A STOCHASTIC FATOU THEOREM FOR QUASIREGULAR FUNCTIONS

Bernt Karsten Oksendal
A STOCHASTIC FATOU THEOREM FOR QUASIREGULAR FUNCTIONS

BERNT ØKSENDAL

The following boundary value result is obtained: If \(\phi \) is a quasiregular function on a plane domain \(U \) with non-polar complement and \(\phi \) satisfies a growth condition analogue to the classical \(H^p \)-condition for analytic functions, then there exists a uniformly elliptic diffusion \(X_t \) such that for a.a. \(\eta \in \partial U \) with respect to its elliptic-harmonic measure the limit of \(\phi \) along the \(\eta \)-conditional \(X_t \)-paths exists a.s.

It is proved that if \(U \) is the unit disc then convergence along the \(\eta \)-conditional \(X_t \)-paths implies the classical non-tangential convergence. Therefore the result above is a generalization of the classical Fatou theorem. As an application, using known properties of elliptic-harmonic measure we obtain that there exists \(\alpha > 0 \) (depending on \(\phi \)) such that for every interval \(J \subset \partial D \) there is a subset \(F \subset J \) of positive \(\alpha \)-dimensional Hausdorff measure such that the non-tangential limit of \(\phi \) exists at every point of \(F \).

1. Introduction. The classical Fatou theorem states that if \(f \) is an analytic function on the unit disc \(D = \{ z; |z| < 1 \} \) in the complex plane \(C \) and there exists \(p > 0 \) such that

\[
\sup_{r < 1} \left(\frac{1}{2\pi} \int_{|z|=r} |f(re^{i\theta})|^p \, d\theta \right) < \infty
\]

then \(f \) has radial limits a.e. on \(T = \{ z; |z| = 1 \} \), i.e.

\[
\lim_{r \to 1} f(re^{i\theta}) \text{ exists}
\]

for a.a. \(\theta \in [0, 2\pi) \) w.r.t. Lebesgue measure. In fact, the limit exists non-tangentially, for a.a. \(\theta \). (See for example Garnett [10].)

The purpose of this article is to generalize this result in two directions:

First, the analytic function \(f \) is replaced by a quasiregular function \(\phi \). In this case it is known that the Fatou theorem in the strong form above stating radial convergence almost everywhere (with respect to Lebesgue measure) is false (see [16, p. 119]), so we are looking for an appropriate modification of "almost everywhere".
Second, the domain D is replaced by any open subset U of \mathbb{C} with non-polar complement, i.e. such that

$$C_0(C\setminus U) > 0,$$

where C_0 denotes logarithmic capacity. Of course, by considering the second generalization we must find an appropriate replacement for "radial" or "non-tangential" convergence. This is obtained by considering convergence along the conditional paths X_t^η of a suitable uniformly elliptic diffusion X_t (depending on ϕ) for a.a. $\eta \in \partial D$ w.r.t. the elliptic-harmonic measure $\mu^x = \mu^x_{x,U}$ of U for X_t. More precisely, the process X_t^η in U has the property that

$$\lim_{t \to \zeta} X_t^\eta = \eta \text{ a.s. } P^x, \eta \text{ for a.a. } \eta \in \partial U$$

w.r.t. μ^x and all $x \in U$,

where ζ is the life time of X_t^η and P^x, η is the probability law of X_t^η starting at x. And we prove:

Theorem 3.2 (Stochastic Fatou Theorem). Suppose $\phi \in H^p_{QR}(U)$ for some $p > 0$, i.e. ϕ is a quasiregular function on U satisfying a growth condition similar to the H^p-condition (1.1) (e.g. it suffices to have $\text{Area}(\phi(U)) < \infty$). Then for all $x \in U$

$$\lim_{t \to \zeta} \phi(X_t^\eta)$$

exists a.s. P^x, η for a.a. $\eta \in \partial U$ w.r.t. μ^x.

In the special case when $U = D$ we show that the a.s. convergence (1.5) of ϕ at a point $\eta \in \partial D$ implies the non-tangential convergence of ϕ at η (Theorem 4.1). Thus Theorem 3.2 is indeed a generalization of the Fatou theorem. As an application, combining Theorems 3.2 and 4.1 with metric properties of elliptic-harmonic measure we obtain the following:

Corollary 5.2. Suppose $\phi \in H^p_{QR}(D)$ for some $p > 0$. Then there exists $\alpha > 0$ (depending only on ϕ) such that in every interval $J \subset \partial D$ there is a subset $F \subset J$ of positive α-dimensional Hausdorff measure such that the non-tangential limits of ϕ exist at every point of F.

Results like this corollary have been known to experts for some time, but it seems to be difficult to find them stated explicitly in the literature.
The results of this paper are related to those in the paper by Caffarelli, Fabes, Mortola & Salsa [5]. There it is proved that a positive solution u in a Lipschitz domain G in \mathbb{R}^n of the equation $Lu = 0$ in G (where L is a uniformly elliptic second order partial differential operator) has non-tangential limits a.e. on ∂G with respect to the elliptic harmonic measure corresponding to L. So their result implies in particular that the same holds for a quasiregular function ϕ on a Lipschitz domain in the plane ($n = 2$) provided that the real and imaginary parts of ϕ are both positive (or bounded). The purpose of this paper is to show that for a quasiregular function ϕ the same conclusion can be obtained under much weaker conditions on ϕ if we use a different approach: The idea is to consider ϕ directly (not its real and imaginary parts separately) and apply a stochastic method. The key to this method is the fact (see [17]) that there exists a uniformly elliptic diffusion X_t (depending on ϕ) which is mapped into a time change of (2-dimensional) Brownian motion by ϕ. Thereby we also obtain the generalized stochastic Fatou theorem above, valid without any conditions on the boundary of the domain.

2. Conditional uniformly elliptic diffusions. Let $(X_t(\omega), \Omega, P^x)$ (where $t \geq 0$, $\omega \in \Omega$, $x \in U$) be a uniformly elliptic diffusion in an open set $U \subset \mathbb{R}^2$ with generator

$$Af = \text{div}(a \nabla f).$$

Here $a = [a_{ij}]$ is a symmetric 2×2 matrix where each element $a_{ij} = a_{ij}(x)$ is a bounded measurable function and there exists $M < \infty$ such that

$$\frac{1}{M} |\xi|^2 \leq \sum_{i,j=1}^{2} a_{ij} \xi_i \xi_j \leq M |\xi|^2 \quad \text{for all } x \in U, \xi \in \mathbb{R}^2.$$

The constant M is called the ellipticity constant of the diffusion. For example, X_t may be obtained as the Hunt process associated to the Dirichlet form

$$\mathcal{E}(u,v) = \int_{\mathbb{R}^2} \nabla u^T a \nabla v \, dx; \quad u, v \in C_0^\infty(U)$$

where dx denotes Lebesgue measure (Fukushima [9]).

Assume that U has a nonpolar complement. Then

$$\tau_U = \tau_U^X = \inf\{t > 0; X_t \notin U\}$$
(the first exit time from U) is finite a.s. P^x, and we can define the harmonic measure $\mu_x = \mu_{x,U}$ for X as follows:

\[(2.5) \quad \mu_{x,U}(F) = P^x[X_{\tau_U} \in F], \quad F \subset \partial U. \]

It is well known that the Harnack principle holds for such operators A, i.e. for all x there exists a neighbourhood $W \ni x$ and $C < \infty$ such that

\[(2.6) \quad \frac{1}{C} \leq \frac{d\mu_y}{d\mu_x} \leq C \quad \text{for all } y \in W. \]

Fix $x_0 \in U$ and put

\[(2.7) \quad K(x, \eta) = \frac{d\mu_x}{d\mu_{x_0}}(\eta); \quad x \in U, \ \eta \in \partial U. \]

Let $H = L^2(U, dx)$ and let $T_t : H \to H$ be the transition operators of X_t killed when it exits from U, i.e. $(T_t f)(x) = E^x[f(X_t)]$ ($= \{f(X_t) \cdot 1_{\{t < \tau_U\}}; \ t \geq 0, \ f \in H\}$). Fix $\eta \in \partial U$ such that $k(x) \equiv K(x, \eta) > 0$ for all $x \in U$ and define $\tilde{H} = L^2(U; k^2(x) \, dx)$. Let $T^n_t : \tilde{H} \to \tilde{H}$ be given by

\[(2.8) \quad T^n_t(g) = \frac{T_t(kg)}{k}; \quad t \geq 0, \ g \in \tilde{H}. \]

Then $\{T^n_t\}$ is a symmetric, strongly continuous contraction semigroup on \tilde{H} (since $\{T_t\}$ is on H), with generator $\tilde{A}f = A[kf]/k$ and corresponding Dirichlet form

\[(2.9) \quad E^\eta(u, v) = -(\tilde{A}u, v)_{\tilde{H}} = -\left(\frac{A(ku)}{k}, v\right)_{{\tilde{H}}}
\]

\[= -(A(ku), kv)_{\tilde{H}} = E(ku, kv) \]

for $u, v \in \mathcal{D}(E^\eta) = \{f/k; \ f \in \mathcal{D}(E)\}$. This form is regular and

\[(2.10) \quad E^\eta(u, u) = -\int A(ku)kv \, dx = 0 \]

if u is constant in a neighbourhood of $\text{supp}[v]$, for a.a. $\eta \in \partial U$ w.r.t. μ_{x_0}.
The property (2.10) can be proved as follows: For all $g \in C^\infty_0(U)$, $f \in C_0(\partial U)$ we have
\[
\int_{\partial U} f(\eta) \mathcal{E}(g(x), K(x, \eta)) \, d\mu_{x_0}(\eta)
= \int_{\partial U} f(\eta) \left(\int_U \nabla g^T(x) a(x) \nabla_x K(x, \eta) \right) \, d\mu_{x_0}(\eta),
\]
\[
\int_{\partial U} \nabla g^T(x) a(x) \nabla_x \left(\int_{\partial U} f(\eta) K(x, \eta) \, d\mu_{x_0}(\eta) \right) \, dx
= -(A\tilde{f}, g)_H = 0,
\]
since $\tilde{f}(x) = \int_{\partial U} f(\eta) \, d\mu_x(\eta)$ is the A-harmonic extension of f to U. So $\mathcal{E}(g, K(\cdot, \cdot)) = -(Ak, g) = 0$ a.e. μ_{x_0}, as claimed. It also follows that $Ak = 0$. Therefore k is Hölder continuous ([7], [15]). We conclude that for a.a. $\eta \in \partial U$ w.r.t. μ_{x_0} there exists a Hunt process $(X_t^\eta(\omega), \Omega, P^{x, \eta})_{t \geq 0, \omega \in \Omega}$ whose generator is \tilde{A}. Moreover, from the property (2.10) of \mathcal{E}^η we know that X_t^η is t-continuous and no killing of X_t^η occurs inside U (see [9]). We let $\zeta = \zeta_U$ denote the life time of X_t^η. The process X_t^η will be called the conditioning of the process X_t with respect to η (or, more precisely, with respect to the A-kernel function $k(x)$).

The next result justifies the name “conditional” for the process X_t^η: $(E^{x, \eta}$ and E^x denotes expectation w.r.t. the measures $P^{x, \eta}$ and P^x, respectively). We refer the reader to [2, Lemma 4] for a proof.

Lemma 2.1. Let g_1, \ldots, g_k be bounded Borel functions on U. Then
\[
E^{x, \eta}[g_1(X_t^\eta) \cdots g_k(X_t^\eta)] = E^x[g_1(X_t) \cdots g_k(X_t)|X_{\tau_U} = \eta].
\]

3. A stochastic Fatou theorem. Let ϕ be a quasiregular function in U, i.e. $\phi \in ACL^2$ (ϕ is absolutely continuous on a.e. straight line and with partial derivatives in $L^2_{lo\cdot c}$) and
\[
|\phi'(x)|^2 \leq K \cdot J_\phi(x) \quad \text{for a.a. } x \in U
\]
for some constant K, where $\phi' = [\partial \phi_i/\partial x_j]; 1 \leq i, j \leq 2$ and $J_\phi = \text{det}(\phi')$ is the Jacobian. See [13] for information about quasiregular functions. In [17] it is proved that there exists a uniformly elliptic diffusion X_t (depending on ϕ) such that the process $\phi(X_t); t < \tau$ is a time change of Brownian motion in C. More precisely, define
\[
\beta_t = \int_0^t J_\phi(X_s) \, ds, \quad \alpha_t = \inf\{s; \beta_s > t\},
\]
and let \((\hat{B}_t, \hat{P}^y)\) be a Brownian motion in \(C\). Then

\[
B_t = \begin{cases}
\phi(X_t); & t < \beta_t, \\
\phi^* + \hat{B}_{t-\beta}; & t \geq \beta_t
\end{cases}
\]

is again a Brownian motion in \(C\). Here \(\phi^* = \lim_{t \to \tau} \phi(X_t)\), which exists a.s. on \(\{\beta_\tau < \infty\}\).

From now on we let \(X_t\) denote this special process associated to \(\phi\) and as before we let \(X_t^\eta\) denote its conditioned process, defined for a.a. \(\eta \in \partial U\). We will assume that \(\phi\) satisfies one of the following two growth conditions (3.4), (3.5):

Lemma 3.1. Let \(0 < p < \infty\). The following are equivalent:

(3.4) \(\sup_{\sigma < \tau_U} E^x[|\phi(X_\sigma)|^p] < \infty\) for each \(x \in U\),

the sup being taken over all \(X_t\)-stopping times \(\sigma < \tau_U\).

(3.5) \(E^x[\beta_{t_U}^{p/2}] < \infty\) for each \(x \in U\).

Conditions (3.4), (3.5) are satisfied if

(3.6) \(E^y[\hat{\tau}_{\phi(U)}^{p/2}] < \infty\) for each \(y \in \phi(U)\),

where \(\hat{\tau}_{\phi(U)}\) is the first exit time from \(\phi(U)\) of Brownian motion in \(C\).

Condition (3.6) holds if

(3.7) \(\text{Area } \phi(U) < \infty\).

Remark. Note that condition (3.4) coincides with the classical \(H^p\)-condition (1.1) in the special case when \(\phi\) is analytic and \(U = D\). We therefore define \(H^p_{QR}(U)\) as the set of quasiregular functions \(\phi\) on \(U\) satisfying (3.4).

Proof of Lemma 3.1. (3.7) \(\Rightarrow\) (3.6). This follows from the estimates of Aizenman and Simon [1] of the moments of the exit time for Brownian motion.

(3.6) \(\Rightarrow\) (3.5). Since the process \(B_t\) in (3.3) is a Brownian motion and obviously \(B_t \in \phi(U)\) for \(t < \beta_t\) it is clear that

(3.8) \(\beta_t \leq \hat{\tau}_{\phi(U)}\)

and therefore (3.6) \(\Rightarrow\) (3.5).

(3.5) \(\Rightarrow\) (3.4). First note that by (3.3) we have

(3.9) \(E^x[|\phi(X_\sigma)|^p] = E^{\phi(x)}[|B_{\beta_\sigma}|^p] \leq E^{\phi(x)} \left[\sup_{t \leq \beta_\sigma} |B_t|^p \right].\)
The Burkholder-Gundy inequalities state that

\[\sup_{t \leq T} |B_t|^p \sim E^y[T^{p/2}],\]

for all stopping times \(T\), where \(\sim\) means that the ratio is bounded and bounded below by constants (only depending on \(p\) and \(y\) and the dimension (here 2)). See for example [4]. It was pointed out by B. Davis that these inequalities also hold for the so-called quasistopping or Markov times [6, p. 304], which include the random times \(\beta_{\sigma}\) above.

By (3.9) and (3.10) for \(T = \beta_{\sigma}\) we see that (3.5) \(\Rightarrow\) (3.4).

Conversely, by Doob's martingale inequality we have that

\[E^y\left[\sup_{t \leq \beta_{\sigma}} |B_t|^p\right] \sim E^y[|B_{\beta_{\sigma}}|^p],\]

for all \(p > 1\). To obtain this relation for all \(p > 0\) for Brownian motion in the plane we proceed as in [8, p. 156–157]:

Let \(p > 0\) and assume for simplicity that \(y = 1\). Then since the probability that \(B_t\) hits 0 is 0, we may define a pathwise logarithm \(G_t = \log B_t\) such that \(G_0 = 1\) a.s. Then \(G_t\) is a martingale and so is

\[H_t = e^{pG_t/2},\]

since \(z \to e^z\) is analytic. So by Doob's martingale inequality we have

\[E^y\left[\sup_{t \leq \beta_{\sigma}} |B_t|^p\right] = E^y\left[\sup_{t \leq \beta_{\sigma}} |H_t|^2\right] \sim E^y[|H_{\beta_{\sigma}}|^2] = E^y[|B_{\beta_{\sigma}}|^p],\]

which proves (3.11) for all \(p > 0\). Thus we have obtained that

\[E^x[|\phi(X_{\sigma})|^p] \sim E^{\phi(x)}[|\beta_{\sigma}|^{p/2}] \quad \text{for all } p > 0,\]

and the equivalence of (3.4) and (3.5) follows.

Now assume that \(\phi\) satisfies (3.4). Let \(U_k \subset \subset U\) be an increasing sequence of open, relatively compact subsets of \(U\) such that \(U = \bigcup_{k=1}^{\infty} U_k\) and put \(\tau_k = \tau^X_{U_k}\). Then by (3.2), (3.3) and (3.12) we have, for \(k < m\)

\[E^x[|\phi(X_{\tau_k}) - \phi(X_{\tau_m})|^p] \sim E^{\phi(x)}\left[\left(\int_{\tau_k}^{\tau_m} J_{\phi}(X_t) \, dt\right)^{p/2}\right] \to 0\]

as \(k, m \to \infty\). Thus \(\{\phi(X_{\tau_k})\}_k\) constitute a Cauchy sequence in \(L^p(P^x)\). Let \(\phi^*\) be the limit of this sequence. With the convention that \(\phi(X_{t \wedge \tau})\) means \(\phi^*\) if \(t \geq \tau\) we have that \(\phi(X_{t \wedge \tau})\) is a martingale in \(C\), so with
\(G_t = \log \phi(X_t), H_t = \exp((p/2) \cdot G_t) \) as above we get by Doob's martingale inequality

\[
(3.13) \quad P^x \left[\sup_{\tau_k < t < \tau} |\phi(X_t) - \phi(X_{\tau_k})|^p > \lambda^p \right] = P^x \left[\sup_{\tau_k < t < \tau} |H_t - H_{\tau_k}|^2 > \lambda^p \right] \leq \frac{c}{\lambda^p} E^x[|H_t - H_{\tau_k}|^2] = \frac{c}{\lambda^p} E^x[|\phi - \phi(X_{\tau_k})|^p] \to 0
\]

as \(k \to \infty \), for all \(\lambda > 0 \), where \(c \) is an absolute constant.

We are now ready to prove the main result of this paper:

Theorem 3.2. Let \(U \subset \mathbb{C} \) be open with \(C_0(\mathbb{C}\setminus U) > 0 \) and let \(\phi \in H^p_{QR}(U) \) for some \(p > 0 \). Then

\[
\lim_{t \to \zeta} \phi(X_t^\eta)
\]

exists a.s. \(P^{x,\eta} \), for a.a. \(\eta \in \partial U \) w.r.t. \(\mu_{x_0} \).

Proof. With \(U_k, \tau_k \) as above and \(\lambda > 0 \) consider

\[
\int P^{x,\eta} \left[\sup_{\tau_k < t < \tau} |\phi(X_t^\eta) - \phi(X_{\tau_k}^\eta)| > \lambda \right] d\mu_x(\eta)
\]

\[
= E^x \left[\left(P^{x,\eta} \left[\sup_{\tau_k < t < \tau} |\phi(X_t^\eta) - \phi(X_{\tau_k}^\eta)| > \lambda \right] \right)_{\eta=X_t} \right] \]

\[
= E^x \left[\left(P^x \left[\sup_{\tau_k < t < \tau} |\phi(X_t) - \phi(X_{\tau_k})| > \lambda |X_t| \right] \right) \right] \quad \text{(by Lemma 2.1)}
\]

\[
= P^x \left[\sup_{\tau_k < t < \tau} |\phi(X_t) - \phi(X_{\tau_k})| > \lambda \right] \to 0 \quad \text{as } k \to \infty \text{ by } (3.13).
\]

So by bounded convergence

\[
\int \lim_{k \to \infty} P^{x,\eta} \left[\sup_{\tau_k < t < \tau} |\phi(X_t^\eta) - \phi(X_{\tau_k}^\eta)| > \lambda \right] d\mu_x(\eta) = 0.
\]

Hence

\[
P^{x,\eta} \left[\lim_{k \to \infty} \sup_{\tau_k < t < \tau} |\phi(X_t^\eta) - \phi(X_{\tau_k}^\eta)| > \lambda \right] = 0 \quad \text{for a.a. } \eta.
\]

Since this holds for all \(\lambda > 0 \) we obtain the theorem.
4. Conditional convergence implies non-tangential convergence. It is natural to ask if the convergence of ϕ along the conditional paths X_t^{η} implies non-tangential convergence in the case when U is the open unit disc D. We will prove that this is indeed the case. Thus the situation is analogous to that for a harmonic function converging along the conditional paths of Brownian motion, in which case the equivalence to non-tangential convergence was first established by Brelot and Doob. The proof in our case will adopt basic ideas of the proof of Brossard in the Brownian motion case. See Durrett [8] for further references and an exposition of Brossard's proof. We say that a real function u on U is called A-harmonic (or X_t-harmonic) if

$$Au = 0 \text{ in } U$$

in the sense of distribution. This is equivalent to the mean value property

$$u(x) = E_x[u(X_{\tau_w})]$$

for all stopping times τ_w, where $W \subset U$.

The main result of this section can now be stated as follows:

Theorem 4.1. Let u be an A-harmonic function in the open unit disc $D \subset \mathbb{C}$. Suppose

$$\lim_{t \to \zeta} u(X_t^{\eta}(\omega))$$

exists for a.a. $\omega \in \Omega$ w.r.t. $P^{x,\eta}$, for some $\eta \in \partial D$, $x \in D$. Then this limit is the same for a.a. ω and it coincides with the non-tangential limit of u at η.

We split the proof into several lemmas. If τ is a stopping time for X_t and $z \in U$ we say that $X_t(\omega)$ makes a loop around z for $0 \leq t \leq \tau$ if z does not belong to the unbounded component of $\mathbb{C} \setminus \{X_t(\omega); 0 \leq t \leq \tau\}$. A similar terminology is used for X_t^{η}.

Lemma 4.2. Let $W \subset U$ and let K be a compact subset of W. Then there exists $\varepsilon > 0$ such that

$$P^x[X_t(\omega) \text{ makes a loop around } z; 0 \leq t \leq \tau_W] \geq \varepsilon$$

for all $x, z \in K$.

Proof. We use the notation $D_r(y) = \{x; |x - y| < r\}$. Let $x, z \in K$. Then if $r > 0$ is small enough the z-component V of $\phi^{-1}(D_r(\phi(z)))$
is a normal neighbourhood of z and $\phi^{-1}(\phi(z)) \cap V = \{z\}$. See Martio, Rickman and Väisälä [13]. Since K is compact we can choose r independent of x and z. Since $\phi(\partial V) = \partial(\phi(V))$ we have

$$\beta_{\tau_V} = \tau_{\phi(V)}$$

and therefore

$$\{\phi(X_{\alpha_t}); \ 0 \leq t \leq \beta_{\tau_V}\}$$

coincides with the path of a Brownian motion

$$\{B_t; \ 0 \leq t \leq \tau_{\phi(V)}\}.$$

It is well known that B_t winds around $\phi(z)$ with positive probability ([8]). It follows that X_t, when starting from V, winds around z with positive probability before exiting from V. Since the probability that X_t hits any neighbourhood of z before exiting from W is positive, by the communication property of uniformly elliptic diffusions, the lemma follows.

Lemma 4.3. The same conclusion as in Lemma 4.2 holds for the conditioned process X_t^η.

Proof. First note that by induction it follows from (2.8) that

$$E^{x,\eta}[g_1(X_{t_1}^\eta) \cdots g_k(X_{t_k}^\eta)] = \frac{1}{k(x)} \cdot E^x[g_1(X_{t_1}) \cdots g_k(X_{t_k})k(X_{t_k})]$$

for all $0 \leq t_1 \leq t_2 \leq \cdots \leq t_k$. Therefore, if $W \subset U$ then the law $P^{x,\eta}$ of $X_t^{x,\eta}$ for $t \leq \tau_W$ is absolutely continuous with respect to the law P^x of X_t for $t \leq \tau_W$ with Radon-Nikodym derivative

$$\frac{dP^{x,\eta}}{dP^x} = \frac{k(X_{\tau_W})}{k(x)}.$$

Since k is bounded away from 0 on W we conclude that Lemma 4.3 is a consequence of Lemma 4.2.

For Brownian motion B_t starting at the point x it is well known that the scaled process $\hat{B}_t = x + r(B_t - x), \ t \geq 0$, (where $r > 0$ is fixed) is again a Brownian motion except for a time change. A uniformly elliptic diffusion is not scaling invariant in the same strong sense. However, scaling a uniformly elliptic diffusion always gives us another uniformly elliptic diffusion (with a time change) with the same ellipticity constant. Moreover, the conditioned process X_t^η behaves similarly under
LEMMA 4.4 (Scaling lemma). Let $0 < r < 1$, $\eta \in \partial D$ and define

\begin{equation}
\xi(x) = rx + (1 - r)\eta \quad \text{for } x \in D
\end{equation}

and

\[Z_t = \xi(X_t), \quad Z^n_t = \xi(X^n_t); \quad t \geq 0. \]

Then Z_t is a uniformly elliptic diffusion with generator A_ξ which satisfies

\begin{equation}
(A_\xi f)(\xi(x)) = A(f \circ \xi)(x)
= r^2[\text{div}(a \circ \xi^{-1} \nabla f)](\xi(x)).
\end{equation}

Therefore

\begin{equation}
Z_t \simeq \tilde{X}_{r^2 t} \quad (\text{where } \simeq \text{ means "identical in law"})
\end{equation}

where \tilde{X}_t is the uniformly elliptic diffusion with generator

\begin{equation}
\tilde{A} f = \text{div}(a \circ \xi^{-1} \cdot \nabla f).
\end{equation}

Moreover,

\begin{equation}
Z^n_t \simeq \tilde{X}^n_{r^2 t},
\end{equation}

where \tilde{X}^n_t is the process obtained by conditioning \tilde{X}_t with respect to the \tilde{A}-kernel $k \circ \xi^{-1}$.

Proof. By definition of Z_t we have for $f \in C^2_0(D)$

\begin{align*}
(A_\xi f)(\xi(x)) &= \lim_{t \to 0} \frac{E^x[(f(\xi(X_t)) - f(\xi(x)))]}{t} \\
&= \text{div}[a \nabla (f \circ \xi)](x) \\
&= \text{div}[(a \circ \xi^{-1}) \cdot \nabla f](\xi(x)),
\end{align*}

which proves (4.6) and (4.7).

Similarly, if A^n_ξ denotes the generator of Z^n_t we get

\begin{align*}
(A^n_\xi f)(\xi(x)) &= r^2 \left(\frac{\text{div}((a \circ \xi^{-1}) \cdot \nabla (f \circ k \circ \xi^{-1}))}{k \circ \xi^{-1}}\right)(\xi(x)),
\end{align*}

which shows (4.9).

Before stating the next lemma we need some notation: For $\eta \in \partial D$ and $0 < \rho < 1$ let $S = S_\rho(\eta)$ denote the Stoltz domain associated to η.
and \(\rho \), i.e. \(S_\rho(\eta) \) is the interior of the convex hull of the circle \(|z| = \rho \) and the point \(\eta \).

For \(\rho < r < 1 \) put

\[
K = K_r = \{ z \in S; \ |z| = r \}.
\]

Let \(L_1, L_2 \) be the two lines connecting the point \(-\eta\) with the points \(\eta e^{\pm(1-r)i} \) and let \(N_1, N_2 \) be the segments of these lines which connect \(K \) to \(\partial D \).

Lemma 4.5. There exists a constant \(\delta > 0 \) depending only on \(\rho \) and the ellipticity constant \(M \) of \(X_t \) such that

\[
P^x,\eta[\,X_t^n \text{ hits } K \text{ for some } t < \zeta\,] \geq \delta \quad \text{for all } x \in N_1 \cup N_2.
\]

Proof. Since the transition semigroup \(T_t^n \) on \(\mathcal{H} \) given by (2.8) is symmetric, the corresponding resolvent \(\{U_{\alpha}^n\}_{\alpha \geq 0} \) trivially satisfies the duality condition in Theorem VI.1.4 in [3] (relative to the measure \(d\xi = k^2 \,dx \)).

Therefore, by Proposition VI. 4.3 in [3] we can write

\[
(4.10) \quad P^x,\eta[\,X_t^n \text{ hits } K \text{ for some } t < \zeta\,] = \int_K G^n(x, y) \,d\lambda(y),
\]

where \(G^n \) is the Green function of \(X_t^n \) and \(\lambda \geq 0 \) is the unique measure on \(K \) with the property that

\[
\lambda(K) = \sup \left\{ \nu(K); \ \nu \geq 0 \text{ measure on } K, \int G^n(x, y) \,d\nu(y) \leq 1 \text{ for all } x \notin K \right\}.
\]

From (2.8) it follows that

\[
(4.11) \quad G^n(x, y) = \frac{G(x, y) k(y)}{k(x)},
\]
where G is the Green function of X_t in D. Therefore

$$ (4.12) \quad P^{x,\eta}[X^\eta_t \text{ hits } K \text{ for some } t < \zeta] = \int G(x, y) \frac{k(y)}{k(x)} d\lambda(y) $$

$$ \geq \frac{a}{k(x)} \cdot \int_K G(x, y) d\lambda(y), \quad \text{where } a = \inf_k k. $$

The two positive functions $u(x) = \int_K G(x, y) d\lambda(y)$ and $k(x)$ are Λ-harmonic in $D \setminus K$ and they vanish on $\partial D \setminus \{\eta\}$, so by the Comparison Theorem (Theorem 1.4) of Caffarelli, Fabes, Mortola and Salsa [5] combined with the Scaling Lemma 4.4 above and a conformal map from D onto the half plane there exists a constant C_1 depending only on ρ and the ellipticity constant such that

$$ (4.13) \quad \frac{u(x)}{k(x)} \geq C_1 \frac{u(x_i)}{k(x_i)} \quad \text{for all } x \in N_i, $$

where x_i is the midpoint of N_i; $i = 1, 2$. Combining (4.10)–(4.13) we get that, with $b = \sup_K k$,

$$ (4.14) \quad P^{x,\eta}[X^\eta_t \text{ hits } K \text{ for some } t < \zeta] \geq \frac{a}{k(x_i)} \int_K G(x_i, y) d\lambda(y) $$

$$ \geq \frac{C_1 a}{b} \cdot \int_K G^\eta(x_i, y) d\lambda(y) $$

$$ = \frac{C_1 a}{b} \cdot P^{x,\eta}[X^\eta_t \text{ hits } K \text{ for some } t < \zeta] $$

for all $x \in N_i$.

By the Scaling Lemma 4.4 the last hitting probability in (4.14) is bounded below by a positive constant only depending on ρ and the ellipticity constant M. Moreover, if we use the interpretation of $k(z)/k(x)$ as the Radon-Nikodym derivative $d\mu_z/d\mu_x$ of the two exit distributions of X_t starting from z and x, we see that it follows from the Scaling Lemma 4.4 that

$$ \frac{a}{b} = \frac{\inf_k k}{\sup_k k} \geq C_2 > 0, $$

where C_2 only depends on ρ and M. That completes the proof of Lemma 4.5.

Lemma 4.6. There exists $\epsilon > 0$ only depending on ρ, x and M such that

$$ P^{x,\eta}[X^\eta_t \text{ makes a loop around } z; 0 \leq i < \zeta] \geq \epsilon $$

for all $z \in S_\rho$.
Proof. Put \(L = L(z) = \{\omega; X^\eta_t \text{ makes a loop around } z; 0 \leq t < \zeta\} \).

By the strong Markov property of \(X^\eta_t \) we have

\[
P^{x,\eta}[L] = \int_{K \cup N_1 \cup N_2} P^{y,\eta}[L]P^{x,\eta}[X^\eta_{\tau_w} \in dy],
\]

where \(W = D \setminus V, V \) is the closed set bounded by \(K = K(r), N_1, N_2 \) and the arc of \(\partial D \) between \(\eta e^{-(1-r)i} \) and \(\eta e^{(1-r)i} \) with \(r = 2(1 - |z|) \).

Since \(P^{x,\eta}[X^\eta_{\tau_w} \in K \cup N_1 \cup N_2] = 1 \) we get from Lemma 4.5

\[
P^{x,\eta}[L] \geq \delta \cdot P^{x,\eta}[X^\eta_{\tau_w} \in N_1 \cup N_2] + \inf_{y \in K} P^{y,\eta}[L](1 - P^{x,\eta}[X^\eta_{\tau_w} \in N_1 \cup N_2]).
\]

By Lemma 4.3 and Scaling Lemma 4.4 we have

\[
\inf_{y \in K} P^{y,\eta}[L] \geq \varepsilon.
\]

Since \(\varepsilon \) and \(\delta \) only depend on \(\rho \) and \(M \), Lemma 4.6 follows.

The proof of Theorem 4.1 is now completed by following the main idea of Brossard, as described in [8, p. 114–115]:

First we note that it suffices to prove the following:

\[
(4.15) \quad \text{Suppose } z_n \in S_\rho(\eta) \text{ for all } n = 1, 2, \ldots \text{ and } u(z_n) \to \alpha \in [-\infty, \infty] \text{ as } n \to \infty. \text{ Then } u(X^\eta_t) \to \alpha \text{ as } t \to \zeta \text{ a.s. } P^{x,\eta}.
\]

Put

\[
G_n = L(z_n) = \{\omega; X^\eta_t \text{ makes a loop around } z_n; 0 \leq t \leq \zeta\}
\]

and

\[
G = \bigcap_{n=1}^{\infty} \left(\bigcup_{k=n}^{\infty} G_k \right) = \{\omega; \omega \text{ belongs to infinitely many } G_n \text{'s}\}.
\]
By the 0-1 law we have that $P^{x, \eta}(G)$ is either 0 or 1. Since by Lemma 4.6

$$P^{x, \eta}(G) = \lim_{n \to \infty} P^{x, \eta}\left(\bigcup_{k=n}^{\infty} G_k \right) \geq \varepsilon,$$

we conclude that $P^{x, \eta}(G) = 1$.

Hence $X_t^{x, \eta}(\omega)$ winds around infinitely many z_n's for a.a. ω. For each such ω with the additional property that

$$\lim_{t \to \zeta} u(X_t^{\eta}(\omega))$$

exists, we get by the mean value property of u applied to the region inside each loop around z_n that

$$\lim_{t \to \zeta} u(X_t^{\eta}(\omega)) = \lim_{n \to \infty} u(z_n) = \alpha.$$

Hence (4.15) holds and the proof is complete.

5. Applications. Combining Theorem 3.2 and 4.1 we get

Theorem 5.1. Suppose $\phi \in H_Q^p(D)$ for some $p > 0$. For $x \in D$ let $\mu = \mu_x$ be the elliptic-harmonic measure of the uniformly elliptic diffusion X_t associated with ϕ. Then

$$\lim_{z \to \eta} \phi(z)$$

exists non-tangentially for a.a. $\eta \in \partial D$ with respect to μ.

Finally we point out how Theorem 5.1 can be combined with known properties of elliptic-harmonic measures to obtain new results about the boundary behaviour of quasiregular functions, even if we restrict ourselves to results involving only non-stochastic concepts. For $\alpha > 0$ let Λ_α denote the α-dimensional Hausdorff measure.

Corollary 5.2 (Non-stochastic Fatou theorem). Suppose $\phi \in H_Q^p(D)$ for some $p > 0$. Then there exists $\alpha > 0$ (depending only on ϕ) such that in every non-empty, open interval $J \subset \partial D$ there is a subset $F \subset J$ with $\Lambda_\alpha(F) > 0$ such that ϕ has non-tangential boundary limits at every point of F.

Proof. As before we let X_t be the uniformly elliptic diffusion associated with ϕ and we let μ be its elliptic-harmonic measure. Then by the doubling property of μ [5], it follows that

(5.1) $\mu(J) > 0$
for every non-empty open interval J in ∂D. On the other hand, it follows from Lemma 3.4 in [12] that there exists $\alpha > 0$ (depending on the ellipticity constant) such that

\begin{equation}
\mu \ll \Lambda_\alpha.
\end{equation}

By Theorem 5.1 the non-tangential limit of ϕ exists a.e. μ on J, hence by (5.1) and (5.2) on a subset F of J with $\Lambda_\alpha(F) > 0$. That completes the proof.

Acknowledgments. I am grateful to Olli Martio for his useful comments.

References

Received December 1, 1987.

University of Oslo

Box 1053, Blindern

N-0316 Oslo 3, Norway
A. K. Agarwal and David Bressoud, Lattice paths and multiple basic hypergeometric series .. 209

Adalberto Panobianco Bergamasco and Hermano de Souza Ribeiro, Uniqueness in a doubly characteristic Cauchy problem 229

Thomas Curtis Craven and George Leslie Csordas, Jensen polynomials and the Turán and Laguerre inequalities 241

Gary R. Jensen and Marco Rigoli, Harmonic Gauss maps 261

L. G. Kovács and Cheryl Elisabeth Praeger, Finite permutation groups with large abelian quotients .. 283

Ken-ichi Maruyama, Localization of a certain subgroup of self-homotopy equivalences ... 293

Tomasz Mazur, Canonical isometry on weighted Bergman spaces 303

Bernt Karsten Oksendal, A stochastic Fatou theorem for quasiregular functions ... 311

Ian Fraser Putnam, The C*-algebras associated with minimal homeomorphisms of the Cantor set ... 329

Tom Joseph Taylor, Some aspects of differential geometry associated with hypoelliptic second order operators 355

Tom Joseph Taylor, Off diagonal asymptotics of hypoelliptic diffusion equations and singular Riemannian geometry 379