Vol. 135, No. 2, 1988

Recent Issues
Vol. 334: 1  2
Vol. 333: 1  2
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
On the Ilieff-Sendov conjecture

Johnny E. Brown

Vol. 135 (1988), No. 2, 223–232
Abstract

The well-known Ilieff-Sendov conjecture asserts that for any polynomial p(z) = XTk=l{zzk) with zk∖← 1, each of the disks. z zk∖≤ 1 (1 k n) must contain a critical point of p. This conjecture is proved for polynomials of arbitrary degree n with at most four distinct zeros. This extends a result of Saff and Twomey.

Mathematical Subject Classification 2000
Primary: 30C15
Milestones
Received: 9 June 1987
Published: 1 December 1988
Authors
Johnny E. Brown