The functor Tor is related to
some classes of Cλ groups, notably the IT groups, and when λ = Ω the CΩ groups of
balanced projective dimensions 1. Separate necessary and sufficient conditions are
given for Tor(G,H) to be a d.s.c. group when G and H are Cλ groups. Some
generalizations of the fact that balanced subgroups of G and H determine balanced
subgroups of Tor(G,H) are presented.