Vol. 131, No. 1, 1988

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Transitive isometry groups with noncompact isotropy

Isabel Dotti de Miatello and Roberto Jorge Miatello

Vol. 131 (1988), No. 1, 167–178
Abstract

Let G be a connected Lie group acting effectively and transitively by isometries on a riemannian manifold M. Then G is a Lie subgroup of the full isometry group, which is not necessarily closed. In this paper we study the structure of the closure of G in I(M) and illustrate the results with examples, with non-compact isotropy, where the closure is described explicitly.

Mathematical Subject Classification 2000
Primary: 53C30
Secondary: 57S25
Milestones
Received: 5 August 1986
Revised: 28 October 1986
Published: 1 January 1988
Authors
Isabel Dotti de Miatello
Facultad de Matemática, Astronomía y Física (FaMAF)
Universidad Nacional de Córdoba
Medina Allende s/n
Ciudad Universitaria
5000 Córdoba
Argentina
http://www.famaf.unc.edu.ar/~idotti/
Roberto Jorge Miatello