EIGENVALUE ESTIMATES WITH APPLICATIONS TO MINIMAL SURFACES

JOHAN TYSK
EIGENVALUE ESTIMATES WITH APPLICATIONS TO MINIMAL SURFACES

JOHAN TYSK

We study eigenvalue estimates of branched Riemannian coverings of compact manifolds. We prove that if

\[\varphi : M^n \to N^n \]

is a branched Riemannian covering, and \(\{ \mu_i \}_{i=0}^{\infty} \) and \(\{ \lambda_i \}_{i=0}^{\infty} \) are the eigenvalues of the Laplace-Beltrami operator on \(M \) and \(N \), respectively, then

\[\sum_{i=0}^{\infty} e^{-\mu_i t} \leq k \sum_{i=0}^{\infty} e^{-\lambda_i t}, \]

for all positive \(t \), where \(k \) is the number of sheets of the covering. As one application of this estimate we show that the index of a minimal oriented surface in \(\mathbb{R}^3 \) is bounded by a constant multiple of the total curvature. Another consequence of our estimate is that the index of a closed oriented minimal surface in a flat three-dimensional torus is bounded by a constant multiple of the degree of the Gauss map.

1. Introduction. Motivated by problems in the theory of minimal surfaces, we study the following question. Let

\[\varphi : M^n \to N^n \]

be a branched Riemannian covering of compact manifolds, which has a singular set of codimension at least two. By this we mean that we endow \(M^n \) with the pullback metric

\[\varphi^* (ds_N), \]

where \(\varphi^* \) is singular on a set of codimension at least two. We then want to estimate the eigenvalues of the Laplace-Beltrami operator on \(M \) in terms of the corresponding eigenvalues of \(N \). Note that we can speak of the eigenvalues of \((M, \varphi^*(ds_N)) \) although the metric is possibly singular, since a singular set of codimension at least two will not affect the integrals of the variational characterization of the eigenvalues.

Our main theorem gives the estimate

\[\sum_{i=0}^{\infty} e^{-\mu_i t} \leq k \sum_{i=0}^{\infty} e^{-\lambda_i t}, \]

361
for all \(t > 0 \), where \(k \) is the number of sheets of the covering \(\varphi \), and \(\{ \mu_i \} \) and \(\{ \lambda_i \} \) are the eigenvalues of the Laplace-Beltrami operator on \(M \) and \(N \), respectively. We then use this estimate to show that if \(M^2 \subseteq \mathbb{R}^3 \) is an oriented complete minimal surface of finite total curvature, then the index of \(M \) is bounded by a constant multiple of the total curvature. Here, the index of \(M \) is defined to be the limit of the indices of an increasing sequence of exhausting compact domains in \(M \). The index of a domain \(D \) is the number of negative eigenvalues of the eigenvalue problem

\[
(\Delta + |A|^2) \varphi + \lambda \varphi = 0 \quad \text{on } D, \quad \varphi|_{\partial D} = 0,
\]

where \(A \) is the second fundamental form of \(M \) as a submanifold of \(\mathbb{R}^3 \). Geometrically, the index of \(M \) can be described as the maximum dimension of a linear space of compactly supported deformations that decrease the area up to second order. Finally we also show that the index of a closed oriented minimal surface in a flat three-dimensional torus is bounded by a constant multiple of the degree of the Gauss map.

2. The eigenvalue estimate. Our main result is the following theorem.

Theorem. Let

\[
\varphi : M^n \to N^n
\]

be a \(k \)-sheeted branched Riemannian covering of compact manifolds, which has a singular set of codimension at least two. Let \(\{ \mu_i \}_{i=0}^{\infty} \) and \(\{ \lambda_i \}_{i=0}^{\infty} \) be the eigenvalues of the Laplace-Beltrami operator on \(M^n \) and \(N^n \), respectively. Then for all \(t > 0 \),

\[
\sum_{i=0}^{\infty} e^{-\mu_i t} \leq k \sum_{i=0}^{\infty} e^{-\lambda_i t}.
\]

Remark. Before proving the theorem we note that the main difficulty is that the fundamental comparison theorems of Cheng [1] do not carry through if the metric has singularities. We instead utilize the heat kernel on \(M \) and \(N \) to circumvent this difficulty.

Proof. We restrict \(\varphi \) of the theorem to \(\varphi_- : \)

\[
\varphi_- : M_- \to N_-,
\]

where

\[
M_- = M - E(\varepsilon),
\]
and $E(\epsilon)$ is an open set of volume less than ϵ with smooth boundary, containing the singular set. We then simply define N_- to be the image under φ restricted to M_-.

Now fixing $x \in M_-$, we consider

$$H : y \mapsto H_{N_-}(\varphi(x), \varphi(y), t), \quad y \in M_-, \ t > 0,$$

where H_{N_-} is the heat kernel on N_-, with Dirichlet boundary conditions. Since φ_- is the local isometry, the function H solves the heat equation on M_-. As t tends to zero we obtain

$$H_{N_-}(\varphi(x), \varphi(y), t) \to \sum_{\varphi(x_i) = \varphi(x)} \delta_{x_i}.$$

On the other hand, for the heat kernel H_{M_-} on M_- with Dirichlet boundary conditions, we have as t tends to zero

$$H_{M_-}(x, y, t) \to \delta_x.$$

Hence, at $t = 0$ we have in the sense of distributions

$$H_{M_-}(x, y, 0) \leq H_{N_-}(\varphi(x), \varphi(y), 0).$$

By the maximum principle for the heat equation, we then have

$$(1) \quad H_{M_-}(x, y, t) \leq H_{N_-}(\varphi(x), \varphi(y), t),$$

for all $t > 0$. Inequality (1) holds for all x and y in M_- so we can let $x = y$ and integrate over M_-:

$$\int_{M_-} H_{M_-}(x, x, t) \, dV(x) \leq \int_{M_-} H_{N_-}(\varphi(x), \varphi(x), t) \, dV(x).$$

Since φ_- is a k-sheeted covering, we have

$$\int_{M_-} H_{N_-}(\varphi(x), \varphi(x), t) \, dV(x) = k \int_{N_-} H_{N_-}(z, z, t) \, dV(z).$$

Again using the maximum principle for the heat equation, we obtain

$$\int_{N_-} H_{N_-}(z, z, t) \, dV(z) \leq \int_{N} H_{N}(z, z, t) \, dV(z),$$

where H_{N} denotes the heat kernel of N. We have therefore shown that

$$\int_{M_-} H_{M_-}(x, x, t) \, dV(x) \leq k \int_{N} H_{N}(z, z, t) \, dV(z).$$

Finally, letting the volume ϵ of $E(\epsilon)$ tend to zero, we obtain

$$(2) \quad \int_{M} H_{M}(x, x, t) \, dV(x) \leq k \int_{N} H_{N}(z, z, t) \, dV(z),$$
where H_M is the heat kernel of M. Using separation of variables, one shows that the heat kernels H_M and H_N have the representations

$$H_M(x, y, t) = \sum_{i=0}^{\infty} e^{-\mu_i t} \psi_i(x) \psi_i(y)$$

$$H_N(x, y, t) = \sum_{i=0}^{\infty} e^{-\lambda_i t} \varphi_i(x) \varphi_i(y),$$

where

$$\Delta \psi_i + \mu_i \psi_i = 0, \quad i = 0, 1, 2, \ldots,$$

and

$$\Delta \varphi_i + \lambda_i \varphi_i = 0, \quad i = 0, 1, 2, \ldots,$$

are the eigenvalues and eigenfunctions of M and N, respectively, normalized so that $\{\psi_i\}_{i=0}^{\infty}$ and $\{\varphi_i\}_{i=0}^{\infty}$ form orthonormal systems. Using these representations in inequality (2), we obtain

$$\sum_{i=0}^{\infty} e^{-\mu_i t} \leq k \sum_{i=0}^{\infty} e^{-\lambda_i t},$$

finishing the proof of the theorem.

3. Applications to minimal surfaces.

In [2], D. Fisher-Colbrie shows that a complete minimal oriented surface M in \mathbb{R}^3 has finite index if and only if it has finite total curvature (see the introduction for the definition of index). A natural question to ask then is how the index varies with the total curvature. Using our eigenvalue estimate, we can show that the index is bounded by a constant multiple of the total curvature.

Theorem. Let M^2 be a complete oriented minimal surface in \mathbb{R}^3. Set

$$k = \frac{1}{4\pi} \int_M (-K) \, dV,$$

where K is the Gaussian curvature of M. Then

$$\text{index of } M \leq (7.68183) \cdot k.$$

Proof. Without loss of generality, we can assume that k is finite. By Osserman’s classical theorem, we then know that M is conformally a compact Riemann surface \tilde{M}, punctured at a finite set of points. Also, the Gauss map extends to a conformal map

$$G : \tilde{M} \to S^2.$$
For a minimal surface in \mathbb{R}^3, $|A|^2 = -2K$. Now, the number of negative eigenvalues for
\[
\Delta + |A|^2 = \Delta - 2K,
\]
on any domain D in M, is the same as the number of negative eigenvalues of the corresponding domain in \overline{M} for the operator
\[
\Delta_M + 2,
\]
where we use the pullback metric from S^2 on \overline{M}. This follows from the fact that
\[
G^* (ds^2_{S^2}) = (-K) \cdot ds^2_M,
\]
and $\Delta_M = (-K)\Delta_{\overline{M}}$. Since the index of M is the limit of the indices of an exhausting sequence of domains D in M, we can conclude, by the domain monotonicity of eigenvalues, that the index of M is bounded by the number of negative eigenvalues of $\Delta_{\overline{M}} + 2$ on \overline{M}, or equivalently, by the number of eigenvalues of $\Delta_{\overline{M}}$ that are strictly less than two.

Now, G is a holomorphic mapping so it establishes \overline{M} as a k-sheeted branched cover of S^2. The singular set of this covering is the set of isolated points where $K = 0$. We can therefore apply our eigenvalue estimate and conclude that
\[
\sum_{i=0}^{\infty} e^{-\mu_i t} \leq k \sum_{i=0}^{\infty} e^{-\lambda_i t}, \quad \text{all } t > 0,
\]
where $\{\mu_i\}_{i=0}^{\infty}$ and $\{\lambda_i\}_{i=0}^{\infty}$ are the eigenvalues of \overline{M} and S^2, respectively. Since the index of M is bounded by the number of μ_i's that are strictly less than two, we conclude that
\[
(\text{index of } M) \cdot e^{-2t} \leq \sum_{\mu_i < 2} e^{-\mu_i t} \leq \sum_{i=0}^{\infty} e^{-\mu_i t} \leq k \sum_{i=0}^{\infty} e^{-\lambda_i t}.
\]
Hence
\[
\text{index of } M \leq \left(e^{2t} \sum_{i=0}^{\infty} e^{-\lambda_i t} \right) \cdot k.
\]
The ith distinct eigenvalue of S^2 is known to be $i(i + 1)$, with multiplicity $2i + 1$. Using this, we find that $t = 0.4506 \ldots$ gives the smallest possible value of $7.68182 \ldots$ for the coefficient of k, proving the theorem.

As another application of our eigenvalue estimate, we consider the case of minimal surfaces in a flat three-dimensional torus. Let N be such a torus, which we know we can write isometrically as
\[
N = \mathbb{R}^3 / \Lambda,
\]
where Λ is a cocompact lattice, and let M be a closed minimal oriented surface immersed in N. We can define the Gauss map

$$G : M \to S^2$$

by viewing M as a minimal surface in \mathbb{R}^3, periodic with respect to the lattice Λ.

The index of M is the number of negative eigenvalues of

$$\Delta + |A|^2 = \Delta - 2K$$

on M, where A denotes the second fundamental form of M in N, and K denotes the Gaussian curvature of M. We endow M with the pullback metric from S^2 via G and conclude, using the same argument as in the preceding example, that

$$\text{index of } M \leq (7.68183) \cdot k,$$

where k is the degree of the Gauss map.

References

Received July 14, 1986.
Pierre Barrucand, John Harold Loxton and Hugh C. Williams, Some explicit upper bounds on the class number and regulator of a cubic field with negative discriminant ... 209

Thomas Ashland Chapman, Piecewise linear fibrations 223

Yves Félix and Jean-Claude Thomas, Extended Adams-Hilton’s construction ... 251

Robert Fitzgerald, Derivation algebras of finitely generated Witt rings 265

K. Gopalsamy, Oscillatory properties of systems of first order linear delay differential inequalities .. 299

John P. Holmes, One parameter subsemigroups in locally complete differentiable semigroups ... 307

Douglas Murray Pickrell, Decomposition of regular representations for $U(H)_\infty$... 319

Victoria Powers, Characterizing reduced Witt rings of higher level 333

Parameswaran Sankaran and Peter Zvengrowski, Stable parallelizability of partially oriented flag manifolds .. 349

Johan Tysk, Eigenvalue estimates with applications to minimal surfaces 361

Akihito Uchiyama, On McConnell’s inequality for functionals of subharmonic functions .. 367

Minato Yasuo, Bott maps and the complex projective plane: a construction of R. Wood’s equivalences .. 379

James Juei-Chin Yeh, Uniqueness of strong solutions to stochastic differential equations in the plane with deterministic boundary process .. 391