Pacific Journal of Mathematics

ON THE CONGRUENCE LATTICE OF A FRAME Bernhard Banaschewski, J. L. Frith and C. R. A. Gilmour

ON THE CONGRUENCE LATTICE OF A FRAME

B. Banaschewski, J. L. Frith and C. R. A. Gilmour

Abstract

Recall that the Skula modification $S k X$ of a topological space X is the space with the same underlying set as X whose topology is generated by the topology ΩX of X and the closed subsets of X. R. E. Hoffmann characterizes the spaces X for which SkX is compact Hausdorff as the noetherian sober spaces. The object of this note is to give a simple proof of the analogue of this characterization for frames and to show how our result for frames applies to the original one for spaces.

For basic information on frames and further references, see the second chapter of Johnstone [7]. Here we just recall the following:

A frame (also: locale) is a complete lattice in which $x \wedge \vee x_{i}=\vee x \wedge$ x_{i} for binary meet (\wedge) and arbitrary join (\vee), and the terms subframe and frame homomorphism refer to finite meets and arbitrary joins. The category of frame and frame homomorphisms is called Frm. For any frame $L, 0$ will be its zero ($=$ bottom) and e its unit ($=$ top). An element c of a frame L will be called compact (Johnstone [7]: finite) whenever $c \leq \mathrm{V} x_{i}$ implies that already $c \leq x_{i_{1}} \vee \cdots \vee x_{i_{n}}$ for suitable i_{1}, \ldots, i_{n}; if the unit $e \in L$ is compact, one also calles L compact. A coherent frame is one in which (i) every element is a join of compact elements, and (ii) e is compact and finite meets of compact elements are compact.

For any frame L, its congruence lattice $C L$ consists of the congruences on L, that is, the equivalence relations on L which are subframes of $L \times L$, partially ordered by inclusion. The meet in $C L$ is then intersection, so that $C L$ is evidently a complete lattice. The more subtle and interesting fact that $C L$ is again a frame (this was observed by Funayama and Nakayama for the congruence lattice of a distributive lattice see Birkhoff VI, 4 [2]). Dowker and Papert [4] used the isomorphism of $C L$ with the lattice of quotient frames of L to investigate the latter. That $C L$ is a frame can also be seen from the fact that it is isomorphic to the frame $N L$ of nuclei on L, the latter being the \wedge-preserving closure operators on L (Johnstone, [7]), by the map $C L \rightarrow N L$ taking each congruence θ to its associated nucleus defined by $k(a)=\mathrm{V}\{x \mid(x, a) \in \theta\}$.

Particular congruences on L associated with each $a \in L$ are $\nabla_{a}=$ $\{(x, y) \mid x \vee a=y \vee a\}$ and $\Delta_{a}=\{(x, y) \mid x \wedge a=y \wedge a\}$, also characterized as the congruences generated by $(0, a)$ and (a, e), respectively.

Similarly, for any $a \leq b$, the congruence generated by (a, b) is $\Delta_{a} \cap \nabla_{b}$, which shows that each $\theta \in C L$ is the join of such $\Delta_{a} \cap \nabla_{b}$. Further, the map $a \leadsto \nabla_{a}(a \in L)$ is a frame embedding $\nu_{L}: L \rightarrow C L$, natural in L, and ∇_{a} and Δ_{a} are complementary to each other, that is $\nabla_{a} \cap \Delta_{a}=\Delta=$ $\{(x, x) \mid x \in L\}$, the zero ($=$ bottom) of $C L$ and $\nabla_{a} \vee \Delta_{a}=\nabla=L \times L$, the unit (= top) of $C L$. The latter implies that $\nu_{L}: L \rightarrow C L$ is an epimorphism of frames.

The equivalence of the first two properties in the following proposition is the analogue for frames of Hoffmann's result for spaces. This characterization is the solution to a problem of Macnab [9]. We thank the referee for drawing our attention to this paper. In the following a frame is called noetherian whenever each of its elements is compact. Using the Axiom of Choice, this is easily seen to be equivalent to the Ascending Chain Condition which says that every sequence $a_{1} \leq a_{2} \leq \cdots \leq a_{n} \leq$ $a_{n+1} \leq \cdots$ in L is eventually constant.

Proposition 1. The following are equivalent:

(1) CL is compact,
(2) L is Noetherian,
(3) $C L=$ Cong L (the congruence lattice of L as a lattice),
(4) the complemented elements of CL are precisely the compact ones,
(5) CL is coherent.

Proof. If $C L$ is compact then every complemented element of $C L$, and hence in particular each $\nabla_{a}, a \in L$, is compact. Since $a \leadsto \nabla_{a}$ is a frame embedding, this makes $a \in L$ compact. This establishes the implications $(1) \Rightarrow(4) \Rightarrow(2)$.

If L is noetherian then so is $L \times L$. This implies that arbitrary joins in $L \times L$ are actually finite joins, and hence any sublattice of $L \times L$ (including top and bottom) is already a subframe. In particular, any lattice congruence on L is actually a frame congruence, and $C L$ is just the congruence lattice of L as a lattice. It follows that $C L$ is closed under up-directed unions, and since ∇ is generated by $(0, e)$ this makes it compact. It follows that $(2) \Rightarrow(3) \Rightarrow(1)$. That (5) is an equivalent: any $C L$ is generated by its complemented elements. If these are compact then it follows that $C L$ is coherent.

Remark. Evidently, a frame L is noetherian iff the natural homomorphism $\sigma_{L}: \mathscr{I} L \rightarrow L$ from its ideal lattice by taking joins is an isomor-
phism, that is, iff every ideal of L is principal. Hence the above proposition may be paraphrased thus: $C L$ is compact iff $\sigma_{L}: \mathscr{I} L \rightarrow L$ is an isomorphism. This is the frame counterpart of the early result by Brümmer [3] that $S k X$ is compact Hausdorff iff the natural embedding of X into the prime spectrum of ΩX (given by all lattice homomorphisms $\Omega X \rightarrow 2$) is a homeomorphism. For a further development of related ideas see also Künzi-Brümmer [8].

In order to relate Proposition 1 to topological spaces, we have to consider the spectrum functor Σ from the category Frm to the category TOP of topological spaces and continuous maps. For any frame $L, \Sigma L$ is the space whose elements, called the points of L, are the frame homomorphisms $\xi: L \rightarrow 2$, and whose topology $\Omega \Sigma L$ consists of the sets $\Sigma_{a}=$ $\{\xi \mid \xi(a)=1\}$. Recall that L is called spatial whenever its points separate its elements, which is equivalent to the requirement that the frame homomorphism $L \rightarrow \Omega \Sigma L$ given by $a \leadsto \Sigma_{a}$ be an isomorphism. Proving the spatiality of certain types of frames usually requires some choice principle such as the Ultrafilter Theorem for Boolean algebras which we shall assume whenever needed. A particular class of frames to which this applies are the coherent frames (Banaschewski [1]).

The following description of the spectrum of the congruence lattice of a frame appears in [10] and is used by Simmons in [11] to study the properties of $N \Omega(X)$.

Proposition 2. There exists a homeomorphism $\gamma_{L}: \Sigma C L \rightarrow S k \Sigma L$, natural in L.

Remark 1. The homeomorphism γ_{L} is determined by the continuous one-one map $\Sigma v_{L}: \Sigma C L \rightarrow \Sigma L$ (remember that ΣL and $S k \Sigma L$ have the same underlying set). Moreover γ_{L} determines a frame isomorphism $\Omega S k \Sigma L \rightarrow \Omega \Sigma C L$, and since the latter is the spatial reflection of $C L$ this says: the Skula topology of the spectrum ΣL is the spatial reflection of the congruence lattice $C L$.

Remark 2. Frith [5] shows that $\nu_{L}: L \rightarrow C L$ is the universal frame homomorphism from L with the property that each element in the image is complemented. Using this, one has an alternative proof that every $L \rightarrow 2$ factors through ν_{L}.

We are now in the position to give the simple proof of the sufficiency of the noetherian condition in Hoffmann's result for sober spaces quoted earlier [6]. For this, recall that a space X is called noetherian whenever its frame ΩX of open sets is noetherian, and sober whenever the usual continuous map $\varepsilon_{X}: X \rightarrow \Sigma \Omega X$, taking $x \in X$ to the point \tilde{x} of ΩX given by $\tilde{x}(U)=\operatorname{card}(U \cap\{x\})$, is one-one and onto. Note that the latter implies X is T_{0}.

Proposition 3. For any topological space X, SkX is compact Hausdorff iff X is sober and noetherian.

Proof. (\Rightarrow) This part of the argument is entirely topological, and the reader is referred to the straightforward proof given in [6].
(\Leftarrow) Since X is sober and hence $T_{0}, \operatorname{SkX}$ is Hausdorff by its definition and we need only check compactness. For noetherian $X, C \Omega X$ is coherent (Proposition 1) and consequently spatial (Johnstone [7]) and hence $\Sigma C \Omega X$ is compact. On the other hand, if X is also sober one has $S k X \cong S k \Sigma \Omega X$, and then the homeomorphism $S k \Sigma \Omega X \cong \Sigma C \Omega X$ of Proposition 2 for $L=\Omega X$ shows $S k X$ is compact.

References

[1] B. Banaschewski, Coherent Frames, "Continuous Lattices" Springer LNM 871, 12-19. Springer-Verlag Berlin Heidelberg New York, 1981.
[2] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloquium Publications vol. 25, Third edition, American Mathematical Society 1967.
[3] G. C. L. Brümmer, On some bitopologically induced monads in TOP, Bremen Mathem. Arbeitspapiere, 18 (1979), 13-30a.
[4] C. H. Dowker and D. Papert, Quotient frames and subspaces, Proc. London Math. Soc., (3) 16 (1966), 275-296.
[5] J. L Frith, Structured frames, Doctoral Diss. University of Cape Town 1986.
[6] R. E. Hoffmann, On the sobrification remainder ${ }^{s} X \backslash X$, Pacific J. Math., 83 (1979), 145-156.
[7] P. T. Johnstone, Stone Spaces, Cambridge University Press 1982.
[8] H.-P. A. Künzi and G. C. L. Brümmer, Sobrification and bicompletion of totally bounded quasi-uniform spaces, to appear.
[9] D. S. Macnab, Modal operators on Heyting algebras, Algebra Universalis, 12 (1981), 5-29.
[10] H. Simmons, A framework for topology, Logic Colloquium 77, Studies in Logic 96 North-Holland 1978, 239-251.
[11] \qquad , Spaces with Boolean assemblies, Colloq. Math., 43 (1980), 23-39.

Received September 25, 1986 and in revised form January 13, 1987. The first author acknowledges financial assistance from the Natural Sciences and Engineering Council of Canada. The second and third authors acknowledge financial support from the South African Council for Scientific and Industrial Research via the Topology Research Group at the University of Cape Town.

McMaster University
Hamilton, Ontario
Canada L8S 4K1
AND
University of Cape Town
Rondebosch
7700 South Africa

PACIFIC JOURNAL OF MATHEMATICS
 EDITORS

V. S. Varadarajan
(Managing Editor)
University of California
Los Angeles, CA 90024
Herbert Clemens
University of Utah
Salt Lake City, UT 84112
R. Finn
Stanford University
Stanford, CA 94305

hermann Flaschka
University of Arizona
Tucson, AZ 85721
Ramesh A. Gangolli
University of Washington
Seattle, WA 98195
Vaughan F. R. Jones
University of California
Berkeley, CA 94720

Robion Kirby
University of California
Berkeley, CA 94720
C. C. MOORE

University of California
Berkeley, CA 94720
Harold Stark
University of California, San Diego La Jolla, CA 92093

ASSOCIATE EDITORS
R. Arens E. F. Beckenbach B. H. Neumann F. Wolf K. Yoshida
(1906-1982)

SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA
UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA, RENO
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY

UNIVERSITY OF OREGON
UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF HAWAII
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

Abstract

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph must be capable of being used separately as a synopsis of the entire paper. In particular it should contain no bibliographic references. Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. Supply name and address of author to whom proofs should be sent. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California 90024.

There are page-charges associated with articles appearing in the Pacific Journal of Mathematics. These charges are expected to be paid by the author's University, Government Agency or Company. If the author or authors do not have access to such Institutional support these charges are waived. Single authors will receive 50 free reprints; joint authors will receive a total of 100 free reprints. Additional copies may be obtained at cost in multiples of 50 .

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $\$ 190.00$ a year (5 Vols., 10 issues). Special rate: $\$ 95.00$ a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Old back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

The Pacific Journal of Mathematics at P.O. Box 969, Carmel Valley, CA 93924 (ISSN 0030-8730) publishes 5 volumes per year. Application to mail at Second-class postage rates is pending at Carmel Valley, California, and additional mailing offices. Postmaster: send address changes to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
 Copyright (c) 1987 by Pacific Journal of Mathematics

Pacific Journal of Mathematics Vol. 130, No. 2 October, 1987
Bernhard Banaschewski, J. L. Frith and C. R. A. Gilmour, On the congruence lattice of a frame 209
Paul S. Bourdon, Density of the polynomials in Bergman spaces 215
Lawrence Jay Corwin, Approximation of prime elements in division algebras over local fields and unitary representations of the multiplicative group 223
Stephen R. Doty and John Brendan Sullivan, On the geometry of extensions of irreducible modules for simple algebraic groups 253
Karl Heinz Dovermann and Reinhard Schultz, Surgery of involutions with middle-dimensional fixed point set 275
Ian Graham, Intrinsic measures and holomorphic retracts 299
John Robert Greene, Lagrange inversion over finite fields 313
Kristina Dale Hansen, Restriction to $\mathrm{GL}_{2}(0)$ of supercuspidal representations of $\mathrm{GL}_{2}(F)$ 327
Kei Ji Izuchi, Unitary equivalence of invariant subspaces in the polydisk 351
A. Papadopoulos and R. C. Penner, A characterization of pseudo-Anosov foliations 359
Erik A. van Doorn, The indeterminate rate problem for birth-death processes 379
Ralph Jay De Laubenfels, Correction to: "Well-behaved derivations on C $[0,1]$ " 395
Robert P. Kaufman, Correction to: "Plane curves and removable sets" 396
Richard Scott Pierce and Charles Irvin Vinsonhaler, Correction to: "Realizing central division algebras" 397

