Vol. 135, No. 2, 1988

Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Uniqueness problem without multiplicities in value distribution theory

Shanyu Ji

Vol. 135 (1988), No. 2, 323–348
Abstract

Let H1,,Hk be hyperplanes in general position in Pm with m 2. Let A1,,Ak be pure (n 1)-dimensional analytic subsets of Cn with codim Ai Aj 2 whenever ij. Then any linearly non-degenerate meromorphic maps f,g,h : Cn Pm with f|Aj = g|Aj = h|Aj and with f1(Hj) = g1(Hj) = h1(Hj) = Aj for j = 1,,k satisfy Property (P) if k = 3m + 1. Consequently such f, g, h are algebraically dependent. If even n rank f = rank g = rank h = m, then k = m + 3 suffices.

Mathematical Subject Classification 2000
Primary: 32H30
Milestones
Received: 13 April 1987
Published: 1 December 1988
Authors
Shanyu Ji