REPRESENTING HOMOLOGY CLASSES OF $\mathbb{C}P^2 \# \overline{\mathbb{C}P^2}$

FENG LUO
REPRESENTING HOMOLOGY CLASSES OF $CP^2 \# \overline{CP}^2$

FENG LUO

In this paper we determine the set of all second homology classes in $CP^2 \# \overline{CP}^2$ which can be represented by smoothly embedded two-spheres in $CP^2 \# \overline{CP}^2$.

We say a class $u \in H_2(M^4, \mathbb{Z})$ can be represented by S^2 if it can be represented by a smoothly embedded 2-sphere in M^4. The purpose of this note is to prove the following.

Theorem. Let η, ξ be canonical generators of $H_2(CP^2 \# \overline{CP}^2, \mathbb{Z})$. Then $\gamma = a\eta + b\xi$, $a, b \in \mathbb{Z}$, can be represented by S^2 if and only if a, b satisfy one of the following conditions.

(i) $|a - b| \leq 1$, or
(ii) $(a, b) = (\pm 2, 0)$ or $(0, \pm 2)$.

Remark 1. The "if" part of the theorem is known (see Wall [7], Mandelbaum [5, the proof of Theorem 6.6]).

Remark 2. If $p \in \mathbb{Z}$, then $p\eta$ (or $p\xi$) is represented by S^2 if and only if $|p| \leq 2$ (see Rohlin [6]).

Remark 3. If a, b are relatively prime integers, then $\gamma = a\eta + b\xi$ is realized by a topologically embedded locally flat 2-sphere by Freedman [2]. Hence smoothness condition in the theorem is essential.

By Remarks 1 and 2, the Theorem follows from the following.

Proposition. Let a and b be two integers satisfying

\[
\begin{cases}
(i) & ab \neq 0, \text{ and} \\
(ii) & |a| - |b| \geq 2.
\end{cases}
\]

Then $a\eta + b\xi$ is not represented by S^2.

Proof. Suppose conversely that $a\eta + b\xi$ is represented by S^2. By reversing orientation if necessary, we may assume $n = b^2 - a^2 > 0$. Let $M^4 = CP^2 \# \overline{CP}^2 \# (n - 1)CP^2$ with ξ_i's the generators of
$H_2(M^4,\mathbb{Z})$ with respect to the additional CP^2's. Then the homology class $\gamma = a\eta + b\xi + \sum_{i=1}^{n-1} \xi_i$ can be represented by a smoothly embedded 2-sphere S in M^4. The self-intersection number of S is $S \cdot S = a^2 - b^2 + n - 1 = -1$. Hence the tubular neighborhood N of S in M^4 is the (-1)-Hopf bundle over S and ∂N is diffeomorphic to S^3. Set $W^4 = (M^4 - \hat{N})U_0D^4$. It is known that W^4 is a closed, simply connected smooth 4-manifold with a positive definite intersection form (see Kuga [4, claim 1]). By Donaldson's result (see Donaldson [1]), the intersection form of W^4 is standard. On the other hand, $M^4 = W^4 \# \hat{N}^4$ where $\hat{N}^4 = N^4U_0D^4$. So, $(H_2(W^4,\mathbb{Z}), \langle , \rangle_{W^4})$ is isomorphic to $(\gamma^*, \langle , \rangle_{M^4})$. Hence there exist exactly $2n \alpha \in H_2(M^4,\mathbb{Z})$ such that $a\gamma = 0$ and $a\alpha = 1$. Writing out the conditions in terms of the base $(\eta, \xi, \xi_1, \xi_2, \ldots, \xi_{n-1})$ by letting $\alpha = x\eta + y\xi + \sum_{i=1}^{n-1} z_i\xi_i$, we obtain $2n$ (≥ 16) solutions of the system of Diophantine equations

$$
\begin{align*}
(1) \quad \langle ax - by + \sum_{i=1}^{n-1} z_i \rangle = 0, \\
(2) \quad \langle x^2 - y^2 + \sum_{i=1}^{n-1} z_i^2 \rangle = 1.
\end{align*}
$$

Claim. If a, b satisfy (*), the above equations have at most four solutions.

Proof. We have $y^2 - x^2 = \sum_{i=1}^{n-1} z_i^2 - 1 \geq -1$. If $y^2 - x^2 = -1$, then $y = 0$, $x = \pm 1$, and $z_i = 0$ for all i. By (1), this implies $a = 0$; if $y^2 - x^2 = 0$, then only one of z_i's is ± 1, all others are zero. By (1), this implies that $||a| - |b|| \leq 1$; If $y^2 - x^2 = 1$, then $y = \pm 1$, $x = 0$, and only two of z_i's are ± 1, all others are zero. So (1) implies $|a| \leq 2$, but $|a| \leq |b|$ by assumption. Therefore, in all cases, a, b fail to satisfy (*). Hence we have $y^2 - x^2 \geq 3$.

Assume n' of the z_i's are nonzero, say z_{ij}, $j = 1, 2, \ldots, n'$. Then we have

$$
\begin{align*}
(3) \quad (ax - by)^2 &= \left(\sum_{j=1}^{n'} z_{ij} \right)^2 \\
&\leq n' \cdot \left(\sum_{j=1}^{n'} z_{ij}^2 \right) \\
&= n'(1 + y^2 - x^2) = n' + n'(y^2 - x^2) \\
&\leq n' + (n - 1)(y^2 - x^2) = n' + (b^2 - a^2 - 1)(y^2 - x^2) \\
&= n' + b^2 y^2 - b^2 x^2 + a^2 x^2 - a^2 y^2 - (y^2 - x^2) \\
&= n' + a^2 x^2 + b^2 y^2 - b^2 x^2 - a^2 y^2 - \sum_{j=1}^{n'} z_{ij}^2 + 1,
\end{align*}
$$

where (3) follows from Cauchy-Schwarz inequality.
Expanding and re-arranging this implies
\[(5) \quad (bx - ay)^2 \leq \left(n' - \sum_{j=1}^{n'} z_j^2 \right) + 1.\]

Since each \(z_i \neq 0\), (5) implies all these \(z_i\)'s are ±1, and \((bx - ay)^2 \leq 1\).

There are now only two cases that might happen.

Case 1. \(bx - ay = \pm 1\).

Then equalities in (3) and (4) hold. So \(z_1 = \cdots = z_{n-1} = \pm 1\), and (1), (2) reduce to
\[(6) \quad ax - by = \pm (n - 1),\]
\[x^2 - y^2 + (n - 1) = 1.\]

The equation (6) and \(bx - ay = \pm 1\) give at most four solutions to the Diophantine equations (1), (2) according to the choice of plus or minus signs.

Case 2. \(bx - ay = 0\).

Then the equality in (3) must hold because if inequality holds, the left hand side of (3) will reduce at least -4 which contradicts (5) where the right hand side exceeds the left hand side by +1. By the same argument, the equality in (4) must hold since we have shown that \(y^2 - x^2 \geq 3\). Therefore, the equality in (5) holds which is again a contradiction. Hence this case gives no solution.

Acknowledgment. The author would like to thank his advisor M. H. Freedman, X.-S. Lin, and R. Skora for many discussions.

After submitting the note, the author learned that similar results were also obtained by T. Lawson.

References

Received February 14, 1986 and in revised form August 5, 1987. This paper was supported in part by NSF/DMS86-3126 and the DARPA/ACMP under contract 86-A227500.

UNIVERSITY OF CALIFORNIA, SAN DIEGO
LAJOLLA, CA 92093
John Anderson, Finitely generated algebras and algebras of solutions to partial differential equations ... 1
Junichi Aramaki, On an extension of the Ikehara Tauberian theorem 13
Giacomo Monti Bragadin, Abstract Riemannian stratifications 31
Lawrence James Brenton and Richard Hill, On the Diophantine equation
\[1 = \sum 1/n_i + 1/\prod n_i \] and a class of homologically trivial complex surface singularities ... 41
C. Bruce Hughes, Controlled homotopy topological structures 69
Peter Wilcox Jones and Takafumi Murai, Positive analytic capacity but zero Buffon needle probability ... 99
Gary M. Lieberman, Hölder continuity of the gradient at a corner for the capillary problem and related results .. 115
Feng Luo, Representing homology classes of \(\mathbb{C}P^2 \) \(\overline{\mathbb{C}P^2} \) 137
Claudio Nebbia, Groups of isometries of a tree and the Kunze-Stein phenomenon ... 141
Stefan Richter, Unitary equivalence of invariant subspaces of Bergman and Dirichlet spaces ... 151
Paul Frederick Ringseth, The Selberg trace formula for groups without Eisenstein series ... 157
Abderrazzak Sersouri, The Mazur property for compact sets 185
Alladi Sitaram, On an analogue of the Wiener Tauberian theorem for symmetric spaces of the noncompact type 197