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The predual M* of a von Neumann algebra M is an orthogonally
decomposable ordered Banach space in the sense of Yamamuro. By
an application of Dye's theorem on projection lattices, it is shown
that the isomorphism of this structure is implemented by a Jordan
automorphism of M if M is of type I without direct summands of
type h in the large.

1. Main results. The notion of orthogonal decomposability (o.d.)
of a real Banach space E ordered by a proper closed convex cone E+
has been investigated by Yamamuro [14], The complex Banach space
E + iE (with the natural conjugation (x + iy)* = x — iy for x, y e E)
will also be called o.d. if E is o.d. The predual M* of a von Neumann
algebra M is an o.d. (complex) ordered Banach space, in which the
relevant orthogonal decomposition of ω = ω* e M* is ω = ω+ - ω_
with ω± G Af+ and (suppω+) ± (suppω_) (supp denotes the support
projection) and is unique (for example, Theorem 3.2.7 in [3]).

An order preserving continuous linear map of an o.d. Banach space
E is called an o.d. homomorphism if it preserves the orthogonal de-
composition. Such o.d. homomorphisms of an ordered Hubert space
have been investigated in [5], [6]. We shall call an o.d. homomorphism
an o.d. isomorphism if it is an order isomorphism. In this note, we
make some comments on an o.d. isomorphism of the predual M* of a
von Neumann algebra M. Our main result is the following theorem.

THEOREM 1.1. Let Mi (i = 1,2) be W*-algebras with one of them
type I having no direct summands of type \i in the large. A map a is
an o.d. isomorphism of(M\)* onto (M2)*, if and only if there exist a
positive central element λa of Mi with a bounded inverse and a Jordan
isomorphism βa of Mi onto M\ such that

(1.1) aω = ωβaλa (Vω

We leave the case of a general M as an open problem.
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REMARK 1.2. Any Jordan isomorphism of a ίΐΓ*-algebra is a direct
sum of a *-isomorphism and *-antiisomorphism [8]. The central ele-
ment λa will be a positive number if M\ or M2 (and hence both) is a
factor.

REMARK 1.3. If a is implementable by a linear map φa between the
standard representation space of M\ and M2 in the form

(1.2) (aω)(x) = ω(φ*axφa),

then a is of the form (1.1) by a theorem of Dang and Yamamuro
([5], (2.2)). Conversely, any a of the form (1.1) is implemented in the
form of (1.2) by such a linear o.d. isomorphism φa where the order is
by the natural positive cone of the standard representation space (the
multiplication by λxj2 and the unitary implementer of βa). Therefore
the issue here is the implementability.

Specializing Theorem 1.1 to a norm preserving α, we obtain the
following generalization of Wigner's theorem [13, 1, 2, 12, 11].

COROLLARY 1.4. Let Mt (i = 1,2) be W*-algebras with one of them
type I having no direct summands of type l2 in the large. A bijective
map a of(Mι)^ onto (M2)+{ is affine and preserves orthogonality of
states if and only if there exists a Jordan isomorphism βa of M2 onto
M\ such that

(1.3)

REMARK 1.5. (Af/)^ is the set of all normal normalized positive
functionals on Mh i.e. the state space of Af;. Its affine structure is
based on the physical (or probabilistic) notion of a mixture of states.
The orthogonality of two states means that the two states are shaφly
distinguishable in the following sense: if the system is surely in one of
the two states, then it is surely not in the other state. Wigner uses the
condition of the preservation of the transition probability between two
states. The present version uses only the zero transition probability.
Wigner's theorem is for B(H) and here it is generalized to a type I
von Neumann algebra possibly with a nontrivial center (with type l2

excluded).
Kadison [9] has given a similar theorem for a general von Neumann

algebra with our assumption of the preservation of orthogonality for
α replaced by the weak * continuity assumption.

Theorem 1.1 is related to an isomorphism between the lattices P{M\)
and P{M2) of orthogonal projections in M\ and M2 via the following
proposition.
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PROPOSITION 1.6. (1) If a is an o.d. isomorphism of (M\)* onto
{M2)*> then there exists a unique isomorphism γa of the orthocom-
plemented lattice P(M{) onto P(M2) such that

(1.4) yα(suppω) = suppαω (Vω e (M\)Ί).

(2) Assume that M\ does not have any type l2 direct summands in
the large, Ifγ is an isomorphism of the complete orthocomplemented
lattice P(M\) onto P(M2), there exists a unique o.d. isomorphism aγ

o/(Afi)* onto (Λ/2)* such that

(1.5) (aγω)(γp) = ω(p) (V/> e P(MX), ω e

(3) Ifγ and aγ are as in (2), the γa determined for a = aγ as in (1)
coincides with the given γ.

(4) If a is of the form (1.1), γa is determined as in (1) and aγ is
determined for γ = γa as in (2), then

(1.6) aγω = ωβa.

Now the following theorem of Dye ([7], p. 83 Corollary) is applica-
ble to 7.

THEOREM 1.7 (DYE). Any projection orthoisomorphism of a W*-
algebra M with no direct summands of type I2 in the large onto a
W*-algebra N is implemented by the direct sum of a ̂ -isomorphism
and a *-antiisomorphism.

Here a projection orthoisomorphism is a one-one mapping between
the set of projections which preserves orthogonality, i.e. P JL Q if and
only if their images are orthogonal. It automatically preserves order
and commutativity.

2. Isomorphisms of projection lattices.

LEMMA 2.1. If a is an o.d. isomorphism of(M\)* onto (Λf2)*, then
a~ι is an o.d. isomorphism of(M2)* onto

Proof. Let a(ω\) ± a((θ2) for ω\, ω2 £ (Afi)ί We shall prove that
o)\ _L ω2. (The orthogonality is that of the support projections.)

Let ω\ - ω2 = ω + - ω_ be the Jordan decomposition of the self ad-
joint normal linear functional ω\-ω2 into positive linear functional
with mutually orthogonal support:

(2.1) ω + ± ω _ .
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Then, by the o.d. property of α, we have

(2.2) oi(co\) - oc(ω2) = α(

By assumption, a(ω\) J_ α(ω2). By the uniqueness of the orthogonal
decomposition, we obtain

(2.3) α(ωi) = α(ω+), α(α>2) = α(ω_).

Since α is bijective, we obtain ω\ = ω+ and ω2 = fcλ-. In particular,
Q)\ J- O)2. •

LEMMA 2.2. For any projection p e M,

(2.4a) p = 1 - ^{supp ω: supp ω ± /?}

(2.4b) = \/{supρ ω: supp ω < p}.
ω

Proof. Let H be a standard representation space of M and let p be
a projection in M. Then

(2.5) 1 - p = V { s u P P * > ί : £ 6 ( 1 -
ξ

where ω^(x) = (Λ:̂ , £). This proves (2.4a). Writing 1 -p as p in (2.4a)
and using the equivalence of suppω _L (1 — p) and suppω < p, we
obtain (2.4b). D

LEMMA 2.3. i>£ α όe α« o.d. isomorphism of{M\)* onto (Λ/2)*. For
co\,a)2€ (M\)t, the following are equivalent

(2.6a) supper = suppω2,

(2.6b) suppα(ωi) = suppα(ω2).

Proof. By the definition of an o.d. isomorphism and Lemma 2.1,
ω1 ± ω and a(ω') JL a(ω) are equivalent. Hence

(2.7) {ω": ω/r ± a(ω)} = {α(ω'): ω' J_ ω}

for any ω e (M\)+. Since the right-hand side is determined by supp ω,
it coincides for ω = ω\ and ω = ω2 if (2.6a) holds. Then the equality
of the left-hand side together with (2.4a) implies (2.6b). Since a~ι is
an o.d. isomorphism by Lemma 2.1, the converse also holds. D
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LEMMA 2.4. For any projection p e M\, the following holds:

(2.8a) 1 - \/{suppa(ω): supp ω ± p}
ω

(2.8b) = \/{suppα(ω'): suppω' < p} (= γa(p))
ω'

Proof. If suppω ± p and suppω' < p, then suppω _L suppω' and
hence suppα(ω) _L suppα(ω'). Hence the inclusion (2.8a) D (2.8b)
holds. Let (2.8a) be p1. For any ω" e (M2)t satisfying suppω" < /?',
let ω' = a~{ω". Then suppα(ω') ± suppα(ω) whenever suppω _L p.
This implies suppω' ± suppω by Lemma 2.1 and hence suppω' < p
by (2.4a). Therefore suppα(ω') = suppω" is contained in (2.8b) and
hence the inclusion (2.8a) c (2.8b) holds by (2.4b). D

Proof of Proposition 1.6(1). We define γa by (2.8). If p = suppω',
then γa(p) = suρpα(ω') by Lemma 2.1 and (2.4a). Hence (1.4) holds.

If P\ < P2> then (2.8) implies

(2.9) 7a(Pl)<?a(P2)'

By using 1 - p for p in (2.8b) and comparing it with (2.8a) for p, we
obtain

(2.10) 7a(l-p) = l-

By (2.8b), suppω' < p implies suppα(ω') < γa(p) Conversely, if
suppα(ω') < γa(p), then α(ω') ± a(ω) whenever suppω J_ p. This
implies ω' i. ω by Lemma 2.1 and hence suppω' < p by (2.4a).
Therefore the following are equivalent.

(2.11a) suppα(ω') < γa(p),

(2.11b) suppω' < p.

If we denote a' = a~ι, then this equivalence and (2.4) imply

(2.12) Va'VaiP) = P> ya7a>{p') = P§ *

(2.9) and (2.12) imply that γa is a lattice isomorphism. Together
with (2.10), we see that γa is an isomorphism of orthocomplemented
lattices.

The mapping of supp ω specified by (1.4) together with the structure
of the orthocomplemented lattice completely determines the mapping
7a(p) by (2.4). Hence the uniqueness of 7a follows. D

We note that if M is σ-finite (e.g. M* is separable), then any p is of
the form p = supp ω for some ω e M+ and the proof is much shorter.
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3. Proof of Theorem 1.1. The right-hand side of (1.1) is linear and
continuous in the norm topology. Since the multiplication of a central
element λa does not change the support of states, we have

(3.1) supp(ωjMα) = β Hsuppω).

Since a Jordan isomorphism β~ι preserves the orthogonality of pro-
jections, the " i f part of Theorem 1.1 follows.

To prove the converse, let a be an o.d. isomorphism of (Afi)* onto
(M2)* and γa be the isomorphism of P{M\) onto P(M2) given by
Proposition 1.6 (1). Because of the o.d. property of a and Lemma
2.1, γa is an orthoisomorphism and hence can be extended to a Jordan
isomorphism of M\ onto Mi by Dye's Theorem (Theorem 1.7). Let
βa be the inverse of this Jordan isomorphism and let

(3.2) afω = (aω)β-\

Then a1 is an o.d. automorphism of (Mi)* and

(3.3) supp(α'ω) = /?α(suppαω) = suppω,

namely a1 preserves the support of any ω e (M\)t. Thus we can
restrict our attention to the case of M = M\ = Mi and an o.d. auto-
morphism a of Af* which preserves the support of any ω e M+.

We now limit ourselves to the case of a type I von Neumann alge-
bra M.

LEMMA 3.1. If a is an o.d automorphism ofM* preserving the sup-
port of all ω G M+ and ifω is such that supp ω is an abelian projection
of My then there exists a central element λω with a bounded inverse such
that

(3.4) aω = ωλ{ω

Proof. Let e = supp ω and e be its central support. Then eMe = eZ
because e is assumed to be an abelian projection. Here Z is the center
of M and eZ is isomorphic to eZ. Let ω and aω be the restriction of
ω and aω to Z. They have a common support e. Let

(3.5) λω = {\-e) + d{aω)ldω

where the last term is the Radon-Nikodym derivative with support e.
Let en be the spectral projection of λω for the interval [n, n + 1).

Since a preserves the support of any ω e Λf+, we obtain

suppα(ω^) = supp(ω^) = ene,

suppα(ω . ( ! - * „ ) ) = supp(ω (1 - en)) = (1 - en)e.
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Applying these support properties to

aω = a(ωen + ω (1 - en)) = a{ωen) + a(ω (1 - en)),

we obtain

(3.6) a(ωen) = (aω)en

and hence

(3.7) \\a(ωen)\\ = (aω){en) = ω(λωen) > nω(en) = n\\ωen\\.

Therefore ω(en) = \\coen\\ must vanish for n > \\a\\. Since en < e =
suppω for n Φ 1, we have en — 0 for n > \\a\\ and n Φ 1. Hence Aω is
bounded. The same argument for α" 1 proves that λω has a bounded
inverse. D

We will show that λω can be taken independent of ω.

LEMMA 3.2. Let ω\, a>2 € M+ be such that supp ω\ and supp ωι are
abelίan projections. Let e be the product (inf) of their central support
Then

(3.8) λω]e = λω2e.

Proof. Let ω' = ω{e (i = 1,2). Then supp ω\ = ? and

(3.9) aω'i = (αω, )? = ωιλωιe = ω'ιλω^,

where the first equality is by (3.6). Hence λωιe = Λ,ω; and we have
reduced the problem to the case where the equality

(3.10) λωχ=λω2

is to be proved for ωx and α>2 with the same central support.

(1) The case where suppα^ = suppα^. For A = Σ J I !<?/£/ with
N < oo, positive numbers cz and central projections £/? we obtain by
(3.6)

(3.1 la) a{ωxA) = ΣcMωιei) = J^/α(ωi)e, = a(ω{)A

(3.11b)

Since the ω\A with such central elements A are norm dense in the set
of ω G M£ with supp ω < supp ωi (because supp ωi is assumed to be
an abelian projection of Af), we have aω = ωλWλ, i.e. λω = λωι9 for
all such ω and in particular (3.10) holds.
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(2) The case where suppωi _L suppω 2. We keep the assumption
that ω\ and ω 2 have the same central support and suppω/ are abelian
projections. There exists a partial unitary u e M such that u*u =
suppωi and uu* = suppω 2. Let

(3.12) ω'2 = ωi (Adw*) (i.e. ω'2(A) = ω{(u*Au)).

Then suppω'2 = uu* = suρρω 2 and hence λω>2 = λω2 by (1). Let

(3.13) ω(A) = ωi((l + u*)A(l + u))/2.

For λ\9 λ2, λ G FZ+, Z = M Π Mr, the condition

(3.14) ω\λι +ω'2λ2 > ωλ

is equivalent to

[o1 IY-H\ ί
i.e.

(3.16) λ<(λι+λ2)-ι(2λιλ2)

where inverse is taken on suppλ\λ2. (Because of the support proper-
ties, we can restrict our attention to

(u*u + uu*)M(u*u + uu*) πZe

where M2 is 2 x 2 matrices.) For given λ\9 λ2, there exists the supre-
mum of λ in eZ given by the right-hand side of (3.16).

Since a is a linear order isomorphism, (3.14) is equivalent to

(3.17) a(ωxλx) + a{ω2λ2) > a{ωλ).

We note that

(3.18) suppω = (1 + u)e{\ + u*)/2

is immediately seen to be an abelian projection with the same central
support as e. By (3.1 la), we obtain the equivalence of (3.17) with

(3.19) <*{ωx)λ\ + α(ω' 2 μ 2 > a(ω)λ,

or equivalently with

(3.20) ω\λωιλι + ω2λω>2λ2 > ωλωλ.

For given λ\ and λ2, the infimum of λ satisfying this inequality is

(3.21) λinf = (λωιλ\ +λω>λ2)~ /l~ (2λωχλ\λω>λ2).
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(Note that A"1 is bounded on suppω = e > supp(λωϊλ\λω'2λ2).) By
equivalence of (3.20) and (3.14), this must coincide with

(3.22) λinf=(λι+λ2)-ι(2λιλ2).

We now obtain

2(λ\ + λ2)λωχλ\λω'2λ2

for any λ\, λ2 e eZ+ where suppAω, = suρpλω^ = suppλω = e. There-
fore

and hence

(3.23) λωι=λω< (=λω).

Since λω»2 = λω2, we obtain (3.10) for the present case.

(3) The general case. Since M is assumed to be type I without type
I2 direct summands in the large, there exists a central projection E
such that ME is abelian and M{\ - E) is without abelian or type I2
direct summands. As before, we may deal with ME and M{ 1 - E)
separately, splitting ω e M+ as ω = ωE + ω(l - E). For ME, the
case (1) already proves the lemma.

Now we are left with the case of M without abelian or type I2 direct
summands. If ω\ and ω2 are any two elements of M+ with a com-
mon central support such that suppωi and suppα^ are both abelian
projections, then there exists ω £ M+ with the same central support
as o)\ and ω2 such that suppω is an abelian projection orthogonal to
ωi and ω2 We can apply the case (2) for the pair (ω\,ώ) and for
(ω,(ύ2) to obtain

LEMMA 3.3. λω can be taken to be independent ofω.

Proof. One can find (by a transfinite induction) a net of ωv e M+
such that the central support ev of ωv are mutually orthogonal and
their sum is 1. We define

(3.24) λa

By the argument in the proof of the boundedness of λω, we have

(3.25) Me^λ^e^Wa-1]]-1^
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Since Y^ev = 1, λa is bounded with a bounded inverse. It belongs to
the center Z.

For any ω e M+, let e be its central support. We have

(3.26) λωeev = λωv~e'ev = λae~ev

for all v by Lemma 3.3. Therefore, summing up over v, we obtain

(3.27) λωe = λαe, aω = ωλω = ωe/lω = ωeλa = ωλα. D

Combining (3.2) with (3.27) for α', we obtain

(3.28) aω = ωβaλa

when supp ω is an abelian projection. The linear hull of such ω is
norm-dense in Af*. Since a is linear and norm continuous, we obtain
(3.28) for all ωeM*.

4. Proof of Corollary 1.4. Clearly (1.3) satisfies the required condi-
tion for α.

To prove the converse, let a be given. Let (Af, )5 be the set of all
selfadjoint elements of (Af, )*. Each ω € (M/)J has a unique decom-
position

(4.1) ω = c + ω + - c _ ω _

where ω± e (M)^i? suppω + ± suρρω_ and c± are real positive num-
bers. We extend a to a bijective map of (Afi)J onto (M2)ί by

(4.2) αω = c + α(ω + ) - c_α(ω_).

We now prove that a is real linear, norm preserving, order preserving
and orthogonality preserving.

(1) Linearity. Let ω\, ω 2 € (A^i)^ and

(4.3) ω = C\CO\ - C2U>2> c\ > 0> ^2 > 0.

With the decomposition (4.1), we have

(4.4) C\Q)\ + c_ω_ = c2ω2 + c+ω+ = cω ;

with c = Ci + c_ = Cι + c+ and

ω' = (cι/c+)ωι + (c_/c)ω_ = (c2/c)ω2 4- (c+/c)co+ € (Mx)+V

By the affine property of a on (Afi)^, we obtain

(4.5) Ciα(ωi) + C-a(ω-) = c2a(ω2) + c+a(ω+) (= ca(ω')).
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Hence (4.2) implies

(4.6) aω = C\OL{CU\) - C2 α ( ω 2)

Combining (4.6) with affine property of α, we now obtain real linear-
ity:

N

for any real c's and ωz E (M\)Ίλ and hence for any ωz E
(2) Order. Since a is bijective between (M\)+ and (M2)t by defini-

tion, the linearity implies that a is an order isomorphism.
(3) Orthogonality. This is immediate from the assumption that a

on (M\)Ίχ preserves the orthogonality.
(4) Norm. From (4.1)

HI -
Since α(ω+) is orthogonal to α(ω_) (due to the orthogonality of ω±),
(4.2) implies

Therefore | |αω| | = | |ω| | for any ω E
By Theorem 1.1, we have

αω = ωβaλa.

Due to | |α| | = 1, (3.25) implies λωv = 1 and hence λa = 1. Therefore
there exists a Jordan isomorphism y?α of Afi onto M2 satisfying aω =
ω^ α for all ω E (Afi)J and in particular for ω E

5. Proof of Proposition 1.6. (1) is already proved in §2.

Proof of (2) am/ (3). By a generalized Gleason theorem ([4], [15],
[16], [10]) there exists a unique aγω E M* for any ω satisfying

(5.1) (αyω)(p) = ω(y-1(p)).

(Here the continuity in p is immediate from the right hand side, cf.
[16].) From this definition, aγ is linear, maps M+ into M+ and satis-
fies

(5.2) suppα^ω) = y(suppω).

Since a(γ-η is an inverse of aγ with the same properties, aγ is an
o.d. isomorphism. Furthermore, (5.2) implies γ = γa for a = aγ due
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to (1.4) and due to the uniqueness of the isomorphism γa satisfying
(1.4). D

Proof of (4). If a is of the form (1.1), let γ be defined by γ~ι(p) =
βa{p) Then γ is an isomorphism of the orthocomplemented lattice
P{M\) onto P(M2). Since the multiplication of the invertible central
element λa does not change the support of the functional ω, we also
have

γ supp ω = supp a(ω),

namely γ = γa. Since γ~ι(p) = βa{p), we obtain

(aγω)(p) = ω(γ-ι(p)) = ω(βQ(p))

by (1.5). This proves (1.6). D

Acknowledgment. The author is indebted to the referee for drawing
his attention to the reference [7],
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