Vol. 130, No. 1, 1987

Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
A generalization of a theorem of Atkinson to noninvariant measures

Daniel Ullman

Vol. 130 (1987), No. 1, 187–193
Abstract

We prove that, if T is an ergodic, conservative, non-singular automorphism of a Lebesgue space (X,μ), then the following are equivalent for f in L1(μ):

  1. If μ(B) > 0 and 𝜖 > 0, then there is an integer n0 such that
           −n        n−∑ 1   j   dμ ∘Tj
μ(B ∩ T  B ∩ {x : |  f(T x)⋅--dμ---(x)| < 𝜖}) > 0.
j=0

  2. liminf n→∞||
| j=0n1f(Tjx) dμ∘Tj
dμ(x)||
| = 0 for a.e. x.
  3. f dμ = 0.

Mathematical Subject Classification 2000
Primary: 28D05
Milestones
Received: 3 May 1986
Revised: 15 July 1986
Published: 1 November 1987
Authors
Daniel Ullman
George Washington Univ