UNIQUENESS OF STRONG SOLUTIONS TO STOCHASTIC DIFFERENTIAL EQUATIONS IN THE PLANE WITH DETERMINISTIC BOUNDARY PROCESS

JAMES JUEI-CHIN YEH
UNIQUENESS OF STRONG SOLUTIONS TO STOCHASTIC DIFFERENTIAL EQUATIONS IN THE PLANE WITH DETERMINISTIC BOUNDARY PROCESS

J. Yeh

Under the assumption of the existence of a weak solution and the pathwise uniqueness of solutions, existence and uniqueness of a strong solution to the stochastic differential system of non Markovian type in the plane

\[dX_z = \alpha(z, X) dB_z + \beta(z, X) dz \quad \text{for } z \in \mathbb{R}^2_+, \]

\[\partial X = x \]

is obtained where \(x \) is a continuous real valued function on \(\partial \mathbb{R}^2_+ \).

1. Introduction. Consider a stochastic differential equation of non-Markovian type in the plane

\[dX_z = \alpha(z, X) dB_z + \beta(z, X) dz \]

i.e.,

\[X_{s,t} - X_{0,t} - X_{s,0} + X_{0,0} = \int_{R_z} \alpha(\zeta, X) dB_\zeta + \int_{R_z} \beta(\zeta, X) d\zeta \]

for \(z = (s, t) \in \mathbb{R}^2_+ \) and \(R_z = [0, s] \times [0, t] \) where \(B \) is an \(\{ \mathcal{F}_z \}_{z \in \mathbb{R}^2_+} \)-Brownian motion on an equipped probability space \((\Omega, \mathcal{F}, P; \mathcal{F}_z) \) with \(\partial B = 0, \partial B \) being the restriction of \(B \) to the boundary \(\partial \mathbb{R}^2_+ \) of \(\mathbb{R}^2_+ \), and consider the boundary condition

\[\partial X = x \]

where \(x \) is a fixed element in the space \(\partial W \) of all continuous real valued functions on \(\partial \mathbb{R}^2_+ \). Let \(W \) be the space of all continuous real valued functions on \(\mathbb{R}^2_+ \). The coefficients \(\alpha \) and \(\beta \) are real valued functions on \(\mathbb{R}^2_+ \times W \) satisfying certain measurability conditions that imply that for each \(\omega \in \Omega, \alpha(z, X(\cdot, \omega)) \) and \(\beta(z, X(\cdot, \omega)) \) depend only on that part of the sample function \(X(\cdot, \omega) \) which precedes \(z \) in the sense of the partial ordering of \(\mathbb{R}^2_+ \). We refer to [8] or [10] for these measurability conditions.

In this article, by an equipped probability space we mean a complete probability measure space \((\Omega, \mathcal{F}, P) \) with an increasing and right continuous family \(\{ \mathcal{F}_z, z \in \mathbb{R}^2_+ \} \) of sub-\(\sigma \)-fields of \(\mathcal{F} \), each containing all the null
sets in \((\Omega, \mathcal{F}, P)\). We do not assume the conditional independence of
\(\tilde{\xi}_z^1 = \sigma(\cup_{s \in \mathbb{R}_+} \tilde{\xi}_{s,r})\) and
\(\tilde{\xi}_z^2 = \sigma(\cup_{u \in \mathbb{R}_+} \tilde{\xi}_{u,t})\) relative to \(\mathcal{F}_z\) for
\(z = (s, t) \in \mathbb{R}_+^2\) since this condition is not needed for the existence of our stochastic
integrals with respect to an \(\{\mathcal{F}_z\}\)-Brownian motion.

Definition 1. By a solution of the stochastic differential equation \((1.1)\) we mean a pair of 2-parameter stochastic processes \((X, B)\) on an
equipped probability space \((\Omega, \mathcal{F}, P; \mathcal{F}_z)\) such that
\(B\) is an \(\{\mathcal{F}_z\}\)-Brownian motion with \(\partial B = 0\), \(X\) is an \(\{\mathcal{F}_z\}\)-adapted process whose
sample functions are all continuous on \(\mathbb{R}_+^2\) and the stochastic integrals in
\((1.1)\) exist and satisfy \((1.1)\) with probability 1.

Definition 2. We say that the stochastic differential equation \((1.1)\)
satisfies the pathwise uniqueness condition if whenever \((X, B)\) and \((X', B)\) with the same \(B\) are two solutions of \((1.1)\) on the same equipped
probability space and \(\partial X = \partial X'\) then \(X = X'\).

Let \(\mathcal{B}(W)\) be the \(\sigma\)-field generated by the cylinder sets in \(W\). With
respect to the metric of uniform convergence on the compact subsets of
\(\mathbb{R}_+^2\), \(W\) is a complete separable metric space and the \(\sigma\)-field of the Borel
sets in \(W\) is equal to \(\mathcal{B}(W)\). Let \(m_W\) be the Wiener measure on
\((W, \mathcal{B}(W))\) concentrated on those elements of \(W\) which vanish on \(\partial \mathbb{R}_+^2\).
For \(z \in \mathbb{R}_+^2\), let \(\mathcal{B}_z(W)\) be the \(\sigma\)-field generated by the cylinder sets
\(\{w \in W; w(\xi) \in E\}\) where \(E \in \mathcal{B}(\mathbb{R})\) and \(\xi \leq z\). We write \(\mathcal{B}_z(W)^*\) for
the \(\sigma\)-field generated by \(\mathcal{B}_z(W)\) and the subsets of the null sets in
\((W, \mathcal{B}(W), m_W)\).

Definition 3. A solution \((X, B)\) of \((1.1)\) on an equipped probability
space \((\Omega, \mathcal{F}, P; \mathcal{F}_z)\) is called a strong solution of the boundary value
problem \((1.1)\) and \((1.2)\) if there exists a transformation \(F\) of \(W\) into \(W\) such that
1° for every \(z \in \mathbb{R}_+^2\), \(F\) is \(\mathcal{B}_z(W)^*/\mathcal{B}_z(W)\) measurable,
2° \(X(\cdot, \omega) = F[B(\cdot, \omega)]\) for a.e. \(\omega \in \Omega\).

In [8] we showed that if the coefficients \(\alpha\) and \(\beta\) in \((1.1)\) satisfy a
certain Lipschitz condition then \((1.1)\) satisfies the pathwise uniqueness
condition. There we also showed that under the Lipschitz condition and
an order of growth condition on \(\alpha\) and \(\beta\) a strong solution exists for \((1.1)\)
with a nondeterministic boundary condition. In the present paper we
study the independence of the transformation \(F\) in Definition 3 from the
equipped probability space \((\Omega, \mathcal{F}, P; \mathcal{F}_z)\). The main result is the following
theorem.
THEOREM. Let \(x \in \partial W \) be fixed. Suppose the stochastic differential system (1.1) and (1.2) has a solution on some equipped probability space and (1.1) satisfies the pathwise uniqueness condition. Then there exists a transformation \(F \) of \(W \) into \(W \), unique up to a null set in \((W, \mathcal{B}(W), m_w) \), such that

1° for every \(z \in \mathbb{R}^2_+ \), \(F \) is \(\mathcal{B}_z(W)/\mathcal{B}_z(W) \) measurable,

2° if \((\Omega, \mathcal{F}, P; \mathcal{F}_z) \) is an equipped probability space on which there exists an \(\{\mathcal{F}_z\} \)-Brownian motion \(B \) with \(\partial B = 0 \), then \(X = F[B] \) is a solution of the stochastic differential system (1.1) and (1.2) on the equipped probability space \((\Omega, \mathcal{F}, P; \mathcal{F}_z) \).

3° any solution \((X, B)\) of the differential system (1.1) and (1.2) satisfies \(X = F[B] \).

The proof of this theorem is given in §3. In constructing a unique strong solution we adopt Ikeda and Watanabe's approach in [7].

2. Some lemmas for the construction of a unique strong solution. In what follows we write \(W_i \), \(i = 0, 1 \) and 2 for copies of \(W \). Let \((X, B)\) be a solution to the stochastic differential system (1.1) and (1.2) on an equipped probability space \((\Omega, \mathcal{F}, P; \mathcal{F}_z) \) and let \(Q \) be the probability distribution of \((X, B)\) on the measurable space \((W_1 \times W_0, \mathcal{B}(W_1 \times W_0)) \) where \(\mathcal{B}(W_1 \times W_0) \) is the \(\sigma \)-field of the Borel sets in \(W_1 \times W_0 \) in its product topology.

Let \(\pi \) be the projection of \(W_1 \times W_0 \) onto \(W_0 \). The probability distribution on \((W_0, \mathcal{B}(W_0))\) of the transformation \(\pi \) defined on the probability space \((W_1 \times W_0, \mathcal{B}(W_1 \times W_0), Q)\) is then the Wiener measure \(m_w \).

Let \(Q^{(\cdot)} \) with \(Q^{(w_0)}(A_1) \) for \((A_1, w_0) \in \mathcal{B}(W_1) \times W_0 \) be a regular conditional probability of \(Q \) under \(\pi \), i.e.,

(C.1) for every \(w_0 \in W_0 \), \(Q^{(w_0)} \) is a probability measure on \((W_1, \mathcal{B}(W_1))\).

(C.2) for every \(A_1 \in \mathcal{B}(W_1) \), \(Q^{(\cdot)}(A_1) \) is \(\mathcal{B}(W_0) \) measurable,

(C.3) for every \(A_1 \in \mathcal{B}(W_1) \) and \(A_0 \in \mathcal{B}(W_0) \)

\[
Q(A_1 \times A_0) = \int_{A_0} Q^{(w_0)}(A_1) m_w(dw_0).
\]

From these defining properties of the regular conditional probability follows that if \(\mathcal{C}_1 = \{ W_1, \phi \} \) and \(A_1 \in \mathcal{B}(W_1) \) then

(2.0) \[
Q(A_1 \times W_0 | \mathcal{C}_1 \otimes \mathcal{B}(W_0))(w_1, w_0) = Q^{(w_0)}(A_1)
\]

for all \(w_1 \in W_1 \) for a.e. \(w_0 \) in \((W_0, \mathcal{B}(W_0), m_w)\).
The existence of a regular conditional probability \(Q(\cdot) \) is ensured by the fact that both the domain \(W_1 \times W_0 \) and the image space \(W_0 \) of the transformation \(\pi \) are complete separable metric spaces (see Parthasarathy [4]). The following lemma is an extension of Neveu's proof in [3] for a lemma by Yamada and Watanabe [7].

Lemma 1. For \(z = (s, t) \in \mathbb{R}_+^2 \), let

\[
\mathcal{B}_z^0(W) = \mathcal{B}_z(W),
\]
\[
\mathcal{B}_z^1(W) = \sigma\{w(u, v), u \in [0, s], v \in [0, \infty), w \in W\},
\]
\[
\mathcal{B}_z^2(W) = \sigma\{w(u, v), u \in [0, \infty), v \in [0, t], w \in W\},
\]
\[
\mathcal{B}_z^3(W) = \sigma\{w(u, v), u \in [0, s] \text{ or } v \in [0, t], w \in W\}.
\]

Then for every \(A_1 \in \mathcal{B}_z^j(W_1) \), \(Q(\cdot)(A_1) \) is \(\mathcal{B}_z^j(W_0)^* \) measurable for \(j = 0, 1, 2 \text{ or } 3 \).

Proof. Let

\[
\mathcal{B}_z^4(W) = \sigma\{w(u, v) - w(0, v) - w(u, t) + w(0, t),
\]
\[
u < s, t < v, w \in W\},
\]
\[
\mathcal{B}_z^5(W) = \sigma\{w(u, v) - w(s, v) - w(u, 0) + w(s, 0),
\]
\[
s < u, v < t, w \in W\},
\]
\[
\mathcal{B}_z^6(W) = \sigma\{w(u, v) - w(s, v) - w(u, t) + w(s, t),
\]
\[
s < u, v < t, w \in W\}.
\]

Consider the case where \(A_1 \in \mathcal{B}_z^3(W_1) \). Let us show that \(\mathcal{B}_z^3(W_1) \otimes \mathcal{B}_z^3(W_0) \) and \(\mathcal{C}_1 \otimes \mathcal{B}_z^6(W_0) \) are independent with respect to \(Q \). Now for a transformation \(\psi \) of \(\Omega \) into \(W_1 \times W_0 \) defined by

\[
\psi(\omega) = (X(\cdot, \omega), B(\cdot, \omega)) \in W_1 \times W_0 \quad \text{for } \omega \in \Omega,
\]

we have

\[
\psi^{-1}(\mathcal{B}_z^3(W_1) \otimes \mathcal{B}_z^3(W_0)) \subset \mathcal{G}_z^1 \vee \mathcal{G}_z^2
\]

and, denoting \(z = (s, t) \),

\[
\psi^{-1}(\mathcal{C}_1 \otimes \mathcal{B}_z^6(W_0))
\]
\[
= \sigma\{B(u, v) - B(s, v) - B(u, t) + B(s, t), s \leq u, t \leq v\}.
\]
The two σ-fields on the right sides of the last two expressions are independent with respect to P since B is an $\{\mathcal{B}_z\}$-Brownian motion on $(\Omega, \mathcal{F}, P; \mathcal{F}_z)$. This then implies the independence of $\mathcal{B}_z^3(W_1) \otimes \mathcal{B}_z^3(W_0)$ and $\mathcal{C}_1 \otimes \mathcal{B}_z^6(W_0)$ with respect to Q.

According to a well known theorem in probability theory, if \mathcal{A}_1, \mathcal{A}_2 and \mathcal{A}_3 are sub-σ-fields of \mathcal{A} in a probability space (S, \mathcal{A}, μ) such that $\mathcal{A}_1 \vee \mathcal{A}_2$ and \mathcal{A}_3 are independent, then

$$\mu(A_1 | \mathcal{A}_2) = \mu(A_1 | \mathcal{A}_2 \vee \mathcal{A}_3) \quad \text{for any } A_1 \in \mathcal{A}_1.$$

With $\mathcal{A}_1 = \mathcal{B}_z^3(W_1) \otimes \mathcal{B}_z^3(W_0)$, $\mathcal{A}_2 = \mathcal{C}_1 \otimes \mathcal{B}_z^3(W_0)$ and $\mathcal{A}_3 = \mathcal{C}_1 \otimes \mathcal{B}_z^6(W_0)$ and noting $\mathcal{B}_z^3(W_0) \vee \mathcal{B}_z^6(W_0) = \mathcal{B}(W_0)$, we have for our $A_1 \in \mathcal{B}_z^3(W_1)$

$$Q(A_1 \times W_0 | \mathcal{C}_1 \otimes \mathcal{B}_z^3(W_0))(w_1, w_0) = Q(A_1 \times W_0 | \mathcal{C}_1 \otimes \mathcal{B}(W_0))(w_1, w_0)$$

for a.e. (w_1, w_0) in $(W_1 \times W_0, \mathcal{C}_1 \otimes \mathcal{B}_z^3(W_0), Q)$ i.e., for all $w_1 \in W$ for a.e. w_0 in $(W_0, \mathcal{B}_z^3(W_0), m_W)$.

From this and from (2.0), we have the $\mathcal{B}_z^3(W_0)^*$-measurability of $Q^{(\cdot)}(A_1)$.

Next consider the case where $A_1 \in \mathcal{B}_z^0(W_1)$. For ψ as defined above we have

$$\psi^{-1}(\mathcal{B}_z^0(W_1) \otimes \mathcal{B}_z^0(W_0)) \subset \mathcal{F}_z$$

and, denoting $z = (s, t),

$$\psi^{-1}(\mathcal{C}_1 \otimes (\mathcal{B}_z^4(W_0) \vee \mathcal{B}_z^5(W_0) \vee \mathcal{B}_z^6(W_0)))$$

$$= \sigma\{B(u', v') - B(u, v') - B(u', v) + B(u, v) \text{ where } s < u \text{ or } t < v \text{ and } u < u' \text{ and } v < v'\}.$$

The two σ-fields on the right sides of the last two expressions are independent with respect to P since B is an $\{\mathcal{F}_z\}$-Brownian motion on $(\Omega, \mathcal{F}, P; \mathcal{F}_z)$. Therefore $\mathcal{B}_z^0(W_1) \times \mathcal{B}_z^0(W_0)$ and

$$\mathcal{C}_1 \otimes (\mathcal{B}_z^4(W_0) \vee \mathcal{B}_z^5(W_0) \vee \mathcal{B}_z^6(W_0))$$

are independent with respect to Q. With

$$\mathcal{A}_1 = \mathcal{B}_z^0(W_1) \otimes \mathcal{B}_z^0(W_0), \mathcal{A}_2 = \mathcal{C}_1 \otimes \mathcal{B}_z^0(W_0)$$

and $\mathcal{A}_3 = \mathcal{C}_1 \otimes (\mathcal{B}_z^4(W_0) \vee \mathcal{B}_z^5(W_0) \vee \mathcal{B}_z^6(W_0))$ and noting

$$\mathcal{B}_z^0(W_0) \vee \mathcal{B}_z^4(W_0) \vee \mathcal{B}_z^5(W_0) \vee \mathcal{B}_z^6(W_0) = \mathcal{B}(W_0)$$
we have for $A_1 \in \mathcal{B}_0^0(W_1)$

$$Q(A_1 \times W_0 | \mathcal{C}_1 \otimes \mathcal{B}_2^0(W_0)) = Q(A_1 \times W_0 | \mathcal{C}_1 \otimes \mathcal{B}(W_0)).$$

From this and from (2.0) follows the $\mathcal{B}_2^0(W_0)^*$-measurability of $Q^{(\cdot)}(A_1)$.

The case where $A_1 \in \mathcal{B}_2^J(W_1)$ where $J = 1$ or 2 can be treated likewise.

Let $x \in \partial W$ be fixed. For $i = 1$ and 2, let (X_i, B_i) be a solution of the stochastic differential system (1.1) and (1.2) on an equipped probability space $(\Omega_i, \mathcal{F}_i, P_i; \mathcal{F}_{i,z})$. Let Q_i be the probability distribution of (X_i, B_i) on $(W_i \times W_0, \mathcal{B}(W_i \times W_0))$ and let $Q_i^{w_0}(A_i), (A_i, w_0) \in \mathcal{B}(W_i) \times W_0$, be a regular conditional probability of Q_i under the projection π_i of $W_i \times W_0$ onto W_0.

Let $\Omega = W_1 \times W_2 \times W_0$. On $\mathcal{B}(\Omega) = \mathcal{B}(W_1 \times W_2 \times W_0)$ define a probability measure P by setting

$$P(A_1 \times A_2 \times A_0) = \int_{A_0} Q_i^{w_0}(A_1)Q_2^{w_0}(A_2)m_w(dw_0)$$

for $A_i \in \mathcal{B}(W_i)$, $i = 0, 1, 2$.

Let \mathcal{F} be the completion of $\mathcal{B}(\Omega)$ with respect to P and let \mathcal{R} be the collection of the null sets in (Ω, \mathcal{F}, P). Then let

$$\mathcal{B}_z = \mathcal{B}_z(W_1) \otimes \mathcal{B}_z(W_2) \otimes \mathcal{B}_z(W_0)$$

and

$$\mathcal{F}_z = \bigcup_{\varepsilon > 0} \sigma(\mathcal{B}_{s+\varepsilon, t+\varepsilon} \cup \mathcal{R}) \text{ for } z = (s, t) \in \mathbb{R}_+^2.$$

We then have an equipped probability space $(\Omega, \mathcal{F}, P; \mathcal{F}_z)$.

Lemma 2. On the equipped probability space $(\Omega, \mathcal{F}, P; \mathcal{F}_z)$ defined by (2.1) and (2.2), let a 2-parameter stochastic process B_0 be defined by setting

$$B_0(\omega) = w_0(\omega) \text{ for } \omega = (w_1, w_2, w_0) \in \Omega.$$

Then B_0 is an $\{\mathcal{F}_z\}$-Brownian motion on $(\Omega, \mathcal{F}, P; \mathcal{F}_z)$ with $\partial B_0 = 0$.

Proof. Clearly B_0 is an $\{\mathcal{F}_z\}$-adapted stochastic process with continuous sample functions and $\partial B_0 = 0$. Thus, to show that B_0 is an $\{\mathcal{F}_z\}$-Brownian motion it remains to show that for $z < z'$

$$E \left[\exp \left\{ iuB_0((z, z')) \right\} \right| \mathcal{F}_z^1 \vee \mathcal{F}_z^2] = \exp \left\{ - \frac{u^2}{2} m_L((z, z')) \right\} \text{ for } u \in \mathbb{R},$$

where

$$m_L((z, z')) = \frac{1}{2} \int_0^{z_2} \int_0^{z_1} L(x, y) \, dx \, dy.$$
where
\[B_0((z, z')) = B_0(s', t') - B_0(s, t') - B_0(s, t) + B_0(s, t) \]
for \(z = (s, t) \) and \(z' = (s', t') \) and \(m_L \) is the Lebesgue measure on \(\mathbb{R}^2 \). For this, it is sufficient to show that for every \(A_i \in \mathcal{B}_z^3(W_i), \ i = 0, 1 \) and 2
\[(2.4) \quad \mathbb{E}\left[\exp\left\{ iuB_0((z, z')) \right\} 1_{A_1 \times A_2 \times A_0} \right] = \exp\left\{ -\frac{u^2}{2} m_L((z, z')) \right\} P(A_1 \times A_2 \times A_0).\]

Now by (2.1) and (2.3), the left side of (2.4) is equal to
\[\int_{W_0} \exp\{ iuw_0((z, z')) \} Q_1^{w_0}(A_1)Q_2^{w_0}(A_2)1_{A_0}(w_0)m_w(dw_0). \]
Since \(Q_i^{w_0}(A_i) \) is a \(\mathcal{B}_z^3(W_0) \)-measurable function of \(w_0 \in W_0 \) for our \(A_i \in \mathcal{B}_z^3(W_i) \) for \(i = 1 \) and 2 by Lemma 1, we have the independence of \(w_0((z, z')) \) and \(Q_1^{w_0}(A_2)Q_2^{w_0}(A_2)1_{A_0}(w_0) \) as random variables on \((W_0, \mathcal{B}(W_0)^*, m_w) \) where \(\mathcal{B}(W_0)^* \) is the completion of \(\mathcal{B}(W_0) \) with respect to \(m_w \). The last integral is then equal to
\[\int_{W_0} \exp\{ iuw_0((z, z')) \} m_w(dw_0) \cdot \int_{A_0} Q_1^{w_0}(A_1)Q_2^{w_0}(A_2)m_w(dw_0) \]
\[= \exp\left\{ -\frac{u^2}{2} m_L((z, z')) \right\} P(A_1 \times A_2 \times A_0) \]
which is equal to the right side of (2.4). This completes the proof. \(\square \)

Lemma 3. Let \(\mu \) and \(\nu \) be two probability measures on \((S, \mathcal{B}(S)) \) where \(S \) is a complete separable metric space and \(\mathcal{B}(S) \) is the \(\sigma \)-field of Borel sets in \(S \). Let \(D \) be the diagonal in \(S \times S \), i.e.,
\[D = \{(s_1, s_2) \in S \times S; s_1 = s_2\}. \]
If \((\mu \times \nu)(D) = 1 \), then there exists a unique \(s_0 \in S \) such that \(\mu(\{s_0\}) = \nu(\{s_0\}) = 1 \).

Proof. Let \(\rho \) be the metric on \(S \). Then \(\rho(s_1, s_2) \) for \(s_1, s_2 \in S \) is a continuous function on \(S \times S \) in its product topology and is thus \(\mathcal{B}(S \times S) \) measurable. Then the diagonal \(D \) being the subset of \(S \times S \) on which \(\rho \) is equal to 0 is a member of \(\mathcal{B}(S \times S) \). Thus \((\mu \times \nu)(D) \) is defined.

Suppose \((\mu \times \nu)(D) = 1 \). If \(\mu \neq \nu \) on \(\mathcal{B}(S) \) then there exists \(A \in \mathcal{B}(S) \) such that \(\mu(A) \neq \nu(A) \), say \(\mu(A) > \nu(A) \). Then \(\nu(A^c) > 0 \) so that
\[(\mu \times \nu)(A \times A^c) = \mu(A)\nu(A^c) > 0. \]
But \((A \times A^c) \cap D = \emptyset\) and this implies \((\mu \times \nu)(A \times A^c) = 0\), contradicting the last inequality. Therefore \(\mu = \nu\) on \(\mathcal{B}(S)\).

If there exists \(A \in \mathcal{B}(S)\) such that \(\mu(A) \in (0, 1)\) then \(\mu(A^c) \in (0, 1)\) also so that
\[
(\mu \times \nu)(A \times A^c) = \mu(A)\mu(A^c) \in (0, 1).
\]
But this contradicts the equality \((\mu \times \nu)(A \times A^c) = 0\) which is implied by \((A \times A^c) \cap D = \emptyset\). Therefore no \(A \in \mathcal{B}(S)\) can have \(\mu(A) \in (0, 1)\) and consequently \(\mu(A) = 0\) or \(1\) for every \(A \in \mathcal{B}(S)\).

Since a separable metric space is a Lindelöf space, for every positive integer \(n\) there exist countably many closed spheres in \(S\), each with diameter \(n^{-1}\), whose union is \(S\). The \(\mu\)-measure of each of these spheres is either \(0\) or \(1\). No two spheres with \(\mu\)-measure \(1\) can be disjoint for otherwise we would have \(\mu(S) \geq 2\). Let \(K_n\) be the closed set which is the intersection of all those spheres with \(\mu\)-measure \(1\). Then \(\mu(K_n) = 1\) and the diameter \(\delta(K_n) \leq 1/n\). Consider the sequence of closed sets \(K_n, n = 1, 2, \cdots\). By the same reason as above \(K_n \cap K_m \neq \emptyset\) for \(n \neq m\). If we let \(C_n = \bigcap_{m=1}^{n} K_m\) then we have a decreasing sequence of closed sets \(C_n, n = 1, 2, \cdots\) with \(\mu(C_n) = 1\) and \(\delta(C_n) \leq n^{-1}\) for every \(n\). Since \(S\) is a complete metric space and \(\delta(C_n) \downarrow 0\) as \(n \to \infty\) there exists \(s_0 \in S\) such that \(\bigcap_{n=1}^{\infty} C_n = \{s_0\}\). Then \(\mu(\{s_0\}) = \lim_{n \to \infty} \mu(C_n) = 1\). Since \(\mu(S) = 1\) such \(s_0 \in S\) is unique. \(\square\)

3. **Proof of the Theorem.** With fixed \(x \in \partial W\) assume that the stochastic differential system (1.1) and (1.2) has a solution on some equipped probability space and assume that (1.1) satisfies the pathwise uniqueness condition.

For \(i = 1, 2\) let \((X_i, B_i)\) be a solution of (1.1) and (1.2) on an equipped probability space \((\Omega_i, \mathcal{F}_i, \mathbb{P}; \mathcal{F}_{i,z})\). Let \(Q_i, Q^{w_0}_i(A_i)\) and \((\Omega, \mathcal{F}, \mathbb{P}; \mathcal{F}_{z})\) be as in the construction in §2 following the proof of Lemma 1.

Let \(B_0\) be the \(\{\mathcal{B}_z\}\)-Brownian motion on the equipped probability space \((\Omega, \mathcal{F}, \mathbb{P}; \mathcal{F}_{z})\) defined by (2.3). Introduce two 2-parameter stochastic processes \(Y_i\) for \(i = 1, 2\) on \((\Omega, \mathcal{F}, \mathbb{P}; \mathcal{F}_{z})\) by setting
\[
(3.1) \quad Y_i(z, \omega) = w_i(z) \quad \text{for} \quad z \in \mathbb{R}_+, \quad \omega = (w_1, w_2, w_0) \in \Omega.
\]
Then \((Y_i, B_0)\) and \((X_i, B_i)\) have the same probability distribution \(Q_i\) on \((W_i \times W_0, \mathcal{B}(W_i \times W_0))\) so that \((Y_i, B_0)\) is a solution of (1.1) and (1.2) on \((\Omega, \mathcal{F}, \mathbb{P}; \mathcal{F}_{z})\) for \(i = 1, 2\). Thus by the pathwise uniqueness condition we have \(Y_1 = Y_2\), i.e.,
\[
Y_1(\cdot, \omega) = Y_2(\cdot, \omega) \quad \text{for} \quad \text{a.e.} \ \omega \in (\Omega, \mathcal{F}, \mathbb{P}),
\]
in other words,
\[w_1 = w_2 \quad \text{for } P \text{ a.e. } \omega = (w_1, w_2, w_0) \in \Omega. \]

Since \(P \) is defined by (2.1), this implies that there exists a null set \(N_0 \) in \((W_0, \mathcal{B}(W_0), m_w)\) such that
\[
(3.2) \quad (Q_1^{w_0} \times Q_2^{w_0})\{(w_1, w_2) \in W_1 \times W_2; w_1 = w_2\} = 1 \quad \text{for } w_0 \in N_0^c.
\]

Since \(W_1 \) and \(W_2 \) are copies of \(W \) which is a complete separable metric space (3.2) implies according to Lemma 3 that for every \(w_0 \in N_0^c \) there exists a unique \(w \in W \) such that
\[
(3.3) \quad Q_1^{w_0}(\{w\}) = Q_2^{w_0}(\{w\}) = 1.
\]

Let \(F \) be a function defined by
\[
(3.4) \quad F(w_0) = w \quad \text{for } w_0 \in N_0^c
\]
where \(w \) on the right side is the unique element in \(W \) satisfying (3.3) for our \(w_0 \in N_0^c \). Thus
\[
Q_1^{w_0} = Q_2^{w_0} = \delta_{F(w_0)} \quad \text{on } \mathcal{B}(W) \text{ for } w_0 \in N_0^c.
\]

Let us verify that \(F \) satisfies the condition 1° in our Theorem. Thus, for \(z \in \mathbb{R}^2_+ \), let \(A \in \mathcal{B}_z(W) \). Then
\[
F^{-1}(A) = \{w_0 \in W_0; Q_1^{w_0}(\{w\}) = 1 \text{ for some } w \in A\}
= \{w_0 \in W_0; Q_1^{w_0}(A) = 1\}.
\]

According to Lemma 1, \(A \in \mathcal{B}_z(W) \) implies that \(\mathcal{B}_z(W_0)^* \)-measurability of \(Q_1^{w_0}(A) \) as a function of \(w_0 \in W_0 \). Thus \(F^{-1}(A) \in B_z(W_0)^* \), i.e., \(F \) is \(\mathcal{B}_z(W_0)^*/\mathcal{B}_z(W) \) measurable.

To verify the condition 3° in the Theorem, note that from (3.4), (3.1) and (2.3)
\[
F[B_0(\cdot, \omega)] = Y_i(\cdot, \omega) \quad \text{for } B_0(\cdot, \omega) \in N_0^c \text{ for } i = 1 \text{ and } 2.
\]

Then since \(B_0 \) and \(Y_i \) are the images of \(B_i \) and \(X_i \) in \(\Omega = W_1 \times W_2 \times W_0 \) the last equality implies
\[
F[B_i(\cdot, \omega_i)] = X_i(\cdot, \omega_i) \quad \text{for a.e. } \omega_i \text{ in } (\Omega_i, \mathcal{G}_i, P_i) \text{ for } i = 1 \text{ and } 2
\]
proving 3°. Note also that since \(F \) is common to \(i = 1 \) and \(2 \) and is defined up to a null set in \((W_0, \mathcal{B}(W_0), m_w)\), we have the uniqueness of \(F \) up to a null set in \((W, \mathcal{B}(W), m_w)\).

Finally if \((\Omega_3, \mathcal{G}_3, P_3; \mathcal{G}_{3,z})\) is an equipped probability space on which there exists an \(\{\mathcal{G}_{3,z}\}\)-Brownian motion \(B_3 \) with \(\partial B_3 = 0 \), then
(X₃, B₃) with X₃ defined by X₃ = F[B₃] has the same probability distribution on (W × W, ℬ(W × W)) as (Y₁, B₀) so that (X₃, B₃) is a solution of (1.1) and (1.2) on (Ω₃, ℱ₃, P₃; ℱ₃,₀). Thus condition 2° of the Theorem is satisfied. This completes the proof.

REFERENCES

Received February 5, 1986.

UNIVERSITY OF CALIFORNIA
IRVINE, CA 92717
The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph must be capable of being used separately as a synopsis of the entire paper. In particular it should contain no bibliographic references. Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. Supply name and address of author to whom proofs should be sent. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California 90024.

There are page-charges associated with articles appearing in the *Pacific Journal of Mathematics*. These charges are expected to be paid by the author's University, Government Agency or Company. If the author or authors do not have access to such Institutional support these charges are waived. Single authors will receive 50 free reprints; joint authors will receive a total of 100 free reprints. Additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is issued monthly as of January 1966. Regular subscription rate: $190.00 a year (5 Vols., 10 issues). Special rate: $95.00 a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Old back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

The Pacific Journal of Mathematics at P.O. Box 969, Carmel Valley, CA 93924 (ISSN 0030-8730) publishes 5 volumes per year. Application to mail at Second-class postage rates is pending at Carmel Valley, California, and additional mailing offices. Postmaster: send address changes to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Copyright © 1987 by Pacific Journal of Mathematics
Pierre Barrucand, John Harold Loxton and Hugh C. Williams, Some explicit upper bounds on the class number and regulator of a cubic field with negative discriminant ... 209

Thomas Ashland Chapman, Piecewise linear fibrations 223

Yves Félix and Jean-Claude Thomas, Extended Adams-Hilton’s construction ... 251

Robert Fitzgerald, Derivation algebras of finitely generated Witt rings 265

K. Gopalsamy, Oscillatory properties of systems of first order linear delay differential inequalities ... 299

John P. Holmes, One parameter subsemigroups in locally complete differentiable semigroups ... 307

Douglas Murray Pickrell, Decomposition of regular representations for $U(H)_\infty$... 319

Victoria Powers, Characterizing reduced Witt rings of higher level 333

Parameswaran Sankaran and Peter Zvengrowski, Stable parallelizability of partially oriented flag manifolds .. 349

Johan Tysk, Eigenvalue estimates with applications to minimal surfaces 361

Akihito Uchiyama, On McConnell’s inequality for functionals of subharmonic functions ... 367

Minato Yasuo, Bott maps and the complex projective plane: a construction of R. Wood’s equivalences ... 379

James Juei-Chin Yeh, Uniqueness of strong solutions to stochastic differential equations in the plane with deterministic boundary process ... 391