PSEUDOGROUPS OF C^1 PIECEWISE PROJECTIVE HOMEOMORPHISMS

PETER ABRAHAM GREENBERG
PSEUDOGROUPS OF C^1 PIECEWISE PROJECTIVE HOMEOMORPHISMS

PETER GREENBERG

The group $\text{PSL}_2\mathbb{R}$ acts transitively on the circle $S^1 = \mathbb{R} \cup \infty$, by linear fractional transformations. A homeomorphism $g: U \to V$ between open subsets of \mathbb{R} is called C^1, piecewise projective if g is C^1, and if there is some locally finite subset S of U such that, on each component of $U - S$, g agrees with some element of $\text{PSL}_2\mathbb{R}$. Let $\Gamma_\mathbb{R}$ be the pseudogroup of such homeomorphisms. We show that the Haefliger classifying space $B\Gamma_\mathbb{R}$ is simply connected, and that there is a homology isomorphism $i: \#\text{PSL}_2\mathbb{R} \to B\Gamma_\mathbb{R}$. ($\text{PSL}_2\mathbb{R}$ is the universal cover of $\text{PSL}_2\mathbb{R}$, considered as a discrete group.) As a consequence, the classifying space of the discrete group of compactly supported, C^1 piecewise projective homeomorphisms of \mathbb{R} is a “homology loop space” of $B\text{PSL}_2\mathbb{R}$.

1.1. Introduction. More generally, let $F \subset \mathbb{R}$ be a subfield of \mathbb{R}. PSL_2F acts on the circle $\mathbb{R} \cup \infty$. The orbit of $1 \in F$ is $F \cup \infty$.

1.2. Definition. Γ_F is the pseudogroup of C^1 homeomorphisms $g: U \to V$ between open subsets of \mathbb{R}, so that there is some locally finite subset S of $U \cap (F \cup \infty)$ such that, on each connected component of $U - S$, g agrees with some element of PSL_2F.

The set of restrictions of elements of PSL_2F to open subsets of \mathbb{R} forms a subpseudogroup of Γ_F whose classifying space, the total space of the circle bundle over $B\text{PSL}_2F$, is homotopy equivalent to $B\text{PSL}_2F$, where PSL_2F is defined as the pullback

$\text{PSL}_2F \to \text{PSL}_2\mathbb{R}
\downarrow \quad \downarrow
\text{PSL}_2F \to \text{PSL}_2\mathbb{R}$

Therefore, there is an inclusion map $i: B\text{PSL}_2F \to B\Gamma_F$.

1.3. Theorem. $\pi_1B\Gamma_F = 0$, and i is a homology equivalence.

1.4. Definition. The group of compactly supported Γ_F homeomorphisms, denoted K_F, is the group of elements of Γ_F which are compactly supported homeomorphisms of the line \mathbb{R}.
Following Segal's proof [Se2] of an extension of Mather's theorem [Ma] we find:

1.5. Proposition. There is a homology equivalence $BK_F \to \Omega B\Gamma_F$.

The proof of 1.5 involves the construction of a homology fibration [McS] $BK_F \to M \to B\Gamma_F$ where M is contractible. Pulling this fibration back over $B\text{PSL}_2 F$ by the inclusion i of 1.3 we obtain:

1.6. Corollary. There is a homology fibration $BK_F \to E \to B\text{PSL}_2 F$ where E is acyclic, and the fundamental group of $B\text{PSL}_2 F$ acts trivially on the homology of the fiber.

1.7. Organization. In §2 Theorem 1.3 is proved, as an application of Corollary 1.10 of [G2]. In §3, 1.5 is proved, using a generalization of Segal's proof [Se2] of a generalization of Mather's theorem [Ma]. The generalization is outlined in §4.

2. Proof of 1.3. One may think of Γ_F as constructed from the action of $\text{PSL}_2 F$ on S^1 by adding C^1 singularities at isolated points of F. As a consequence, 1.10 of [G2] says that $B\Gamma_F$ is weakly homotopy equivalent to the direct limit of the diagram

\[
\begin{array}{c}
BA \xrightarrow{j} BG^P \xrightarrow{l} BA \\
\downarrow \quad \quad \downarrow r \\
B\text{PSL}_2 F \\
\end{array}
\]

where A is the discrete group of germs of projective maps fixing 0, and G^P is the discrete group of germs of Γ_F maps fixing 0. The map j is inclusion, and l and r arise from the fact that an element of G^P, restricted to the left or right side of 0, can be identified with an element of A. Theorem 1.3 will follow from an analysis of diagram (2.1).

Let F^+ be the positive, nonzero squares of F, considered as a group under multiplication. It is well known that A is a subgroup of the one-dimensional affine group of F, an extension $F \to A \xrightarrow{d} F^+$ where F^+ acts on F by multiplication. Since $d: A \to F^+$ is the derivative map, G^P is the pullback

\[
\begin{array}{c}
G^P \xrightarrow{l} A \\
r \downarrow \quad \quad \downarrow d \\
A \xrightarrow{d} F^+ \\
\end{array}
\]
and therefore G^p is an extension $F^2 \to G^p \to F^+$, with F^+ acting on F^2 by multiplication: $f(a, b) = (fa, fb)$.

Let R be the pushout of

$$
\begin{array}{ccc}
BG^p & \to & BA \\
\downarrow r & & \downarrow \\
BA & \to & BF^+
\end{array}
$$

2.2. **Lemma.** The inclusion $j: BA \to BG^p$ induces a homology equivalence $BA \to R$.

Assuming 2.2 for now, we prove 1.3. By 2.2 and 2.1 it is clear that $B\text{PSL}_2 F \to B\Gamma_F$ is a homology equivalence. It remains to show that $\pi_1 B\Gamma_F = 0$.

We first compute $\pi_1 R$. By Van Kampen's theorem, $\pi_1 R = A \times_{G^p} A$. Elements in either A factor with derivative 1 are equal to 1 in $\pi_1 R$. On the other hand, $\pi_1 R \to F^+$. It follows that $\pi_1 R$ is isomorphic to F^+.

Now by (2.1), $\pi_1 B\Gamma_F \simeq \text{PSL}_2 F \times_A F^+$, which is isomorphic to $\text{PSL}_2 F$ modulo the normal subgroup $N(F)$ generated by the subgroup F of $\text{PSL}_2 F$. We now show that $N(F)$ is all of $\text{PSL}_2 F$.

Consider $\text{PSL}_2 F$ acting on $S^1 = \mathbb{R} / \mathbb{Z}$, and $\text{PSL}_2 F$ as acting on \mathbb{R}, so that A is the subgroup of $\text{PSL}_2 F$ fixing each integer. Since [La] $\text{PSL}_2 F$ is simple, to show that $N(F) = \text{PSL}_2 F$, it suffices to prove that $N(F)$ contains the translation $t: x \mapsto x + 1$.

In fact, $N(\mathbb{Z})$ contains t. For $\text{PSL}_2 F$ contains $\text{PSL}_2 \mathbb{Z}$ as a subgroup, which contains t. Further, $\text{PSL}_2 \mathbb{Z}$ is generated by a, b with $a^2 = b^3$, and \mathbb{Z} is generated by $a^{-1} b$. Now $a(a^{-1} b) a^{-1} = ba^{-1}$, and $(ba^{-1})(a^{-1} b) = b$, so $N(\mathbb{Z}) \supset \text{PSL}_2 \mathbb{Z}$, and contains t.

Proof of Lemma 2.2. In fact, we show that the derivative maps $A \to F^+$, $G^p \to F^+$ induce isomorphisms on homology (and, therefore, because $\pi_1 R = F^+$, that

$$
\begin{array}{ccc}
BG^p & \to & BA \\
\downarrow r & & \downarrow \\
BA & \to & BF^+
\end{array}
$$

is both a pullback and a pushout). Considering the Serre spectral sequences of the extensions $F \to A \to F^+$ and $F^2 \to G^p \to F^+$, it suffices to prove that the groups $H_p(F^+; H_q F^2)$, $H_p(F^+; H_q F)$ are null for $q > 0$. The proof is essentially that of the “center kills” lemma [Sa].
The element \(4 \in F^+\) acts on \(H_q F\) and \(H_q F^2\) by multiplication by \(4^q\). Let this isomorphism (\(H_q F\) and \(H_q F^2\) are divisible and torsion free) be denoted \(e_q\). Then \(e_q - 1\) is also an isomorphism of \(H_q F\) and \(H_q F^2\), namely multiplication by \(4^q - 1\). Both \(e_q\) and \(e_q - 1\) induce the identity maps of \(H_p(F^+; H_q F), H_p(F^+; H_q F)\). Thus the latter groups must be zero.

3. Proof of 1.5. In §4 we outline a proof of the following fact:

4.8. Proposition. Let \(\Gamma\) be a pseudogroup of orientation preserving homeomorphisms of \(\mathbb{R}\). Let \(K\) be the discrete group of elements of \(\Gamma\) which are compactly supported homeomorphisms of \(\mathbb{R}\). Assume that the orbit of any element of \(\mathbb{R}\) under \(\Gamma\) is dense in \(\mathbb{R}\). Further, assume:

\(3.1\) Suppose \(g\) is the germ of an element of \(\Gamma\) with domain \(x \in \mathbb{R}\), and let \(t \in \mathbb{R}\) such that \(t > x\), \(gx\) (or \(t < x, gx\)). Then there is an element \(\bar{g} \in \Gamma\) whose domain is connected and includes \(t\) and \(x\), and such that \(\bar{g} \equiv \text{id} near t, \ \bar{g} \equiv g near x\).

Then there is a homology equivalence \(BK \to \Omega B\Gamma\).

To prove 1.5, therefore, we must verify condition 3.1 for the pseudogroups \(\Gamma_F\). We rephrase 3.1 as the following lemma, using the fact that \(F\) is dense in \(\mathbb{R}\).

3.2. Lemma. Let \(g \in \text{PSL}_2 F, x \in F\), and assume that \(g(x) \neq \infty\).

\(a\) Let \(z = \max(x, gx)\). Let \(\epsilon > 0\). Then there is some \(\epsilon'\), \(0 < \epsilon' < \epsilon\), \(\delta > 0\), and \(s \in \Gamma_F\) with domain \((x - 2\epsilon', \infty)\) such that \(s(t) = gt, t \leq x + \delta\), and \(s(t) = t, t \geq z + \epsilon'\).

\(b\) Let \(z = \min(x, gx)\). Let \(\epsilon > 0\). Then there is some \(\epsilon'\), \(0 < \epsilon' < \epsilon\), \(\delta > 0\), and an \(s \in \Gamma_F\) with domain \((-\infty, x + 2\epsilon')\) such that \(s(t) = gt, t \geq x - \delta, s(t) = t, t \leq z - \epsilon'\).

For the proof we first recall some facts about \(\text{PSL}_2 F\). A circle in the upper half plane which is tangent to the \(x\)-axis is called a horocycle. The action of \(\text{PSL}_2 F\) on \(\mathbb{R} \cup \infty\) extends to an action on the upper half plane which takes horocycles to horocycles. Let \(f \in F\). The subgroup \(T_f \subset \text{PSL}_2 F\) of elements which fix \(f\) and have unit derivative at \(f\) takes each horocycle at \(f\) to itself. \(T_f\) is isomorphic to the translation group \(F\) and acts transitively on \((F \cup \infty)/f\).

We prove 3.2(a); the proof of 3.2(b) follows in parallel.
Assume that \(x \geq gx \) so that \(z = x \). If this is not true, simply follow the proof for the germ of \(g^{-1} \) at \(gx \). Pick \(\epsilon' \in F, 0 < \epsilon' < \epsilon \), so that \(g \) is noninfinite on the interval \((x - 2\epsilon', x + 2\epsilon')\). Let \(y = x + \epsilon' \). There are three cases.

(i) \(y = gy \). In this case pick \(\epsilon' \) slightly smaller so as to drop to case (ii) or (iii).

(ii) \(y > gy \) (Fig. 3.3). Let \(H \) be a horocycle tangent to \(y \), and let \(gH \) be its image, tangent to \(gy \). Pick \(a_1 \in F, gx < a_1 < gy \), close enough to \(gy \), and pick \(h \in T_{a_1} \) so that \(hgy \) is large enough, so that the base \(a_2(a_1, h) \) of the horocycle \(C \) tangent to \(hgy \), \(H \) and \(R \) (and to the left of \(H \)) is between \(gy \) and \(y \). Pick \(h' \) belonging to the subgroup of \(\text{PSL}_2F \) fixing the horocycles based at \(a_2 \), and so that \(h'y = hgy \). Then \(h'H = hgy \), so that \(h'^{-1}h \in T_y \). Consequently, \(a_2 \in F \) and \(h' \in \text{PSL}_2F \).

Now define

\[
s(t) = \begin{cases}
 g(t), & t \leq g^{-1}a_1, \\
 hgy(t), & g^{-1}a_1 \leq t \leq (hg)^{-1}a_2, \\
 h'^{-1}hg(t), & (hg)^{-1}a_2 \leq t \leq y, \\
 t, & t \geq y.
\end{cases}
\]

By construction, \(s \in \Gamma_F \).

(iii) \(gy > y \) (Fig. 3.4). Let \(a_0 = g(x + \delta), \delta = (y - gx)/10 \), and let \(k \in T_{a_0} \) so that \(kgy < y \). Let \(H \) be a horocycle tangent to \(y \), and let \(kgH \) be its image at \(kgy \). Pick \(a_1 \in F, a_1 < kgy \) close enough to \(kgy \), and pick
h ∈ T_a, so that hkgy is large enough, so that the base a_2(a_1, h) < y of the horocycle C tangent to H, hkgH and R (and left of H) is between kg and y. Let h' ∈ T_a so that h' = hkgy. Note then that h'H = hkgH, so that h'^{-1}hkg ∈ T_y. One can show that a_2 ∈ F, h' ∈ PSL_2F. Then define

\[
s(t) = \begin{cases}
 g(t), & t \leq x + \delta, \\
 kg(t), & x + \delta \leq t \leq (kg)^{-1}a_1, \\
 hkg(t), & (kg)^{-1}a_1 \leq t \leq (hkg)^{-1}a_2, \\
 h'^{-1}hkg(t), & (hkg)^{-1}a_2 \leq t \leq y, \\
 t, & t \geq y.
\end{cases}
\]

By construction, s ∈ Γ_F.

4. Groups of compactly supported homeomorphisms. In this section we specify a condition on a pseudogroup which allows one to mimic Segal's proof [Se2] of a generalization of Mather's theorem [Ma]. We work in the context of groupoids of homeomorphisms. References for topological categories are [Se1], [Se3].

4.1. Definition. A groupoid Γ etale over R is a topological groupoid Γ whose space of objects is R, in which the domain and range maps D, R: Γ → R are locally homeomorphisms (abusing notation, we let Γ denote the space of morphisms of the topological groupoid Γ).

Given a pseudogroup Γ on R, one can construct an associated groupoid Γ etale over R, whose space of morphisms is the sheaf of germs of elements of the pseudogroup. Taking the geometric realization (in the "thick" sense of [Se1], App.) of the nerve of the groupoid, we obtain a classifying space BΓ, which is weakly homotopy equivalent to the classifying space of the pseudogroup.

We make the following assumption throughout §4 of the paper. Let Γ be a groupoid of homeomorphisms of R.

4.2. Assumption. (a) For any x ∈ R the orbit of x under Γ is dense in R.

(b) If g ∈ Γ, and t < Dg, Rg (or t > Dg, Rg) then there is a section s: U → Γ of the domain map, over an open interval U containing Dg and t, such that s(Dg) = g, and s(t) = id_Γ.

The following proposition gives what is needed to mimic Segal's proofs.
4.3. Proposition. (a) Let \(a < b < c < d \), so that \(a \) and \(b \), and likewise \(c \) and \(d \), are in the same \(\Gamma \)-orbit. Then there is a section \(s : [a, d] \to \Gamma \) of \(D \) so that \(Rs(a) = b \), \(Rs(d) = c \).

(b) If \(a < b < c < d \), \(\varepsilon > 0 \) there is a section \(s : [a, d] \to \Gamma \) of \(D \) so that \(s(a) = \text{id}_a \), \(s(d) = \text{id}_d \), and \(|Rs(b) - a| < \varepsilon \), \(|Rs(c) - d| < \varepsilon \).

Proof. (a) Let \(s_1 \in \Gamma \), with \(Ds_1 = a \) and \(Rs_1 = b \), and \(s_2 \in \Gamma \) so that \(Ds_2 = d \), \(Rs_2 = c \). Then 4.2 guarantees a section \(s \) of \(D \), over some interval containing \([a, d]\), so that \(s(a) = s_1 \), \(s(d) = s_2 \), and \(s|_{(b+\varepsilon,c-\varepsilon)} = \text{id} \).

(b) Let \(s_1 \in \Gamma \) so that \(Ds_1 = b \), \(Rs_1 \in (a, a + \varepsilon) \), and \(Rs_1 < b \), and let \(s_2 \in \Gamma \) with \(Ds_2 = c \), \(Rs_2 \in (d - \varepsilon, d) \) and \(Rs_2 > c \). Then 4.2 guarantees a section \(s \) of \(D \), over some interval containing \([a, d]\), so that \(s(a) = \text{id}_a \), \(s(d) = \text{id}_d \), \(s(b) = s_1 \), \(s(c) = s_2 \), and \(s|_{(b+\varepsilon,c-\varepsilon)} = \text{id} \).

Let \(X \subset Y \) be open intervals such that \(\partial X \cap \partial Y = \emptyset \), and such that \(\partial X \cup \partial Y \) is contained in a single \(\Gamma \)-orbit.

4.4. Definition.

\[
M(Y) = \{ m : Y \to \Gamma : m \text{ continuous}, \ Dm = \text{id}, \ RmY \subseteq Y \} \\
M(Y, X) = \{ m \in M(Y) : RmX \subseteq X \} \\
M(\bar{Y}) = \{ m : \bar{Y} \to \Gamma : \ Dm = \text{id}, \ Rm\bar{Y} \subseteq \bar{Y}, \ m \text{ continuous} \} \\
M(\bar{Y}, X) = \{ m \in M(\bar{Y}) : RmX \subseteq X \}
\]

These four sets are monoids of embeddings of \(Y \); give them the discrete topology. Notice that \(M(\bar{Y}) \) is the monoid of embeddings of \(\bar{Y} \), with a germ of an extension to a neighborhood of \(\bar{Y} \). As a consequence of 4.3(a) and [G1], 2.8 there is a weak homotopy equivalence \(BM(Y) \to B\Gamma \).

There are extension and restriction homomorphisms

\[
M(Y) \xleftarrow{i} M(Y, X) \xrightarrow{r} M(X) \\
M(\bar{Y}) \xleftarrow{i} M(\bar{Y}, X) \xrightarrow{r} M(\bar{X})
\]

4.5. Proposition. The homomorphisms \(i, \tilde{i}, r, \tilde{r} \) induce homotopy equivalences of classifying spaces.

Proof. Follow [Se2], 2.7.

4.6. Proposition. The restrictions \(M(\bar{Y}, X) \to M(Y, X) \) and \(M(\bar{X}) \to M(X) \) induce homotopy equivalences of classifying spaces.
Proof. Following Segal, consider the sequence of homomorphisms $M(\overline{Y}, X) \to M(Y, X) \to M(\overline{X}) \to M(X)$. Note that the composition of any two arrows induces a homotopy equivalence of classifying spaces, by 4.5. The result follows.

4.7. Definition. $K(X) = \{ g \in M(\overline{X}) : Rg\overline{X} = \overline{X}, \text{ and } g|_{\partial\overline{X}} = \text{id} \}$. $K(X)$ is the group of Γ-homeomorphisms with compact support in X.

4.8. Proposition. There is a homology equivalence $BK(X) \to \Omega BT$.

Proof. Follow 2.11 in [Se2], where, in fact, a homology fibration $K(X) \to M \to B\Gamma$ is constructed, with M contractible.

4.9. Corollary. There is a homology equivalence $BK(R) \to \Omega B\Gamma$.

Proof. We construct a continuous section of the domain map $s : R \to \Gamma$ so that Rs is a Γ-homeomorphism from R onto X, conjugating $K(R)$ to $K(X)$. Let $x_n, y_n, n \in \mathbb{Z}$, be members of a single Γ-orbit such that (i) $x_n < x_{n+1}, y_n < y_{n+1}, n \in \mathbb{Z}$, and (ii) $\bigcup_n (x_{-n}, x_n) = X, \bigcup_n (x_{-n}, y_n) = R$. Further, we assume that $x_0 = y_0$, that $x_n > y_n$ for $n > 0$, and that $x_n < y_n$ for $n < 0$.

Because the x_n and y_n belong to a single orbit, there are $s_n \in \Gamma$ with $Ds_n = x_n, Rs_n = y_n$; we take $s_0 = \text{id}$. Define s so that $s(x_n) = s_n$, as follows. Suppose $n \geq 0$. By 4.2 there is a continuous section $f : [x_n, x_{n+1}] \to \Gamma$ of the domain map such that $f(x_n) = s_n, f(x_{n+1}) = \text{id}$. Also, there is a continuous section of the domain map $g : [y_n, x_{n+1}] \to \Gamma$ such that $g(y_n) = \text{id}, g(x_{n+1}) = s_{n+1}$. Define s to be $g \circ f$ on $[x_n, x_{n+1}]$; note that $s(x_n) = s_n$ and $s(x_{n+1}) = s_{n+1}$. Similarly, define s on the intervals $[x_n, x_{n+1}]$ for $n < 0$.

References

Received June 3, 1985 and in revised form September 18, 1986.

CENTRO DE INVESTIGACION Y ESTUDIOS
AVANZADOS DEL IPN
MEXICO 14 DF, CP-07000
Aldridge Knight Bousfield, Uniqueness of infinite deloopings for K-theoretic spaces .. 1
Mark Gregory Davidson, The harmonic representation of $U(p, q)$ and its connection with the generalized unit disk 33
Erica Flapan, Rigid and nonrigid achirality .. 57
Peter Abraham Greenberg, Pseudogroups of C^1 piecewise projective homeomorphisms .. 67
Peter Martin Knopf, Maximal functions on the unit n-sphere 77
Norman Jay Levitt and Andrew Ranicki, Intrinsic transversality structures ... 85
Susan Szczepanski, Invariant submanifolds of free cyclic actions on spheres ... 145
Kazimierz Szymiczek, Generalized rigid elements in fields 171
Domingo Toledo, Nonexistence of certain closed complex geodesics in the moduli space of curves .. 187
Graham H. Williams, The best modulus of continuity for solutions of the minimal surface equation ... 193