff metric.

Proof. In the proof, h will denote the Hausdorff metric on compact subsets of \mathbb{R}^d. That is, if $(A)_\delta = \{x: \text{dist}(x,A) < \delta\}$, then for A and B compact in \mathbb{R}^d, $h(A,B) = \inf\{\delta: A \subseteq (B)_\delta \text{ and } B \subseteq (A)_\delta, \delta > 0\}$.

To see that $\mathcal{C}(k,d)$ is dense in $\mathcal{F}(k,d)$, let $S \in \mathcal{F}(k,d)$. For an arbitrary $\delta > 0$, we must find some C in $\mathcal{C}(k,d)$ for which $h(S,C) < \delta$. Assume that each point of S is visible via S from one of s_1, \ldots, s_k. Form
an open cover for S, using interiors of d-simplices whose diameters are at most $\delta/2$. Using the compactness of S, reduce to a finite subcover, say $\{\text{int} P_j : 1 \leq j \leq m\}$, where P_j is a d-simplex. For $1 \leq i \leq k$, define $C_i = \bigcup \{\text{conv}(s_i \cup P_j) : s_i \text{ sees via } S \text{ some point of } P_j, 1 \leq j \leq m\}$. Certainly set $C = C_1 \cup \cdots \cup C_k$ is a union of k starshaped sets as well as a finite union of d-polytopes. Thus $C \in \mathcal{C}(k, d)$.

Clearly $S \subseteq C$, so $S \subseteq (C)_\delta$. To see that $C \subseteq (S)_\delta$, let $x \in C \sim S$. Then $x \in \text{conv}(s_i \cup P_j)$ for some i and j. Moreover, for an appropriate i and j, there is some $y' \in P_j \cap S$ with $[s_i, y'] \subseteq S$. If x, s_i, y' are collinear, then since $x \not\in S$, x must belong to P_j, and $\text{dist}(x, y') \leq \delta/2$. Thus $x \in (S)_\delta$. If x, s_i, y are not collinear, assume $x \in [s_i, y]$ where $y \in P_j$, and let x' be the point of $[s_i, y']$ such that $[x, x']$ and $[y, y']$ are parallel. Then $x' \in S$ and $\text{dist}(x, x') \leq \text{dist}(y, y') \leq \delta/2$. Again $x \in (S)_\delta$.

We conclude that $C \subseteq (S)_\delta$, $h(S, C) < \delta$, and $\mathcal{C}(k, d)$ is indeed dense in $\mathcal{F}(k, d)$.

Finally, to see that $\mathcal{F}(k, d)$ is closed, let $\{S_i\}$ be a sequence in $\mathcal{F}(k, d)$ converging to the compact set S_0. To show that $S_0 \in \mathcal{F}(k, d)$ also. For convenience of notation, for $i \geq 1$, let S_i be a union of k starshaped sets whose compact kernels are $A_{i1}, A_{i2}, \ldots, A_{ik}$, respectively. Then by standard results concerning the Hausdorff metric [6], $\{A_{i1} : i \geq 1\}$ has a subsequence $\{A'_{i1}\}$ converging to some compact convex set A_1. Pass to the associated subsequence $\{S'_i\}$ of $\{S_i\}$, and repeat the argument for corresponding kernels $\{A'_{i2}\}$. By an obvious induction, in k steps we obtain subsequences $\{A'_{i1}^{(k)}\}, \{A'_{i2}^{(k)}\}, \ldots, \{A'_{ik}^{(k)}\}$ converging to compact convex sets A_1, \ldots, A_k, respectively. It is a routine matter to show that S_0 is a union of k or fewer compact starshaped sets having kernels A_1, \ldots, A_k.

Theorem 3. Let S be a compact union of k starshaped sets in R^d, $k \geq 1$, $d \geq 3$. Then there is a sequence $\{S_j\}$ converging to S (relative to the Hausdorff metric) such that each S_j satisfies property P_k. That is, using the notation of Theorem 2, sets having property P_k are dense in $\mathcal{F}(k, d)$.

Proof. As in the proof of Theorem 2, h will denote the Hausdorff metric on compact subsets of R^d. For any $\delta > 0$, we must find some C having property P_k for which $h(S, C) < \delta$.

Assume that each point of S is visible via S from one of the distinct points s_1, \ldots, s_k. Form an open cover for S using spheres of radius $\delta/4$, centered at points of S. Reduce to a finite subcover, and choose the center of each sphere. Say these centers are the points t_1, \ldots, t_m. Partition
\{t_1, \ldots, t_m\} \text{ into } k \text{ subsets } V_1, \ldots, V_k \text{ such that the following is true: If } t \in V_i \text{, then } s_i \text{ is a point of } \{s_1, \ldots, s_k\} \text{ closest to } t \text{ with } [s_j, t] \subseteq S. \text{ Define } T_i = \bigcup\{[s_j, t]: t \in V_i\}. \text{ Observe that } s_i \notin T_j \text{ for } i \neq j; \text{ Otherwise, } s_i \in (s_j, t] \text{ for some } t \in V_j, [s_i, t] \subseteq (s_j, t] \subseteq S, \text{ and } s_i \text{ would be closer to } t \text{ than } s_j \text{ is to } t, \text{ impossible by the definition of } V_j.

In case the sets } T_1, \ldots, T_k \text{ are pairwise disjoint, let } T_i' = T_i, 1 \leq i \leq k, \text{ and define } T \text{ to be their union. Otherwise, suppose } T_i \text{ meets } T_2 \cup \cdots \cup T_k. \text{ Then for some point in } V_1, \text{ call it } t_1 \text{ (for convenience of notation), } (s_1, t_1] \text{ meets } T_2 \cup \cdots \cup T_k. \text{ Using the facts that each } T_i \text{ set is a finite union of edges at } s_i, s_1 \notin T_2 \cup \cdots \cup T_k, \text{ and } d \geq 3, \text{ it is not hard to show that there exists an edge } [s_1, t_1'] \text{ not collinear with } [s_1, t_1] \text{ such that } [s_1, t_1'] \text{ is disjoint from } T_2 \cup \cdots \cup T_k \text{ and } \text{dist}(t_1, t_1') < \delta/4. \text{ Thus } h([s_1, t_1], [s_1, t_1']) < \delta/4, \text{ also. Repeating the procedure for each edge of } T_1, \text{ in finitely many steps we obtain a new set } T_i' \text{ starshaped at } s_1 \text{ such that } T_i' \text{ is disjoint from } T_2 \cup \cdots \cup T_k \text{ and } h(T_1, T_1') < \delta/4.

Continuing the process for } T_2, \ldots, T_k, \text{ by an obvious induction we obtain pairwise disjoint starshaped sets } T_1', T_2', \ldots, T_k' \text{ with } h(T_i, T_i') < \delta/4, 1 \leq i \leq k. \text{ Define } T = T_1' \cup \cdots \cup T_k'. \text{ Standard arguments reveal that }

\begin{align*}
h(S, T_1 \cup \cdots \cup T_k) &< \frac{\delta}{4}, \\
h(T_1 \cup \cdots \cup T_k, T) &< \frac{\delta}{4},
\end{align*}

and hence } h(S, T) < \delta/2.

Finally, we extend the sets } T_1', \ldots, T_k' \text{ to finite unions of } d\text{-polytopes, define } m = \min\{h(T_i', T_j'): i \neq j\}. \text{ Using techniques from Theorem 2, select set } C \equiv C_1 \cup \cdots \cup C_k \text{ in } \mathcal{B}(k, d) \text{ with } h(T_i, C_i) < \min\{\delta/2, m/2\} \text{ and with } s_i \in \ker C_i, 1 \leq i \leq k. \text{ Since } h(T_i, C_i) < m/2, \text{ certainly the } C_i \text{ sets must be pairwise disjoint. Therefore, each boundary point of } C \text{ is clearly visible from some } s_i, 1 \leq i \leq k, \text{ and } C \text{ has property } P_k. \text{ Moreover, }

\begin{align*}
h(S, C) &\leq h(S, T) + h(T, C) < \frac{\delta}{2} + \frac{\delta}{2} = \delta.
\end{align*}

Theorem 3 is established.

It is interesting to observe that while Theorem 3 holds when } d \geq 3, \text{ it fails in the plane, as the following easy example reveals.

EXAMPLE 1. Let } S \text{ be the set in Figure 3. Then } S \text{ is a union of two starshaped sets with kernels } \{c\}, \{d\}, \text{ respectively. However, sets sufficiently close to } S \text{ fail to satisfy the clear visibility condition required for property } P_2.
Finally, the characterization theorem for unions of two starshaped sets in R^3 is an easy consequence of our previous results.

Corollary 1. Let $S \subseteq R^3$. Then S is a compact union of two starshaped sets if and only if there is a sequence $\{S_j\}$ converging to S (relative to the Hausdorff metric) such that each set S_j satisfies property P_2.

Proof. The necessity follows immediately from Theorem 3. For the sufficiency, Theorem 1 implies that each set S_j is a compact union of two starshaped sets in R^3. By Theorem 2, their limit S is a compact union of two starshaped sets as well.

References

Received November 21, 1985 and in revised form August 21, 1986.

University of Oklahoma

Norman, OK 73019
Anthony Peter Bahri and Peter Gilkey, The eta invariant, Pin^c bordism, and equivariant Spin^c bordism for cyclic 2-groups .. 1
Friedrich-Wilhelm Bauer, Extensions of generalized homology theories 25
Marilyn Breen, A characterization theorem for compact unions of two starshaped sets in \mathbb{R}^3 .. 63
Boniface Ihemotuonye Eke, Special generating sets of purely inseparable extension fields of unbounded exponent ... 73
Robert William Gilmer, Jr. and William James Heinzer, Jónsson ω_0-generated algebraic field extensions ... 81
Guido Lupacciolu, Holomorphic continuation in several complex variables .. 117
Douglas C. McMahon, Jaap C. S. P. van der Woude and Ta-Sun Wu, Connectedness related to almost periodicity of compositions of flow homomorphisms .. 127
Sophocles Mercourakis, Some characterizations of analytic metric spaces .. 149
Peter Frederick Stiller, The Picard numbers of elliptic surfaces with many symmetries .. 157
David J. Winter, Reducible complements of Lie algebra radicals 191
Rade Živaljević, On a cohomology theory based on hyperfinite sums of microsimplexes .. 201