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In this paper we will sharpen Wiseman’s upper bound on the global
dimension of a fibre product [Theorem 2} and use our bound to com-
pute the global dimension of some examples. Our upper bound is
used to prove a new change of rings theorem [Corollary 4]). Lower
bounds on the global dimension of a fibre product seem more diffi-
cult; we obtain a result [Proposition 12] which allows us to compute
lower bounds in some special cases.

A commutative square of rings and ring homomorphisms

R 2 R,

L

R, — R
J2
is said to be a Cartesian square if given r; € Ry, r, € R, with j;(r{) =
J2(r;) there exists a unique element r € R such that iy(r) = r; and
i»(r) = r,. We will assume that j, is a surjection so that results of
Milnor [M] apply. The ring R is called a fibre product (or pullback)
of R; and R, over R’.

The homological properties of a fibre product R have been studied
previously. Milnor [M, Chapter 2] has characterized projective mod-
ules over such a ring R. Facchini and Vamos [FV] have obtained ana-
logues of Milnor’s theorems for injective and flat modules. Wiseman
[W] has used Milnor’s results to obtain an upper bound on Igldim R;
in particular, Wiseman’s results show that R has finite left global di-
mension whenever the rings R; have finite left global dimension and
fd(R;)gr are both finite, where fd(R;)g represents the flat dimension
of R; as a right R-module. Vasconcelos [V, Chapters 3 and 4] and
Greenberg [G1 and G2] have studied commutative rings of finite global
dimension which are fibre products and have used their results to clas-
sify commutative rings of global dimension 2. Osofsky’s example of a
commutative local ring of finite global dimension having zero divisors
can be described as a fibre product (see [V, p. 29-30]). Fibre products
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have been used to construct noncommutative Noetherian rings of fi-
nite global dimension by Robson [R2, §2], by Stafford [St] and by the
authors [KK2].

We begin by noting that a fibre product R can be thought of as the
standard pullback R = {(ry,72): j1(r;) = Jja(rz)}, a subring of Ry ® R,,
with the maps i;: R — R; given by i;(ry,r2) =1}, j = 1,2. Moreover,
if A is a subring of a ring B and Q is an ideal of B, Q < A, then the

diagram
A —— A/Q

Lo

B —— B/Q

with the obvious maps, is a Cartesian square. Greenberg [G1 and G2]
has studied the case where B is a commutative, flat epimorphic image
of A4, and Q is A-flat (including the “D + M construction”, see Dobbs
[D]). Two important examples of rings of finite global dimension can
thus be regarded as fibre products: the trivial extension (see [PR])
A = Rx M (which can be regarded as a subring of the triangular matrix
ring B = (R ) with common ideal Q = (%)) and the subidealizer
R in S at Q (see [R2]) (where R can be regarded as a subring of
B =11(Q), sharing the ideal Q).

We begin by stating Wiseman’s upper bound and our generalization
of it.

THEOREM 1. [W, Theorem 3.1]. If R is a fibre product of R, R,
over R’ then lgldim R < max;{lgldim(R;)} + max;{fd(R;)r}. |

THEOREM 2. If R is a fibre product of Ry, R, over R’ then Igldim R <
max;{lgldim(R;) + fd(R;)r}. m|

Theorem 2 is an immediate consequence of the following proposi-
tion.

PROPOSITION 3. Let M be a left R-module such that TorX , ,(R;, M)
=0form>1,i=1,2. Then

pdg M < m;ax{n,- + pd(g,(R; ®r Im f,))}
where
(%) ..._,Pkﬂfﬁi»‘Pk!i---—fiPlAPO—&M——>O

is a projective resolution of M.
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Proof. The projective resolution (x) of M gives rise to a sequence
of short exact sequences:

O—-Imfi->P—-M-—-0
and
O—-Imf,,—» P —Imf, -0, k> 1

From this we conclude that Tor® , (R;, M) = TorR (R;, Im f;).
Let n = max{n; + pdg (R; ®g Im f,,)}, and consider the resolution

o—-LLp . Aphp oo

obtained from (*) by letting L = Im f,,. The isomorphism noted above
gives TorX (R;, Im f,) = 0 for m > 1. Hence if we tensor the exact
sequence

O-L—>P, 11— —>P,—-Imf,, -0

over R with R;, we obtain an exact sequence
0—-R,®rL—>R;®rP,_1— - =R ®r Py, > R;®gIm f,;,, — 0.

Each R;®r Py is R;-projective, hence since n > n;+pdg (R;®rIm f,,),
R; ®r L is R;-projective. By [W, Theorem 2.3], L is R-projective and
the result holds. |

We state Theorem 2 in the “shared ideal” case, where it can be re-
garded as a change of rings theorem; it bounds the global dimension of
A by the maximum of two quantities: one involving a homomorphic
image of A and the other involving an overring of 4. Both quantities
are similar to those in other change of rings theorems: the quantity
involving the homomorphic image of A is the same as that in Small’s
change of rings theorem [S1], and the quantity involving the over-
ring B can be compared to the McConnell-Roos Theorem [see Rot,
Theorem 9.39, p. 250].

COROLLARY 4. Let A be a subring of B with Q an ideal of B, Q < A.
Then
lgldim 4 < max{lgldim(4/Q) + fd(4/Q) 4, 1gldim B + fd(B )}

EXAMPLE 5. Let

A= (k[x] +tkx, x4, 1] tk[x x7!, t])
k[x,x~1,1] kix,x~1,t]
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where £ is a field and x and ¢ are commuting indeterminates. (This
affine PI ring is considered in [S2; p. 32]). We claim IgldimA4 = 2.
Let

B (k[x,x“l,t] tk[x,x-l,t])
klx,x 1 t] k[xx11]

and

0= (tk[x,x“‘,t] tk[x,x-l,t])
kix, x L,t] klx,x Lt/
As B is a central localization of A4, Igldim B < Igldim A4, and Igldim B =
2 by [J, Theorem 3.5]. Since 4/Q = k[x], fd(4/0)4 = 1, and
fd(B4) = 0, Corollary 4 gives Igldim A < max{l + 1,2 + 0}, so that
Igldim 4 = 2 (and similarly rgldim 4 = 2).

More generally, let S = k[xy,...,xn X7 ., x7 L8, .o tm], R =
Kixy, ..., Xl + (t1 oo tm)S, I = (1. tm)S, A= (8L), B= (5))
and Q = (£ 1). Similar arguments show that rgldim 4 = lgldim A4 =
n + m (note that the upper bound given by Theorem 1 is Igldim 4 <
n+2m since fd(A4/Q) 4 = m; we know no other way of computing the
global dimension of A4). O

It is not hard to produce an example to show that the bound in
Corollary 4 is not always an equality. Let

A=C&@ m%»

where k is a field of characteristic 0 and A, (k) is the first Weyl algebra.
Then A4 has rgldim 4 = Igldim 4 = 1 by [PR, Corollary 4']. Take

B=(2$§mﬁﬁ “dQ=<m%)m%J;

since gldim B = 2, the bound of Corollary 4 exceeds gldim 4.
To show the utility of Corollary 4 we provide a further example in
which it can be applied.

ExXAMPLE 6. Let R be an arbitrary ring; consider the ring
R[x] R[x] R[x]
A = ( xR[x] R[x] R[x])
x2R[x] xR[x] R[x]
(which is a generalization of an example of Tarsy [T, Theorem 10]).
Taking

XR[x] R[x] R[x]

( R[x] R[x] R[x])
B:
XxR[x] xR[x] R[x]
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and

Q= xR[x] xR[x] xR[x]
x2R[x] xR[x] xR[x]

and noting that fd(, Q) =0, fd(4B) < 1, rgldim(4'/Q) = rgldim R +
1, and rgldim B = rgldim R+ 1 [KK1], we get rgldim A’ < rgldim R+ 2

(when R is a field, rgldim A’ = 2). Now take

(xR[x] xR[x] xR[x])

xR[x] R[x] R[x]
x2R[x]  xR[x] (R[x])*

where * entries agree modulo x (this example is a generalization of an
example of Fields [F1, p. 129]), B = 4/,

( (R[x])*  Rlx] R[x] )
A=

XR[x] R[x] R[x]
Q=( );

XR[x] xR[x] R[x]
x2R[x] xR[x] xR[x]

since fd(4,Q) < 1, fd(4B) < 1, we get that rgldim4 < rgldimR + 3
(when R is a field, rgldim 4 = 2; so the bound is not sharp in this
case). O

In using Corollary 4 to show that the ring A4 has finite global dimen-
sion, it is necessary to compute two flat dimensions. The following
corollary shows that often it is, in fact, necessary to compute only one.

CoROLLARY 7. If A is a subring of a ring B of finite left global
dimension with Q an ideal of B, Q < A, fd(Q,4) < oo, rgldim(4/Q) <
oo and lgldim(A4/Q) < oo then lgldim 4 < oo.

Proof . By Corollary 4 (or Theorem 1) it suffices to show that fd(B,)
< oo. Consider the exact sequences of right A-modules0 — Q — B —
B/Q — 0. Since fd(B/Q)4 < fd(B/Q) /) + fd(4/Q)4 by [MCcR,
Proposition 2.2], fd(B/Q) 4/¢ < oo so fd(B4) < oo. a

We note that we have constructed a ring R of finite global dimen-
sion which is a fibre product of two rings of infinite global dimension,
so that the conditions of Corollary 7 (or Theorems 1 or 2) are not
necessary conditions for the ring R to have finite global dimension.
The problem of determining the global dimension of R from homo-
logical properties of the rings or modules in the commutative diagram
seems difficult, except in some special cases. For example, when R;,
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R, are von Neumann regular, so is R, and it is not difficult to show
that rgldim R = max{rgldim R;}. More generally we have the follow-
ing proposition (which applies to examples of Robson [R2, §2] and
Osofsky [V, p. 29-30]).

PROPOSITION 8. Let R be the fibre product of Ry and R, over R{/U,
= R,/U,. Suppose that both U; are idempotent, and (U;)g, are flat.
Then U, & U, is a flat right R-module and

max{lgldim R;} < lgldim R < max{lgldim R;} + 1.
l 1

Proof . We will show that (U, 0) is right R-flat. Let I be a left ideal
of R; we need to show that (U;,0) g I — (U;,0)I is one-to-one.
Since (Uy, 0)%2 = (U;,0), (U,0) ®r I = (U, 0) ®g (U;, 0)I and hence,
without loss of generality, we may assume / = (J 0) for J < R;. Now
(U1,0) ®r (J0) = Uy ®g, J because R/(0,U;) = Ry, (J0)(0,U;) =
0 = (U,0)(0,V,), and (U;,0)(40) = (U J0). But Uy ®g, J — UJ
is one-to-one since (U))g, is flat. Similarly (0, U,) is right R-flat. The
upper bound then follows from Theorem 2, thinking of R as arising
from the Cartesian square:

R —— R/0U)=R
R,=R/(U,0) —— R

Since R/(0,U;) = R, and since (0, U,) is a flat idempotent right
ideal of R, it follows from Fields [F2] that Igldim R > Igldim R;.
Similarly Igldim R > Igldim R,. ]

As an example where Proposition 8 can be applied, we present the
following:

ExXAMPLE 9. Let

=0z 2)(Z 2]

where Z is the integers and * entries agree modulo 2. Here
Z Z Z 27
R, = , Ry= ,
: ( 27 Z ) 2 ( zZ Z )

zZ Z Z 27
= y U == .
U <2z 22) 2 (z 22)
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As R is not hereditary, Proposition 8 shows that gldimR = 2. We
note that R is not a right or left subidealizer in M>(Z) & M,(Z), so
the trick of thinking of R as a subidealizer used in [R2] and [KK2]
cannot be used to show that R has finite global dimension. O

Proposition 8 does not extend to nilpotent ideals (or hence to even-
tually idempotent ideals) or to idempotent ideals of finite flat dimen-
sion.

ExAaMPLEs 10. (a) Let

R=|(2 0) ’ (a d )]
[ ( c b 0 b
where a,b,c,d € k, a field. It is not hard to show that R has infinite

global dimension, despite the fact that the R; are hereditary and the
U; are projective, nilpotent ideals.

(b) Let

Z 27 47

Ri =R, = [Z Z 22} ,
Z Z Z

a ring of gldim = 2. Let

Z 2Z 4Z

U1=U2=[Z 2Z 22],
Z zZ Z

an idempotent ideal of flat dimension 1. Then

Z 2Z 47 Z 27 4Z
R= [(Z z 22),(2 z ZZ)}
Z Z Z zZ Z Z

where the indicated entries agree modulo 2. Since the exact sequences
below do not split, R has infinite right global dimension:

(1Z 22, 4Z},[0,0,0])
0 ([2Z2Z4Z1,[0,00) — & —  ([Z2Z2Z][0,0,0])—0
(12Z,2Z,2Z7],10,0,0])

0 — ([0,0,0,[Z 22 2Z] — (IZ Z*,2Z)),1Z Z*,2Z]) — (IZ Z 2Z},[0,0,0]) - 0. O

We next calculate the global dimension of the particular rings R, =
Z+ (x1,...,%n)QI[x1, ..., xn] where Z is the integers and Q is the ra-
tionals. Such rings were considered by Carrig [C, Example 1.8] and
are mentioned by Greenberg [G2] for n > 2 as behaving differently
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than when the common ideal is flat; they are symmetric algebras
R, = S(M) where M = Q" = Q@ ---@ Q, over Z. Carrig was
able to show that gldim R, < n + 1 by showing that wdim(R,) = n
(where wdim stands for the weak or Tor dimension) and then using
Jensen’s lemma [Je] and the fact that R, is countable to conclude
that gldim(R,) < n+ 1. If R, = D + (x1,...,x,)K][xy,..., x,] for
any Dedekind domain D (not necessarily countable) with quotient
field K, Corollary 4 shows that gldim(R,) < n + 1 taking 4 = R,
B =K[xy,..., x5}, Q = (x1,..., x2)K[x1,..., Xn], and fd(4/Q)4 = n,
gldim(4/Q) = 1, gldim B = n, and fd(B,4) = 0. Using chain condi-
tions, Carrig notes that gldim R; = 2 (since R; is not Noetherian)
and gldimR, = 3 (since R, is not coherent); he conjectures that
gldim R, = n + 1, which we will prove using generalizations of two
change of rings theorems. Our proofs follow those of Kaplansky [K].
The original theorems concern the change of rings from 4 to 4/xA
where x is a central regular element of A4; our generalizations con-
cern the change of rings from A4 to 4/xB where xB is a shared ideal
between A4 and a flat epimorphic image B.

LeMMA 11. (Compare to [K, Theorem 8, p. 176).) Let A be a subring
of B, x a regular element of B with Bx = xB < A and 4B flat. Let T
be a submodule of a free A-module. Then pd(T/T(xB))4- < pd(T),,
where A* = A/xB.

Proof . Since Bx = B, fd(4A4*) < 1. Taking a projective A-resolution
of 7,0- P, —---— P - Py — T — 0 and tensoring over A with
A*weget0— P QA" — - = Py®4A* > TQR4A*=T/T(xB) -0
since T is a submodule of a free R-module and fd(,4*) < 1. m]

PROPOSITION 12. (Compare with [K, Theorem 3, p. 172].) Let A be
a subring of B, x a central regular element of B, xB < A, 4B flat,
and B an epimorphic image of A (i.e. B ®,4 B = B); then for any right
B* = B/xB-module C, with pd C4. finite, pd C4 > pd C4. + 1, where
A* = A/xB.

Proof . The result is clear when pd(Cy4.) = 0. Suppose that pd Cy. =
n and pd C4 < n. Let H be a free A-module mapping onto C

(-**-) O—-T—-H-C-90
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sopd7T, <n-1. Wehave 0 - T/H(xB) — H/H(xB) - C — 0
exact, so pd(7/H(xB))4- < n — 1 (assuming n > 1). By Lemma
11 pd(T/TxB)4 < n — 1, so the exact sequence 0 — HxB/TxB —
T/TxB — T/HxB — 0 yields pd(HxB/TxB) 4. < n — 1. But tensoring
(-x*-) above over A with B gives

0-T®4B - He4B—-C®,4B—0
|= =
T®ABX—>H ®ABX
|= |=
TBx — HBx
Then (HxB)/(TxB) = C®4 B = C ®p B since B®4 B = B; but
C®pB=CQpg-B*=C sopd(Cy) <n-1,a contradiction. o

THEOREM 13. For R, = D+ (xy,...,xn)K][x1,...,x,] for D a Dede-
kind domain with quotient field K, gldim R, = n + 1.

Proof. By remarks above, it suffices to show n + 1 < gldimR,,
which will be shown inductively. We know that gldim R; = 2, and
it is not hard to show that pd(K[x;1/(x;)) = 2; inductively assume
pd(K[xy,...,xy—11/{X1, .., Xn-1))R,_, = 1. In Proposition 12, let 4 =
R,, B = K[x1,...,Xn], C = K[x1,...,Xn]/{x1,...,Xn) and x = X;
then since 4* = A/x,B = R,_;, we have pdCg, > pdCg,_, +1 =
n+1. o

We conclude with the following example which illustrates how the
preceding techniques can be used to calculate (or bound) the global
dimensions of particular rings.

ExXAMPLE 14. Let k be a field,

R = k[x1, ...,xn]+ (tl,..-,tm)k(X], ...,Xn)[tl, ...,tm]r
I= (tl, ...,tm)k(xl,...,x,,)[tl, veotm)l, S= k(xl,...,x,,)[tl,...,tm],

=[5 5] e=ls 5] #=[§ g =[5 5]

CLAIM.
rgldim 4 = max{m, n,pd(B/Q) 40 + 1}

.....
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Since B is a flat epimorphic image of 4 we have m < rgldim(A4);
since Q is an idempotent, projective left 4-module, n < rgldim(4) by
[F2]. As in [G2, Proposition 3.11], note that B is isomorphic to a right
ideal of A, and hence by [W, Proposition 3.3]

pd B, = max{pd(B ®,4 B)p,pd(B ®,4 (4/Q))4/0)}
= max{pd Bg, pd(B/Q)4/0)}
= Pk, K (X1 - o) Xn);

.....

therefore rgldim 4 > pdyy, 1 k(X1,...,Xn) + 1.

To show equality, let I be a right ideal of 4. As in [G2, Lemma
2.3), I < F,; < Fp where F4 is a free right 4-module and Fjp is a free
right B-module. Then IQ < I < IB, so that I/IQ < IB/IQ, a module
over B/Q, a field. Hence I/IQ is contained in a free B/Q-module,
and we have the exact sequence 0 — I/IQ — @ B/Q — cokernel — 0.
If pd(B/Q)(4/0) S n, then pd(I/1Q) 5 n; if pd(B/Q)(4/0) = n, then
pd(I/IQ) < n. By [W, Proposition 3.3]

pd(l4) = max{pd(I ®4 B)p, pd(I ®4(4/Q))}
= max{pd(/B)p, max{pd(B/Q)/g). n—1}}
< max{m — 1, pd(B/Q)40) n— 1}

so rgldim 4 < max{m, pd(B/Q)4/0) + L. n}.

CrLamM. max{pd(B/Q)4/g) + m n} <lgldimA4 < n+m.

Since a projective resolution of Q over B gives a flat resolution of Q
over A4, fd(4/Q) < m, and the upper bound follows from Theorem
2.

To obtain the lower bound, consider first the case in which m = 1.
Let u = [49]; then udu~! = [R$] so that Igldim 4 = rgldim4 =
max{pd,o(B/Q) + 1, n}. For an arbitrary m, let

" HS 11S]=|:tl 0]C<A
0 [IIS LS 0 ¢ -

and Q' < C. Note that 4/Q’ is isomorphic to a similar ring A
with one fewer ¢;. Both 4 and B are subidealizers in C, so by [R1,
Lemma 2.1]1 C®p C = C = C ®4 C. Furthermore, C is left and
right projective over B and C is right projective and left flat over 4.
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By Proposition 12, pd4(C/Q') > pd 4/0/(C/Q’) + 1, so inductively
lgldim 4 > pdgy, . x.1k(X1,...,Xs) + m. As in the case of the right
global dimension of A4, [F2] implies that lgldim A > n. o

[C]
[D]
[F1]
[F2]
[FV]
[G1]

[G2]
U]

[Jel
[K]
(KK1]
[KK2]
M]
[McR]
[PR]
[R1]
[R2]
[Rot]
[S1]
(S2]
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