STABLE PARALLELIZABILITY OF PARTIALLY ORIENTED FLAG MANIFOLDS

Parameswaran Sankaran and Peter Zvengrowski
STABLE PARALLELIZABILITY
OF PARTIALLY ORIENTED FLAG MANIFOLDS

P. SANKARAN AND P. ZVENGROWSKI

This paper solves the questions of stable parallelizability and parallelizability for the family of partially oriented (p.o.) flag manifolds, except for a few undecided cases. In particular, for the oriented Grassmannians $G_k(R^n)$ it is proved that apart from the spheres S^1, S^3, and S^7 only $G_3(R^6)$ is parallelizable, and only $G_2(R^5)$ is stably parallelizable and not parallelizable. Negative results are derived for the most part using KO theory and the “inclusion method”, while positive results are mainly based on the “λ^2 construction”.

1. Introduction. The p.o. flag manifolds are real flag manifolds with additional structure of orientations on some of the orthogonal subspaces constituting each flag. More precisely the p.o. flag manifold $G(n_1, \ldots, n_r|n_{r+1}, \ldots, n_s)$ is the space of all mutually orthogonal subspaces $\sigma_1, \ldots, \sigma_s$ of R^n, where $n = n_1 + \cdots + n_s$, $\dim \sigma_i = n_i$, and $\sigma_1, \ldots, \sigma_r$ are oriented. The number “s” will always be used for the “length” of the flag. Familiar examples are $G(1, \ldots, 1|n-r) = V_{n,r}$, the real Stiefel manifold of orthonormal r-frames in R^n, while $G(k, n-k |) = \tilde{G}_k(R^n)$, the Grassmann manifold of oriented k-planes in R^n. The stable parallelizability or parallelizability of these manifolds is a natural question, going back to work of Kervaire and Milnor in 1958 for $S^{n-1} = V_{n,1}$, and Sutherland in 1964 for $V_{n,r}$, $r > 1$. More recently I. D. Miatello and R. J. Miatello (1982) and R. Stong (1984) have studied this question. Here we settle the stable parallelizability of p.o. flag manifolds, apart from a few unsolved cases, and, among those known to be stably parallelizable, completely determine which are parallelizable.

The corresponding problem for flag manifolds ($r = 0$) was settled in 1984 by Korbaš [12] and Sankaran-Zvengrowski [18] (the latter also covering the complex and quaternionic flag manifolds). We therefore consider only the case $r \geq 1$ here. Notice that there is an obvious 2^r-fold covering map

$$G(n_1, \ldots, n_r|n_{r+1}, \ldots, n_s) \to G(n_1, \ldots, n_s),$$

and both spaces have the same dimension. In case $r = s$ we make the additional convention that the orientations on $\sigma_1, \ldots, \sigma_s$ induce the standard orientation on $R^n = \sigma_1 \oplus \cdots \oplus \sigma_s$. With this convention
$G(n_1,\ldots,n_{s-1}|n_s) = G(n_1,\ldots,n_s|)$, and we write simply $\tilde{G}(n_1,\ldots,n_s)$ here. Our main results are now summarized in 1.1 and 1.2. We consider only p.o. flag manifolds $G(n_1,\ldots,n_r|n_{r+1},\ldots,n_s)$ with $n_1 \geq \cdots \geq n_r$ and $n_{r+1} \geq \cdots \geq n_s$ since

$$G(n_1,\ldots,n_r|n_{r+1},\ldots,n_s) = G(m_1,\ldots,m_r|m_{r+1},\ldots,m_s)$$

if m_1,\ldots,m_r and m_{r+1},\ldots,m_s are rearrangements of n_1,\ldots,n_r and n_{r+1},\ldots,n_s respectively.

1.1. Theorem. (A) For $s = 2$, $k \neq 1$, $n - 1$, $\tilde{G}_k(\mathbb{R}^n)$ is stably parallelizable if and only if $(n,k) = (4,2)$ or $(6,3)$, and only $\tilde{G}_3(\mathbb{R}^6)$ is parallelizable (the cases $k = 1$, $n - 1$ are well known and omitted here).

Now for (B), (C) and (D) we assume $s \geq 3$.

(B) Assume that at least two of the numbers n_1,\ldots,n_s are greater than 1. Then $G(n_1,\ldots,n_r|n_{r+1},\ldots,n_s)$ is not stably parallelizable if

\{ $\{n_1,\ldots,n_s\} \not\subset \{3,1\}$ or $\{2,1\}$.

(C) Consider $G(n_1,\ldots,n_r|n_{r+1},\ldots,n_s)$ with $1 \leq r < s - 1$, and either $n_q > 1$ for precisely one q, or $\{n_1,\ldots,n_s\} = \{3,1\}$, or $\{n_1,\ldots,n_s\} = \{2,1\}$ with $n_{r+1} = 2$. Then $G(n_1,\ldots,n_r|n_{r+1},\ldots,n_s)$ is not stably parallelizable in the following cases.

(i) Let $n_{r+1} = \cdots = n_s = 1$.

(a) $r \leq s - 2$, $n_i \neq 1,2,6$ for some $i \leq r$.

(b) $r \leq s - 4$, $n_i \neq 1,2$ for some $i \leq r$.

(ii) $n_{r+1} > 1$, $r < s - 2$.

(iii) $r = s - 2$, $n_{s-1} > 1$, $(n_1, n_{s-1}, n_s) \not\subset (1,3,1), (1,7,1)$.

(D) The following p.o. flag manifolds are stably parallelizable.

(i) $\tilde{G}(3,\ldots,3,1,\ldots,1)$, $l \geq 0$.

(ii) $\tilde{G}(2,\ldots,2|1,\ldots,1)$, $l \geq 0$

(iii) $\tilde{G}(6|1,1), \tilde{G}(6,1|1,1)$.

Of these only $\tilde{G}(2,\ldots,2)$ and $\tilde{G}(2,\ldots,2,1)$ are not parallelizable.

Note: The parallelizability of $G(\underbrace{1,\ldots,1}_{(k)},1,\ldots,1)$ is immediate from that of $G(1,\ldots,1)$, proved in [18].

Theorem 1.1 leaves a few unsolved cases and these are now listed.

1.2. Unsolved cases. (for stable parallelizability)

$G(1,\ldots,1|3,1)$, $s \geq 3$,

$G(1,\ldots,1|7,1)$, $s \geq 3$,

$G(6,1,\ldots,1|1,1)$, $s \geq 5$,

$G(6,1,\ldots,1|1,1,1)$, $s \geq 4$.

The families of flag and p.o. flag manifolds were first studied in full generality by Lam [13], who derived the formula for the tangent bundle
\[\tau G(n_1, \ldots, n_s) = \sum_{i<j} \xi_i \otimes \xi_j, \]
where \(\xi_i \) is the vector bundle over \(G(n_1, \ldots, n_s) \) whose fibre at \((\sigma_1, \ldots, \sigma_s) \) is the \(n_i \)-dimensional vector space \(\sigma_i \). Notice that \(\xi_1 \oplus \cdots \oplus \xi_s \approx n\varepsilon \), the trivial \(n \)-dimensional bundle, and that Lam's formula holds for \(G(n_1, \ldots, n_r | n_{r+1}, \ldots, n_s) \) as well, where \(\xi_1, \ldots, \xi_r \) are now oriented vector bundles.

In §2 the case \(s = 2 \), i.e. the oriented Grassmannians, is solved (Theorem 1.1A). This case is also the subject of [15], but there is a gap in their proof (p. 350, line 1). We therefore give most of the details of our proof, which in any case is shorter. Positive results on stable parallelizability are obtained in §3, using a generalized \(\lambda^2 \) (second exterior power) construction. Negative results are obtained in §4 using the "inclusion" method as in [18] and other ad hoc techniques. Recall the isomorphisms
\[\lambda^2(\xi \oplus \eta) \approx \lambda^2\xi \oplus \lambda^2\eta, \]
for any real vector bundles \(\xi, \eta \), and
\[\lambda^p(\xi) \approx \lambda^{n-p}(\xi) \]
for any real \(n \)-dimensional oriented vector bundle \(\xi \) (by Hodge duality).

Another observation that will be of use in the sequel is the relation
\[G(n - 2 | 1, 1) \approx X_{n,2} \]
with projective Stiefel manifolds. The homeomorphism is given by \(\varphi(\sigma_1, \sigma_2, \sigma_3) = [a] \), where \(a, b \) are any unit vectors in \(\sigma_2, \sigma_3 \) respectively such that \(\sigma_1, a, b \) induces the usual orientation on \(\mathbb{R}^n \) (note \(\sigma_1 \) is already oriented), and \([a] = [b] = [-a] \in X_{n,2} \).

2. The stable parallelizability of \(\tilde{G}_k(\mathbb{R}^n) \). In this section we prove Theorem 1.1(A).

Note that in case \(k = 1 \) or \(n - 1 \), \(\tilde{G}_k(\mathbb{R}^n) \approx S^{n-1} \) and the solution for their parallelizability was obtained independently by Kervaire [11] and Milnor [16].

We identify \(\tilde{G}_k(\mathbb{R}^n) \) with \(\tilde{G}(k, n-k) \) and write \(\xi_1 = \gamma = \tilde{\gamma}_{n,k}, \xi_2 = \beta = \tilde{\beta}_{n,k} \).

We have \(\gamma \oplus \beta \approx n\varepsilon \) and \(\tau = \tau(\tilde{G}_{n,k}) \approx \gamma \oplus \beta \). We apply the functor \(\lambda^2 \) and 1.3 to the relation \(n\varepsilon \approx \gamma \oplus \beta \) to obtain
\[\left(\begin{array}{c} n \\ 2 \end{array} \right) \varepsilon \approx \lambda^2(\gamma \oplus \beta) \approx \lambda^2(\gamma) \oplus \lambda^2(\beta) \oplus \gamma \oplus \beta \]
\[\approx \lambda^2(\gamma) \oplus \lambda^2(\beta) \oplus \tau. \]
When $n = 4$, $k = 2 = n - 2$. Thus by 1.4 $\lambda^2(\gamma) \approx \varepsilon \approx \lambda^2(\beta)$. Therefore 2.1.1 gives $6\varepsilon \approx 2\varepsilon \oplus \tau$, showing that $\tilde{G}_2(\mathbb{R}^4)$ is stably parallelizable. The nonparallelizability now follows from the fact that $\text{span } \tilde{G}_2(\mathbb{R}^4) = 0$ as $\chi(\tilde{G}_2(\mathbb{R}^4)) = 2\chi(G_2(\mathbb{R}^4)) \neq 0$ (cf. Lemma 2.3 [9]).

When $n = 5$, $k = 2$ or 3, and since $\tilde{G}_2(\mathbb{R}^5) \equiv \tilde{G}_3(\mathbb{R}^5)$ we need only consider the case $k = 2$. We proceed as before and obtain from (2.1.1) and 1.4 the relation $(\frac{3}{2})\varepsilon \approx \varepsilon \oplus \beta \oplus \tau$. Thus $\tau \sim \gamma \sim 0$ in $\tilde{\text{KO}}(\tilde{G}_2(\mathbb{R}^5))$. In other words $\tilde{G}_2(\mathbb{R}^5)$ is not stably parallelizable.

Let $n = 6$, $k = 3$. Again by the same arguments one shows that

$$
\binom{6}{2} \varepsilon \approx \lambda^2(\gamma) \oplus \lambda^2(\beta) \oplus \tau \approx \gamma \oplus \beta \oplus \tau \approx 6\varepsilon \oplus \tau.
$$

Hence $\tilde{G}_3(\mathbb{R}^6)$ is stably parallelizable.

We know from the work of Leite and Miatello [14] that span $\tilde{G}_3(\mathbb{R}^6) > 1 = \text{span } S^9$. Since $\dim \tilde{G}_3(\mathbb{R}^6) = 9$, by the Bredon-Kosinski Theorem [7] we conclude that $\tilde{G}_3(\mathbb{R}^6)$ is parallelizable.

Now only the cases $\tilde{G}_k(\mathbb{R}^n)$ with $n \geq 6$, $(n, k) \neq (6, 3)$ need to be considered. Without loss of generality we assume that $2k \leq n$. It follows that $n - k \geq 4 = \dim \mathbb{C}P^2$. Thus every real (orientable) k-plane bundle η over $\mathbb{C}P^2$ can be classified by a map $g: \mathbb{C}P^2 \to \tilde{G}_k(\mathbb{R}^n)$ so that $\eta \approx g*(\gamma)$ (cf. §19, [19]). Taking $\eta = \xi \oplus (k - 2)\varepsilon$ where ξ is the underlying real 2-plane bundle of the canonical complex line bundle over $\mathbb{C}P^2$ we obtain the following equalities in $\text{KO}(\mathbb{C}P^2)$:

$$
g*(\gamma) \approx \xi \oplus (k - 2)\varepsilon,
$$

$$
g*(\beta) \approx g*(n\varepsilon - \gamma),
$$

$$
\approx (n - k + 2)\varepsilon - \xi.
$$

Thus

$$
g*(\tau) \approx g*(\gamma \otimes \beta) \approx g*(\gamma) \otimes g*(\beta)
$$

$$
\approx (\xi \oplus (k - 2)\varepsilon) \otimes ((n - k + 2)\varepsilon - \xi)
$$

$$
\approx (n - 2k + 4)\xi \oplus m\varepsilon - \xi \otimes \xi
$$

for a suitable m. Using the relation $\xi \otimes \xi \approx 4\xi - 4\varepsilon$ in $\text{KO}(\mathbb{C}P^2)$ and the fact that ξ has infinite order (cf. Fujii [8]) we obtain the stable equivalence $g*(\tau) \sim (n - 2k)\xi \neq 0$ for $n \neq 2k$. Thus $\tilde{G}_k(\mathbb{R}^n)$ is not stably parallelizable for $n \neq 2k$.

In case $n = 2k$, $k \geq 4$, consider the inclusion $\mathbb{R}^8 \to \mathbb{R}^{k-4} \oplus \mathbb{R}^8 \oplus \mathbb{R}^{k-4}$. This induces an inclusion $j: \tilde{G}_4(\mathbb{R}^8) \to \tilde{G}_k(\mathbb{R}^{2k})$ where $j(A) = \tilde{X} + \tilde{A}$, $\tilde{X} = \mathbb{R}^{k-4} \oplus 0 \oplus 0$, and $\tilde{A} = 0 \oplus A \oplus 0$. It is readily seen that
Thus to prove that $\tilde{G}_k(R^{2k})$, $k \geq 4$, is not stably parallelizable, it suffices to show that $\tau(\tilde{G}_4(R^8)) \not\sim 0$. V. Bartik and J. Korbaš [4] have computed $w_i(G_k(R^n))$ for $1 \leq i \leq 9$. From their results $w_8(G_4(R^8)) = w_2^4 + w_1^2 w_3^2 \in H^8(G_4(R^8); \mathbb{Z}_2)$ where $w_i = w_i(\gamma_{8,4})$. It follows that $w_8(\tilde{G}_4(R^8)) = (w_2(\tilde{\gamma}_{8,4}))^4 \in H^8(\tilde{G}_4(R^8); \mathbb{Z}_2)$. One uses the Gysin sequence associated to the double covering $\tilde{G}_4(R^8) \rightarrow G_4(R^8)$ together with the known cohomology of $G_4(R^8)$ to establish that $(w_2(\tilde{\gamma}_{8,4}))^4 \neq 0$ in $H^8(\tilde{G}_4(R^8); \mathbb{Z}_2)$. This completes the proof.

Remark. The authors could find no way to handle the exceptional case $\tilde{G}_4(R^8)$ without the use of Stiefel-Whitney classes. Other methods of calculating $w(\tilde{G}_4(R^8))$ can be found in [17] or in [15].

3. The generalized λ^2-construction. Using the so-called λ^2-construction, we prove Theorem 1.1(D).

In cases (i) and (ii) we apply the λ^2 functor to the following bundle isomorphism

$$(3.1.1) \quad n\epsilon \cong \xi_1 \oplus \cdots \oplus \xi_s$$

to obtain

$$(3.1.2) \quad \binom{n}{2} \epsilon \cong \lambda^2(n\epsilon) \cong \lambda^2(\xi_1 \oplus \cdots \oplus \xi_s)$$

$$\cong \sum_{1 \leq j \leq s} \lambda^2(\xi_j) \oplus \left(\sum_{1 \leq i < j \leq s} \xi_i \otimes \xi_j \right)$$

$$\cong \sum_{1 \leq j \leq s} \lambda^2(\xi_j) \oplus \tau.$$
We now use 1.4 and the fact that $\lambda^2(\xi) \approx 0$ for a line bundle ξ to simplify the right hand side. Since from 3.1.1 one has the stable equivalence $\xi_1 \oplus \cdots \oplus \xi_k \sim 3k \varepsilon$ in case (i), we obtain

$$\binom{n}{2} \varepsilon \sim m \varepsilon \oplus \tau$$

where $m = 3k$ in case (i), and $m = k$ in case (ii). This proves stable parallelizability in cases (i) and (ii). The proof of parallelizability in cases (i) and (ii) is postposed to the end of this section.

Parallelizability of $G(6|1,1) \cong X_{8,2}$ (cf. 1.5) is due to Zvengrowski [23]. We now show that $M = G(6,1|1,1)$ is parallelizable. We have $\xi_2 \approx \varepsilon$. Since $\sum_{1 \leq i \leq 4} \xi_i \approx 9 \varepsilon$, and since ξ_1 and ξ_2 are oriented, it follows that $w_1(\xi_3) = w_1(\xi_4)$. Since a line bundle is determined by its first Stiefel-Whitney class, we must have $\xi_3 \approx \xi_4$. Call this line bundle ξ. Now using the fact that $\xi \otimes \varepsilon \approx \varepsilon \otimes \xi \approx \xi$ we have the following bundle isomorphisms

$$\tau \approx \sum_{1 \leq i < j \leq 4} \xi_i \otimes \xi_j$$

$$\approx \xi_1 \oplus \xi_3 \oplus \xi_4 \oplus \xi_1 \otimes (\xi_3 \oplus \xi_4) \oplus \xi_3 \otimes \xi_4$$

$$\approx \xi_1 \oplus \xi_3 \oplus \xi_4 \oplus \xi_1 \otimes 2\xi \oplus \xi_2$$

as $\xi_3 \otimes \xi_4 \approx \xi \otimes \xi \approx \varepsilon \approx \xi_2$. Hence

$$\tau \approx \xi_1 \oplus \xi_2 \oplus \xi_3 \oplus \xi_4 \oplus \xi_1 \otimes 2\xi \approx 9\varepsilon \oplus \xi_1 \otimes 2\xi,$$

showing that span $M \geq 9 > \text{span} S^m$, $m = \dim M = 21$. We wish to apply the Bredon-Kosinski Theorem to prove that M is parallelizable. Thus it remains to prove that $\tau \sim 0$. In $\text{KO}(M)$, $\xi_1 \approx 9\varepsilon - \xi_2 - \xi_3 - \xi_4 \approx 8\varepsilon - 2\xi$, so $\xi_1 \otimes 2\xi \approx (8\varepsilon - 2\xi) \otimes 2\xi \approx 16\xi - 4(\xi \otimes \xi) \approx 16\xi - 4\varepsilon$. Therefore in $\text{KO}(M)$, $\tau \sim 16\xi$.

Now consider the fibre map $q: M = G(6,1|1,1) \to G(8,1) = \mathbb{R}P^8$. Denoting the canonical line bundle over $\mathbb{R}P^8$ by ξ, we see that $q^*(\xi) \approx \xi_4 = \xi$. Since the order of ξ is 16 by [1], it follows that $16\xi \sim 0$. Hence $M = G(6,1|1,1)$ is parallelizable.

Parallelizability in case (i) follows from the work of [15] and [20]. Using a similar argument one can show that the manifolds listed in (ii) except for $M_1 = G(2,\ldots,2|1)$ and $M_2 = \tilde{G}(2,\ldots,2)$ are all parallelizable. However, we give a direct proof using λ^2 again in the proposition that follows. The non-parallelizability of M_1 and M_2 follows from the fact that their Euler characteristics are positive (cf. [12]) and hence their span must be zero.
We now turn to the parallelizability proof for case (ii).

Let \(m = \dim M = p - k \), where \(p = \binom{n}{2} \). Regard \(\mathbb{R}^p \) as \(\lambda^2(\mathbb{R}^n) \). Define a map \(g: M \to G(1, \ldots, 1|m) \equiv V_{p,k} \) as follows: For an oriented 2-plane \(\sigma \subset \mathbb{R}^n \), \(\lambda^2(\sigma) \) is an oriented line in \(\lambda^2(\mathbb{R}^n) \), the orientation on it being given by the vector \(a \wedge b \) where \(a, b \) is any positively oriented basis of \(\sigma \). Further if \(\sigma \perp \sigma' \) in \(\mathbb{R}^n \) then \(\lambda^2(\sigma) \perp \lambda^2(\sigma') \) in \(\lambda^2(\mathbb{R}^n) \). Thus we may define \(g(\sigma) = (\lambda^2(\sigma_1), \ldots, \lambda^2(\sigma_k), U\sigma) \in G(1, \ldots, 1|m) \) for \(\sigma = (\sigma_1, \ldots, \sigma_s) \in M \), where

\[
U\sigma = (\lambda^2(\sigma_1) + \cdots + \lambda^2(\sigma_k)) \perp \text{ in } \lambda^2(\mathbb{R}^n).
\]

Claim. \(\tau M \cong g^* (\xi_{k+1}(1, \ldots, 1|m)) \). We construct a specific bundle isomorphism \(f: \tau M \to g^* (\xi_{k+1}(1, \ldots, 1|m)) \) as follows. Let \(\sigma = (\sigma_1, \ldots, \sigma_s) \in M \). The tangent space \(T\sigma \) of \(M \) at \(\sigma \) is \(\sum_{1 \leq i < j \leq s} \sigma_i \otimes \sigma_j \). Thus any \(v \in T\sigma \) may be expressed as a sum of terms having the form \(v_1 \otimes v_2 + \cdots + v_{s-1} \otimes v_s \) with \(v_j \in \sigma_j \). It is easy to check that \(\sum_{1 \leq i < j \leq s} v_i \wedge v_j \in U\sigma \). Now \(f \) is defined by

\[
f(g, \sum_{1 \leq i < j \leq s} v_i \otimes v_j) = \left(g(\sigma), \sum_{1 \leq i < j \leq s} v_i \wedge v_j \right).
\]

Continuity of \(f \) is obvious. Fibres are preserved by \(f \) and, restricted to each fibre, it is a linear isomorphism since the kernel of the homomorphism \(\mathbb{R}^n \otimes \mathbb{R}^n \to \lambda^2(\mathbb{R}^n) \) intersects \(\sum_{1 \leq i < j \leq s} \sigma_i \otimes \sigma_j \) only in 0. Hence \(\tau M \cong g^* (\xi_{k+1}(1, \ldots, 1|m)) \).

To complete the proof we now show that \(g \) is null-homotopic (cf. Theorem 4.7 Ch. II [10]). Since \(g \) depends only on \(\sigma_1, \ldots, \sigma_k \) it can be factored as follows:

\[
M \xrightarrow{g} V_{p,k} \xrightarrow{\pi} \frac{M'}{g'} \xrightarrow{f^* \xi_{k+1}(1, \ldots, 1|m)} \xrightarrow{g^* \xi_{k+1}(1, \ldots, 1|m)} \mathbb{R}^p \]

where \(\pi(\sigma) = (\sigma_1, \ldots, \sigma_k, \sigma_{k+1} + \cdots + \sigma_s) \) for \(\sigma \in M \), and \(g' \) is the map induced by \(g \). Now

\[
dim M' = p - k - \left(\binom{l}{2} \right) \leq p - k - 1 \quad \text{for } l \geq 2
\]

= connectivity of \(V_{p,k} \).

Hence \(g' \) is null-homotopic. Therefore \(g = g' \circ \pi \) is also null-homotopic, completing the proof.
4. Results for partially oriented flag manifolds. In this section we complete the proof of 1.1(B) and 1.1(C). We assume that \(s \geq 3 \), the case \(s = 2 \) having been dealt with in §2. In case \(r = s \) we assume that \(n_2 > 1 \), since \(\tilde{G}(n_1,1,\ldots,1) \cong V_{n,s-1}(s-1 \geq 2) \) are all known to be parallelizable \([21],[13],[23]\). Also we assume that \(n_1 > 1 \) or \(n_{r+1} > 1 \) since \(G(1,\ldots,1) \) is parallelizable \([18]\).

Proof of 1.1(B). Using a method similar to the one used in \([18]\), one can show that for a suitable “inclusion”

\[
\tilde{G}_{n_i}(\mathbb{R}^{n_j+n_i}) \cong \tilde{G}(n_i, n_j) \to \tilde{G}(n_1, \ldots, n_s)
\]

the normal bundle to the imbedding \(k \) is trivial. Hence \(\tilde{G}(n_1, \ldots, n_s) \) is not stably parallelizable if \(\tilde{G}(n_i, n_j) \) is not stably parallelizable. Our assumptions on \(n_1, \ldots, n_s \) and Theorem 1.1(A) show that there exist \(i \) and \(j \) for which \(\tilde{G}(n_i, n_j) \) is not stably parallelizable, completing the proof in the case \(r = s \).

The case \(r < s - 1 \) follows from the above and the observation that \(\tilde{G}(n_1, \ldots, n_s) \) is a covering space of \(G(n_1, \ldots, n_r|n_{r+1}, \ldots, n_s) \).

Note that Theorem 1.1(B) and 1.1(D) give complete results on stable parallelizability of \(\tilde{G}(n_1, \ldots, n_s) \). We now turn to the proof of 1.1(C).

Recall that only the p.o. flag manifolds \(G(n_1, \ldots, n_r|n_{r+1}, \ldots, n_s) \) with \(1 \leq r < s - 1 \), and either \(n_q > 1 \) for precisely one \(q \), or \(\{n_1, \ldots, n_s\} = \{3,1\} \), or \(\{n_1, \ldots, n_s\} = \{2,1\} \) with \(n_{r+1} = 2 \) need to be considered here.

(i) (a) In this case one considers the “inclusion” of

\[
G(n_i | 1, 1) \to G(n_i, \ldots, n_r|n_{r+1}, \ldots, n_s)
\]

which has trivial normal bundle. Now \(G(n_i | 1, 1) \equiv X_{n_i+2,2} \) is not stably parallelizable since \(n_i \neq 1, 2, 6 \) (cf. \([2]\)). Therefore \(G(n_1, \ldots, n_r|n_{r+1}, \ldots, n_s) \) is not stably parallelizable.

(i) (b) In this case we may assume from what has been shown in (i)(a) that \(n_i = n_q = 6 \). Now one has an inclusion

\[
j_2: G(6 | 1, 1, 1, 1) \to G(n_1, \ldots, n_r|n_{r+1}, \ldots, n_s)
\]

with trivial normal bundle. So it suffices to show that \(G(6 | 1, 1, 1, 1) \) is not stably parallelizable. Indeed, consider the covering projection \(f: V_{10,4} \to G(6 | 1, 1, 1, 1) \) which maps \((v_1, v_2, v_3, v_4) \in V_{10,4} \) to \((A, Rv_1, Rv_2, Rv_3, Rv_4)\) where \(A = \{v_1, v_2, v_3, v_4\} \). The orientation on \(A \) is given by any ordered basis \(u_1, \ldots, u_6 \) where \(u_1, \ldots, u_6, v_1, v_2, v_3, v_4 \)
(equivalently $u_1, \ldots, u_6, -v_1, -v_2, -v_3, -v_4$) is in the standard orientation on \mathbb{R}^{10}. It is readily seen that f can be factored as in the diagram below.

$$
\begin{array}{ccc}
V_{10,4} & \xrightarrow{p} & X_{10,4} \\
\downarrow f & \searrow & \searrow f' \\
G(6|1,1,1,1) & &
\end{array}
$$

Since f' is a covering projection and since $X_{10,4}$ is not stably parallelizable (cf. [2], [3]) it follows that $G(6|1,1,1,1)$ is not stably parallelizable.

(ii) In this case one considers the inclusion $j: G(n_{r+1}, \ldots, n_s) \to G(n_1, \ldots, n_r|n_{r+1}, \ldots, n_s)$ and uses Theorem 1 of [18].

(iii) If $(n_{s-1}, n_s) \neq (3,1), (7,1)$ then by considering the inclusion $j: G(n_{s-1}, n_s) \to G(n_1, \ldots, n_{s-2}|n_{s-1}, n_s)$ and the negative results about the stable parallelizability of Grassmann manifolds (cf. [22]) we see that $G(n_1, \ldots, n_{s-2}|n_{s-1}, n_s)$ is not stably parallelizable. Finally, it remains to show that for $k \geq 1$, $G(3, \ldots, 3, 1, \ldots, 1|3, 1)$ is not stably parallelizable. Once again, by the inclusion method it suffices to show that $G(3|3, 1)$ is not stably parallelizable. In this case we resort to the standard Stiefel-Whitney class argument as follows.

As in (3.1.2) one has $(\frac{7}{2})\epsilon \approx \lambda^2(\xi_1) \oplus \lambda^2(\xi_2) \oplus \lambda^2(\xi_3) \oplus \tau \approx \xi_1 \oplus \lambda^2(\xi_2) \oplus \tau$. We will prove that $w(\xi_1) \cdot w(\lambda^2(\xi_2)) \neq 1$. For a 3-plane bundle ξ, $w(\lambda^2(\xi)) = 1 + (w_1(\xi))^2 + w_2(\xi) + w_3(\xi) + w_2(\xi)w_1(\xi)$ (cf. p. 497, [6] or p. 32 [17]). Thus

$$(4.2.1) \quad w(\xi_1) \cdot w(\lambda^2(\xi_2)) = (1 + w_2(\xi_1) + w_3(\xi_1))$$

$$\times \left(1 + (w_1(\xi_2))^2 + w_2(\xi_2) + w_3(\xi_2) + w_2(\xi_2)w_1(\xi_2)\right).$$

By Theorem 11.1 [5], the only relations among the Stiefel-Whitney classes of ξ_1, ξ_2, ξ_3 over $G(3, 3, 1)$ are those arising from the single inhomogeneous relation

$$(1 + w_1(\xi_1) + w_2(\xi_1) + w_3(\xi_1))$$

$$\times (1 + w_1(\xi_2) + w_2(\xi_2) + w_3(\xi_2))(1 + w_1(\xi_3)) = 1.$$

Using the Gysin sequence associated to the double covering $G(3|3, 1) \to G(3, 3, 1)$ one can then prove (cf. §15, [17]) that essentially the same holds in $G(3|3, 1)$, i.e.,

$$(1 + w_2(\xi_1) + w_3(\xi_1)) \cdot (1 + w_1(\xi_2) + w_2(\xi_2) + w_3(\xi_2))(1 + w_1(\xi_3)) = 1.$$
generates all the relations among the Stiefel-Whitney classes of ξ_1, ξ_2, ξ_3 over $G(3|3,1)$ in $H^*(G(3|3,1); \mathbb{Z}_2)$. From this and 4.2.1 one verifies that

$$w(\xi_1) \cdot w(\lambda^2(\xi_2)) \neq 1.$$

4.3. REMARKS. In concluding, Theorems 1.1(B), (C), and (D) still leave a few unsolved cases. These were listed in 1.2. Attempts by the authors to settle these using the methods of this paper, Stiefel-Whitney classes, or the Kervaire semicharacteristic have all failed.

REFERENCES

Received January 2, 1986. Both authors are indebted to the National Research Council of Canada for financial assistance during this work.

THE UNIVERSITY OF CALGARY
CALGARY, ALBERTA, CANADA
The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph must be capable of being used separately as a synopsis of the entire paper. In particular it should contain no bibliographic references. Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. Supply name and address of author to whom proofs should be sent. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California 90024.

There are page-charges associated with articles appearing in the Pacific Journal of Mathematics. These charges are expected to be paid by the author’s University, Government Agency or Company. If the author or authors do not have access to such Institutional support these charges are waived. Single authors will receive 50 free reprints; joint authors will receive a total of 100 free reprints. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $190.00 a year (5 Vols., 10 issues). Special rate: $95.00 a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Old back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

The Pacific Journal of Mathematics at P.O. Box 969, Carmel Valley, CA 93924 (ISSN 0030-8730) publishes 5 volumes per year. Application to mail at Second-class postage rates is pending at Carmel Valley, California, and additional mailing offices. Postmaster: send address changes to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Copyright © 1987 by Pacific Journal of Mathematics
Pierre Barrucand, John Harold Loxton and Hugh C. Williams, Some explicit upper bounds on the class number and regulator of a cubic field with negative discriminant ... 209

Thomas Ashland Chapman, Piecewise linear fibrations 223

Yves Félix and Jean-Claude Thomas, Extended Adams-Hilton’s construction ... 251

Robert Fitzgerald, Derivation algebras of finitely generated Witt rings 265

K. Gopalsamy, Oscillatory properties of systems of first order linear delay differential inequalities ... 299

John P. Holmes, One parameter subsemigroups in locally complete differentiable semigroups .. 307

Douglas Murray Pickrell, Decomposition of regular representations for $U(H)_\infty$.. 319

Victoria Powers, Characterizing reduced Witt rings of higher level 333

Parameswaran Sankaran and Peter Zvengrowski, Stable parallelizability of partially oriented flag manifolds .. 349

Johan Tysk, Eigenvalue estimates with applications to minimal surfaces 361

Akihito Uchiyama, On McConnell’s inequality for functionals of subharmonic functions ... 367

Minato Yasuo, Bott maps and the complex projective plane: a construction of R. Wood’s equivalences .. 379

James Juei-Chin Yeh, Uniqueness of strong solutions to stochastic differential equations in the plane with deterministic boundary process ... 391