Vol. 135, No. 2, 1988

Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Enlargements of quantum logics

Mirko Navara, Pavel Pták and Vladimír Rogalewicz

Vol. 135 (1988), No. 2, 361–369
Abstract

Let K be a quantum logic whose state space is nonvoid. Let B be a Boolean algebra and let C be a compact convex subset of a locally convex topological linear space. Then K can be enlarged to a logic L such that the centre of L equals B and the state space of L equals C. (The result remains valid when we replace the word “logic” with “orthomodular lattice”.)

Mathematical Subject Classification 2000
Primary: 03G12
Secondary: 81B10, 46N05
Milestones
Received: 10 June 1987
Published: 1 December 1988
Authors
Mirko Navara
Pavel Pták
Vladimír Rogalewicz