Vol. 128, No. 2, 1987

Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Extended Adams-Hilton’s construction

Yves Félix and Jean-Claude Thomas

Vol. 128 (1987), No. 2, 251–263
Abstract

Let F→JE→pB be a Hurewicz fibration. The homotopy lifting property defines (up to homotopy) an action of the H-space ΩB on the fibre F which makes H(F) into a HB)-module. Suppose B is connected. We prove that if E p
→B is the cofibre of a map g : W E where W is a wedge of spheres, then the reduced homology of F, H(F) is a free HB)-module generated by H(W). This result implies in particular a characterization of aspherical groups.

Mathematical Subject Classification 2000
Primary: 55R20
Milestones
Received: 6 December 1985
Revised: 11 June 1986
Published: 1 June 1987
Authors
Yves Félix
Département de Mathématiques
Université Catholique de Louvain
Bât. M. de Hemptinne
Chemin du Cyclotron, 2
1348 Louvain la-Neuve
Belgium
Jean-Claude Thomas
UFR Sciences
Université d’Angers
2 Bd. Lavoisier
49045 Angers
France
http://www.univ-angers.fr/enseignant.asp?ID=1430