Vol. 136, No. 1, 1989

Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Isometric deformation of surfaces in R3 preserving the mean curvature function

A. Gervasio Colares and Katsuei Kenmotsu

Vol. 136 (1989), No. 1, 71–80
Abstract

The purpose of this paper is to classify surfaces in Euclidean 3-space with constant Gaussian curvature which admit non-trivial one-parameter families of isometric immersions preserving the mean curvature function. It is shown that the Gaussian curvature must be zero and, if the mean curvature is not constant, then such isometric immersions are some deformations of the cylinder over a logarithmic spiral.

Mathematical Subject Classification 2000
Primary: 53A10
Milestones
Received: 21 April 1987
Published: 1 January 1989
Authors
A. Gervasio Colares
Katsuei Kenmotsu
Mathematical Institute
Tohoku University
Kawauchi
Sendai 980-77
Japan
http://db.tohoku.ac.jp/whois/e_detail/895149120136fb8b2a19dc09f5c53205.html