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We consider the problem of characterizing Poisson boundaries
of group-invariant time-dependent Markov random walks on locally
compact groups G. We show that such Poisson boundaries,
which by construction are naturally G-spaces, are amenable and
approximately transitive (see Definition 1.1 and Theorem 2.2).

We also establish a relationship between von Neumann algebras
and Poisson boundaries when G = R or Z. More precisely, there
is naturally associated to an eigenvalue list for an ITPFI factor Λf,
a group-invariant time-dependent Markov random walk on R whose
Poisson boundary is the flow of weights for M (Theorem 3.1).

0. Introduction. Henry Dye's work has a lasting impact on ergodic
theory and operator algebras. We present this paper, which deals with
both of these subjects, as a tribute to his mathematical achievements
and his gentle and unassuming character.

We consider the problem of characterizing Poisson boundaries of
group-invariant time-dependent Markov random walks on locally
compact groups G. We show that such Poisson boundaries, which by
construction are naturally G-spaces, are amenable and approximately
transitive (see Definition 1.1 and Theorem 2.2). We believe that the
converse also holds, namely that these two conditions precisely char-
acterize such Poisson boundaries. Under the pressure of time, we
have not yet completed our proof. However it is true in the transitive
case (Theorem 2.4), and when G = R or Z (Theorems 3.2 and 3.4).
Theorem 2.6 is the beginning of our attack on the general case.

We also establish a relationship between von Neumann algebras
and Poisson boundaries when G = R or Z. More precisely, there
is naturally associated to an eigenvalue list for an ITPFI factor M,
a group-invariant time-dependent Markov random walk on R whose
Poisson boundary is the flow of weights for M (Theorem 3.1). The-
orem 3.3 gives the corresponding result for G = Z. This unexpected
identification has interesting applications in both directions. Using
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some non-trivial theorems from operator algebras, we determine the
Poisson boundaries for G = R and Z (Theorems 3.2 and 3.4). Con-
versely, the harmonic function description of Poisson boundaries gives
a remarkably simple proof of the Γ-set condition for ITPFI factors
(Theorem 4.2). Just as the ITPFI factors are related to the Pois-
son boundaries of random walks on R and Z, the hyperfinite factors
(which properly contain the ITPFI factors) are related to the Poisson
boundaries of matrix-valued random walks on R and Z (see §3 (iii)).

Section 1 discusses the relevant results from von Neumann alge-
bras, including the approximate transitivity condition. In §2 we recall
the construction of the Poisson boundary, and present our incomplete
characterization. In §3 we give the relationships between approxi-
mately type I (hyperfinite) factors and random walks on R and Z.
Section 4 contains an application to the T set. Appendix A identi-
fies the Poisson boundary as the Mackey range of a certain cocycle.
Appendix B contains a remark on the Choquet boundary.

NOTATION. All groups are second countable locally compact. Group-
invariant Markov random walk always means a right group-invariant
Markov random walk (see §2). Haar measure is always left Haar
measure. All measure spaces are standard measure spaces. If μ is
a measure, then \\μ\\ always denotes the Z^-norm of μ. If X is a G-
space, μ is a finite measure on X, and λ is a finite measure on G, then
λ*μ = f dλ(g)gμ(x) where dgμ(x) — dμ(g~ιx). λ is the measure de-
fined by dλ(g) = dλ(g~ι). If A is a subset of a convex G-space, then
COQA denotes the closed convex hull generated by all ag(a), a e A,
geG.

1. Eigenvalue lists, ITPFI factors, and the flow of weights. A fac-
tor which can be constructed as an infinite tensor product of finite
type I factors is called an ITPFI factor. These factors are the non-
commutative analogues of product measures of probability on finite
spaces. An ITPFI factor M is determined by giving an eigenvalue list
(λn{,..., λnkn)neN where λnl > λn2 > > λnkn > 0 and Σ%\ λnj = 1
for all n. M is then of the form M = ®^L1(M/2, φn) on the Hubert
space H = <8>T=\ (Hn> Ψn) where the Mn are type 1^ factors acting on
Hn, and φn(x) = (xφn> ψn) is a faithful state on Mn. The λnj are the
eigenvalues of ρn e Mn where φn(x) = Tracepnx.

The ITPFI factors belong to a larger family, namely the approxi-
mately type I factors. A von Neumann algebra M is said to be ap-
proximately type I (or hyperfinite) if it is of the form M = (U^Li Mn)"
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where Mn c Mn+\ and each Mn is a finite-dimensional matrix algebra.
In the classification problem the approximately type I factors are the
most natural class [4]. The type II i approximately type I factor has
long been known to be unique [13]. The remaining non-type I ap-
proximately type I factors are completely characterized by their flow
of weights (an ergodic R-action which is naturally defined as an in-
variant of the factor) [12, 4, 6, 10]. All ergodic i?-actions appear in
this way. It is trivial that ITPFI implies approximately type I, but the
converse is false and non-trivial [11, 3]. Recently we have completely
characterized the ITPFI factors by a new ergodic property of their
flow of weights, which we call approximate transitivity [7].

DEFINITION 1.1 Let G be a Borel group, {X, v) a standard mea-
sure space, and a: G -> Aut(ΛΓ, i/) a Borel homomorphism. We say
that the action is approximately transitive if given n < oc, finite mea-
sures μ\,..., μn < v, and ε > 0, there exists a finite measure μ < v,
g\ > >gm £ G for some m < oo, and λjic>0,k=l,...,m9 such that

< ε , j=l,...,n.

k=\

If G = Z and a is approximately transitive, then we say that T = α(l)
is approximately transitive.

For ITPFI factors, there is a straightforward formula for the flow of
weights in terms of the eigenvalue list (see §3). But since this formula
involves an ergodic decomposition, there is the obvious question of
giving a simple interpretation of the flow in terms of the eigenvalue list.
In this paper we give an answer to this question by identifying the flow
of weights for an ITPFI factor M as the Poisson boundary of a group-
invariant Markov random walk on R which is naturally associated to
an eigenvalue list for M. The Poisson formula then identifies the flow
of weights with the harmonic functions of the random walk.

2. Group-invariant Markov random walks, approximate transitivity,
and amenability. Recall that a right group-invariant Markov random
walk on a group G is determined by a sequence of probability measures
σn ([14], p. 27). Namely the transition probability from g e G to
the Borel set A, at the nth step, is given by Pn(g,A) = σn(g~ιA).
In particular Pn{g,gA) = Pn(e,A) = σn{A). The right random walk
is invariant under left translations (see (2.1) below). One defines a
Markov chain of random variables Yn as follows. Let Xn((gk)) = gn
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be the canonical sequence of G-valued independent random variables
with distributions σn on the probability space {CF,I¥£Lxσn). Let σ0

be a probability distribution equivalent to Haar measure on G (σo is
the initial distribution for the random walk). Then on the probability
space Ω = (G x GP ,σ0 x σ) we define Yo((gk)) — So a n d Yn+ι =
YnXn+ι, n = 0,1, 2, Note that Yn has the distribution σ$ * θ\ *
• * σn which evolves, at the nth step, from the initial distribution σo
according to the random walk. G acts on Ω by

(2.1) g(gn) = (ggn), * = 0,1,2,... .

In general we shall shift freely from left group actions on a mea-
sure space Ω to right group actions through the equality gx — xg~ι.
The asymptotic algebra of the random walk is defined by sf& =
Π^Li σ(Yk>k ^ n) where σ(Yk,k > n) denotes the abelian von Neu-
mann subalgebra of L°°(Ω) consisting of functions measurable with
respect to the σ-algebra generated by the Y/C9 k > n. Thus an asymp-
totic random variable is one which does not depend on the first n
coordinates of the path. The Poisson boundary (B, μ) of the random
walk is defined in terms of the asymptotic algebra by srf& = L°°(Bf μ).
The Poisson boundary is a G-space under the restriction of the en-
action on L°°(Ω) to stfςi (which is invariant under this action). In fact,
the Poisson boundary can be identified as the Mackey range of a cer-
tain cocycle a: (G x GN) x K -+ G where K is the restricted infinite
product of copies of G (see appendix A).

We define a harmonic function h for the random walk to be a se-
quence hn e L°°(G, dg) satisfying

(2.2) hn(g) = j hn^(ggf)dσn^(gf) = hn+x * σw+1

where σ denotes the image of σ under the map g —> g~ι. This con-
dition is just the meanvalue property, namely hn(g) is the average,
according to the random walk, of hn+\. (This definition corresponds
to the β-harmonic functions in [14].) The harmonic function h is
called bounded if sup^ ||Λrt||oo < °o. The Poisson formula (see [14],
Proposition 2.3, p. 165)

(2.3) hn(g) = Jngo,gι, ,gn )dP{

g

n\gn,gn+ι,...)

associates a bounded harmonic function to any bounded asymptotic
random variable JΓ. Pg1^ is the Markov measure for the Markov ran-
dom walk which begins at the rth step at the point g and then con-
tinues according to the random walk defined by the sequence an+\,
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, Note that Z does not depend on the first n coordinates.
This association is one-to-one since one can use the martingale theo-
rem to show that

Z{ω) = lim hn(Yn(ω))
n—>-oo

for a.e. ω e Ω. The operators Pkn: L°°(G,dg) -> L°°(G,dg) defined
by

(2.4) Pk>nf = f*σn* σn-x * * σk+x, k<n,

satisfy

(2.5) hk = Pk>nhn, k<n.

This identification of L°°(B,μ) with bounded harmonic functions
is basic for our results. We begin with

LEMMA 2.1. Let φ e Lι(G), h = (hn) e L°°{B). Then the equation

(2.6) (h,Πnφ)= Ihn{g)φ{g)dg
JG

defines a contraction Πn: Lι(G) —• Lι(B) satisfying

(2.7) Π,(^*^) = Π,(^), k<n.

Proof. For fixed 9?, the right-hand side of (2.6) is a normal linear
functional on L°°{B). Therefore it defines an element Πnφ of the
predual L°°(B)* = L\B). It follows directly from (2.6) that ||ΠΠ|| < 1.
(2.7) follows from

(Πkφ,h) = (φ,hk) = (<p,Pk,nhn) = (P£n(p,hn). D

THEOREM 2.2. 77ze Poisson boundary of a group-invariant Markov
random walk on the group G, considered as a G-spacef is approximately
transitive and amenable.

Proof, (i) Since approximate transitivity (see Definition 1.1) is an
approximation property in Lι(B), it suffices to prove it on a dense
set. We will do this by exhibiting Lι(B,μ) as an inductive limit of
Lx (G, dg), i.e. of transitive actions of G on G. (Transitive actions are
trivially approximately transitive.)

Let h e L°°(B), φ e Lι(G). Since h φ h1 implies hn φ h'n for
some n, the linear functional Ln>φ(h) = (h,Hnφ) = (hn,φ) sepa-
rate points in L°°(B). The Hahn-Banach theorem now implies that
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\JneNUn(Lι(G)) is dense in Lι(B). It follows from (2.7) that
Un(Lι(G)) c Πn+ι(Lι(G)), so that the embedding is inductive.

(ii) The idea of the proof of amenability is that L°°(B) is a projective
limit of L°°(G), and that the transitive action of G on G is amenable.
Our definition of amenability ([15], [8]) is the existence of a map
P: L°°{B x G) -• L°°(B) satisfying

(i) P > 0,
(ii) P(F(b)) = F(b), and

(iii) P(hF) = h(PF) for all h e G,

where hF(b,g) = F(bhfh~ιg) and ΛF(ft) = F(ftλ). We begin by
proving the amenability of the transitive action of G on G. Let F G
L°°(G x G) and let p be any probability measure on G. Then

(2.8) (PPF)(gι)= ί F(glfg2)dp(g-ιg{)
Jg2eG

satisfies (i) and (ii) trivially, and

(2.9) h(PpF) = ί F{h-'gug
f

2)dp{(g'2)-χh-χ

gι)
Jg'2eG

= f
Jgz
f p
gzeG

where we set g2 = hg'2. Note that with our conventions, when B = G,
we have (g) h = (h~ιg).

Now let F G L°°(B x G). For fixed g2, F(b, g2) e L°°(B) for a.e.
g2 e G. Hence F(b, g2) corresponds to harmonic functions Fn{g\, g2)
satisfying PknFn(gx, g2) = Fk(g{,g2) where k < n and PLn acts on
the first variable g\. Note that PF is determined by giving (PF, φ) on
the dense set of φ e L{(B), which, for some k < oo, are of the form
φ = Πfc(ίPfc), 9?̂  G Lι(G). Now let (pn)neN be probability measures on
G, and let ω be an ultrafilter on N. We define

(2.10) (PKφ) =lim ί(PPnFn)(g0(PΪJ~k)(gι)dgι
J G

where P^ is given by (2.8). Trivially P > 0 so (i) is satisfied. Since
P(l) = 1, it follows that ||P.F||oo < Halloo and hence PF is well defined
by (2.10). If F(b, ^2) = F{b) has no #2 dependence, then Fn(gι,g2) =
Fn(gι) and PPnFn = Fn. Using (2.5), (2.6) and (2.10) we have

(2.11) (PF, φ) = lim(P f c nFΛ, ̂ ) = lim(Fk, φk) = (F, φ).

Hence (ii) is satisfied.
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To check condition (iii), note that using (2.1) we have for G e

= f Gk{h-χg)φk{g)dg

Hence

Thus
(h(PF),φ) = (PF,h*φ) = li

Using (2.9) and (2.10) we have

(P{hF),φ)=]im(PPn(hFn),Plnφk)

= \im{h{PPnFn),Plnφk)

where the last step used the fact that the right-invariant Markov ran-
dom walk commutes with left translations. Thus (iii) is satisfied. D

Zimmer has proven the amenability of the Poisson boundary of
stationary group-invariant Markov random walks ([15], Theorem 5.2).
However his mehod does not seem adaptable to the non-stationary
case.

REMARK 2.3. Theorem 2.2 has an obvious generalization to the case
where the state space for the random walk at the nth step is a G-space
Xn, rather than the group G itself. Group-invariance has the obvious
meaning here, but the transition probability at each step is no longer
specified by giving a single probability measure on G. It is clear from
the proof of Theorem 2.2 that if each Xn is approximately transitive
(resp. amenable) then the Poisson boundary is approximately transi-
tive (resp. amenable). In particular, for matrix-valued random walks
on G (see §3(iii) for a discussion of matrix-valued random walks on
R and Z), the state space Xn is a finite disjoint union of copies of G
acting transitively on G, and hence amenable. It follows that the Pois-
son boundary of a matrix-valued random walk on G is an amenable
G-space.
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THEOREM 2.4. A transitive amenable action of a group G is the Pois-
son boundary of a group-invariant Markov random walk on G.

We prove first

LEMMA 2.5. Let 3%j, j = 1,2, be group-invariant Markov random

walks on G defined by the probability measures {(J^)keN on G. If

Z. 1Z l i m (7M * G ,i * * (TM J m — Or, * (7 i * * (7~ . ™ = U

then the Poisson boundaries of&\ and<^?2 flre isdmorphic {i.e. they are
conjugate as G-spaces).

Proof. Let (BJfμj) denote the Poisson boundaries of 31 j . Recall

that any hj e L°°(Bj,μj) corresponds to a harmonic function (hJ

n)neN,

hJ

n eL°°{G, dg). On L°°(G, dg) we define the operators

(2.13) Pίmf = f * σ$ * σ^l, * . * σ^\, n < m

(see (2.4)). Then we have \\Plm\\ < 1, PlmhJ

m = hJ

n, and (2.12) be-
comes

(2.14)

We will show that the equation

(2.15) hl =

defines an isometry θ from L°°(B\,μ\) onto L°°(52,/i2). Let (Λ )̂ be
harmonic for ^ . Define h^m = Pn,mKn* m > n- If m ' > m w e have

(2.16) h%m'-h*m = Pnm[Pmm' - Pm m'tym"

Since Halloo = sup||Λ^||oo, it follows from (2.14) that h\m is Cauchy
in m, and hence the limit in (2.15) exists in L°°-norm. In particular
we have

(2.17)
n

and hence | | θ | | < 1. We also have

Since | | i>n

2

n + 1 | | < 1 and \\h2

n+ι - Pn

2

+hΛW „ - „ 0 w e

(2-18) h2

n = P l n + x h 2

n + x ,



HYPERFINITE VON NEUMANN ALGEBRAS 233

i.e. (h2) is harmonic for ̂  Thus we have

Θ:L°°(Bι,μι)^L°°(B2,μ2).

To prove that θ is onto, we define Ψ: L°°{B2, μ2) -> L°°{BX, μx) by

(Ψh2)n = lim^P^hl

Using (2.14) we have

(2.19) (θ(Ψ/22))= lim P2,m(Ψh2)m
m—*oom—*oo

P 2 P 1 P 2

n m m m m>

= h2

which proves that ΘΨ = 1, and hence θ is onto. Since ||Ψ|| < 1, it
follows that θ is an isometry. Finally, since P£m commutes with left
translations (see (2.1)), it follows directly from (2.15) that θ inter-
twines the G-actions. α

Proof of Theorem 2.4. A transitive action of G is necessarily the
canonical action of G on G/H where H is the fixed-point subgroup
(G/H denotes the space of right cosets). This action is amenable if and
only if H is amenable ([16], Proposition 4.3.2). Since G and therefore
H is second countable, Reiter's condition ([9], pp. 43-44) gives a
sequence of probability measures μn on H such that \\gμn - μn\\ι -+0
for all g e H, where (gμn)(A) = μn(g~ιA). We will show that for
the random walk &\ defined by the μn, the harmonic functions are
precisely the constant sequences hn(g) = f(Hg) where / £ L°°(G/H)
and Π: G —• G/H is the quotient map. I.e. the Poisson boundary is

Let / € L°°(G/H). Since the measures μn are supported on H and
τi(gg') = Π(g) if g' € # , it follows from (2.2) that hn(g) = f(Π(g))
is harmonic. Conversely, let (hn) be harmonic. Fix x e H. Then for
all g e <j we have, using (2.2),

(2.20) \hm(g)-hm(gx)\

hm+\{gg')[dμm+χ{g') - dμm+ί(χ-1 g')]J
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Hence

\hn(g) ~ hn(gx)\ = \(Pn,mhm)(g) - (Pn.mhm)(gx)\
( 2 2 1 ) ^ I M O - M ^lloo^^o

and hn(g) is constant on H cosets for any n. It now follows from
(2.2) that hm(g) = hn(g) for all m < n9 and hence hn{g) = /(Π(#))
for some feL°°(G/H).

The random walk ^ is confined to the subgroup H. The desired
random walk &2 is now defined by the measures σn — anμn+(1 -an)ζn

where the £„ are probability measures equivalent to Haar measure on
G, 0 < an < I, and the an —• 1 sufficiently fast that (2.12) is satisfied
(take an = 1 — l/«2 for example). It then follows from Lemma 2.5
that J%2 h a s the same boundary as &\. α

THEOREM 2.6. Let (X, σ, (?) &£ an approximately transitive G-space.
Then there exists a group-invariant Markov random walk & on G with
Poisson boundary (B, μ, G), and a G-equivariant isometry θ: L°°(X, σ)
—» L°°(B, μ). I.e. an approximately transitive G-space is a factor of the
Poisson boundary of some group-invariant Markov random walk on G.

Proof. Let P(X,σ) be the space of finite measures v on X, v < σ.
We will construct a sequence of probability measures σn e P{X,σ)
such that (i) CoG{{<*n)neN) = P(X,σ), and (ii) σn = λn * σπ+i where
the λn are probability measures on G. 31 will be the random walk
defined by the λn.

Choose (vn)neN dense in the L^norm in P(X,σ). Choose en > 0,
ΣneN εn < °° Since (X, σ, G) is approximately transitive, we can
choose inductively probability measures σ'n e P(X, σ) such that

d(v,CoGσ'n) < εn for v = σ'n_lfvχ,...,vn.

Then CoG{{(y!

n)neN) = P(X,σ)9 and there exist probability measures
λn on G (see Remark 2.2 (ii) of [7]) such that

(2.22) K-^i*^+ill

For n < m let

(2.23) σn>m = λn * λΛ+i * * λm

For n < m\ < m^ we have, using (2.22),

ek+ϊ

k=m\
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which tends to 0 as mi,m2 ^ oo. Since P(X, σ) is complete in the
Z^-norm, we can define

(2.24) σn = l im σn>m.
ra-»oo

Since ||Λ * i/|| < ||A|| \\u\\ and σntm = λn * σn+ι>m it follows that

(2.25) σn=λn*σn+ι.

Since

00

\Wn-σ'n\\< Σ «*„,-„, 0
k=n+l

it follows that the σn also generate P(X, σ).
Define Θn: L°°(X, σ) -> L°°{G, dg) by

(2.26) (e

Using (2.25) we have

(2.27) (Θnf)(g) = If f(gχ-ι)dλn(k)dσn+ι(k-ιx)

f(gky-ι)dλn(k)dσn^(y)

= l(βn+ιf)(gk-ι)dλn(k) = en+ιf * Xn.

Thus {Bnf)neN is harmonic for the random walk 31. The map θ is
now defined by θ : / - » ( θ n f ) n e N .

Using (2.1) and (Λ/)(JC) = / ( Λ " 1 ^ we have

• / / •

(2.28) {®n{hf)){g) = I f{h~ιgx)dσn{x)

which proves the G-equivariance of θ .
It remains to prove that θ is an isometry. Since the σn are probabil-

ity measures, it follows from (2.26) that | |ΘΛ | | < 1, and hence | | θ | | < 1.
We will prove that lim^oo | |θπ/| |oo = ||/||oo for all / e L°°(X, σ). Let
/ € L°°(X, σ), e > 0. Then there exists c with \c\ = \\f\\oo such that
the set

(2.29) A = {x e X: \f(x) -c\< \ε}

satisfies σ(A) > 0. Let σA denote the restriction of σ to A. By a
theorem of Varadarajan ([16], Theorem 2.1.19), we can assume that
the action of G on X is continuous. Since the σn generate P(X,σ) it
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follows (compare [7], Remark 2.2 (ii), (v)) that there exist n < oo and
λ e Lι

+(G, dg), \\λ\\ = \\σA\\ = σ(A), such that

(2.30) jσA-J dgλ(g)gσnj<

Let

J= ί dgλ(g) I dσn{g-χx)f{x).
J J

If follows from (2.30) that

(2.31)

(2.29) implies that

(2.32)

J- jf{x)dσA{x) < \eσ{A).

cσ(A)-Jf(x)dσA(x)

Since \c\ = ll/lloo, (2.31) and (2.32) give

(2.33) IM-H/Hooσ(Λ)|<β.

But

/ = I dgλ(g) I dσn(y)f(gy-1)

= I dgλ(g)(Θnf)(g)

and hence

(2.34) \J\ < | |θΛ/| |oo|μ| | = WθnfWoo

(2.33) and (2.34) give

| |θB/| |oo > ll/lloo - ε

and hence lim^oo ||θ,,/||oo = ||/||<»
For the last remark, recall that a factor of a (7-space (B,^,μ,G)

is just the restriction of (B, μ, G) to a σ-algebra <9ζ c & which is
G-invariant. Here one takes ^ to be the σ-algebra generated by
θ(L°°(Xσ)). D

3. Eigenvalue lists and random walks.
(i) Random walks on R.
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THEOREM 3.1. Let (λn\,... ,λnkn)neN be an eigenvalue list. There
is naturally associated to this eigenvalue list a group-invariant Markov
random walk on R whose Poisson boundary is canonically identified,
as an ergodic R-action, with the flow of weights for the ITPFI factor
defined by this eigenvalue list.

THEOREM 3.2. The Poisson boundaries of the group-invariant
Markov random walks on R are precisely the approximately transitive
R-actions.

Proof of Theorem 3.1. Let An = {1,..., kn} and let μn be the prob-
ability measure on An defined by μn({j}) = λnj. Define Ψn: An —> R
by ΨΛC/) = \ogλnj, and let σn = Ψn(μn). The measures σn define the
desired random walk.

The flow of weights for M can be constructed as follows ([6], Corol-
lary 6.3). Let (A,μ) = Π™=ι(An,μn). Let R act on A x R by (a,t)s =
(a,s + t). Define an equivalence relation S on A x R by (a,t) ~
(b,u)(S) if there exists m < oo such that an = bn for all n > m
and u - t = Σ7=\ log(λnbjλnan). The flow of weights for M is then
the ergodic action of R on the algebra $/ of S-invariant elements of
L°°(A x R,μ x Λ) where Λ is Lebesgue measure.

The Poisson boundary of the random walk was defined in §2 in
terms of the asymptotic algebra J ^ ? which is the SΏ-invariant subset
of L°°(R x RN ,dt x μ) where SQ is tail-equivalence for the Markov
chain Yn = Yo + £ L i Xk Since Yn - Yn_x = Xn, it follows that
in R x RN we have c ~ d(Sςι) if and only if there exists m < oo
such that cΛ = rfΛ for all n > m and Σ™=ocn = ΣZ=o^n- Define
Ψ: A xR -+ R xRN by Ψ((flΛ), ί) - (ί, (ΨΛ(flΛ))). Rewriting the above
equation as t/o - ô = Σ7=ι(cn ~ dn), we see that the measure-space
isomoφhism Ψ maps sf to sfa. Finally, we note that Ψ commutes
with the i?-actions when restricted to these σ-algebras. D

Proof of Theorem 3.2. This follows immediately from Theorems 2.2
and 3.1, and the fact that the flows corresponding to the ITPFI factors
are precisely the approximately transitive flows ([7], Theorem 8.3). D

(ii) Random walks on Z. Let 0 < T< oo. Let M = (g)™=ι(Mn, φn)
be an ITPFI factor with T e T{M). Using either ([1], Lemma 11.2) or
([3], Theorem 1.3.2) one can choose the states φn so that θjn — 1 for
all n. The eigenvalue list (λn\,...,λnkn) defined by the states φn then
satisfies {λnj/λnk)

iT = 1 for all n, j , k (i.e. the ratios λnj/λnk are all
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some integer power of λ = e~lπlτ). Hence we can write λnj = λQnjDn,
qnj G Z where Dn = Σ%iλqnj Conversely any such eigenvalue list
defines an ITPFI factor M with T e T(M). Since T(M) is the point
spectrum of the flow of weights Ft

M, the flow can be built under the
ceiling function of constant height 2π/T with the base transformation
B = F^.j. The conjugacy class of B determines the conjugacy class
of the flow, and hence M (up to isomorphism). We shall call B the
modular transformation.

THEOREM 3.3. Let 0 < T< oo. Let (λn\,...,λnkn)neN be an eigen-
value list satisfying (λnj/λnk)

ιT = 1 for all n, j , k. This eigenvalue list
defines an ITPFI factor M with T e T(M), and all such factors are
obtained in this way. There is naturally associated to this eigenvalue
list a group-invariant Markov random walk on Z whose Poisson bound-
ary is canonically identified, as an ergodic Z-actionf with the modular
transformation ^

THEOREM 3.4. The Poisson boundaries of the group-invariant
Markov random walks on Z are precisely the approximately-transitive
Z-actions.

Proof of Theorem 3.3. B = FJ£,T can be constructed as follows. Let
(A, μ) = Π"Lx(An,μn) where An = {1,... ,kn} and μn({j}) = λnJ. Let
Z act on A x Z by an((a,p)) = (a, p + n). Define an equivalence
relation S on A x Z by (a, p) ~ (b, n)(S) if there exists m < oo such
that an = bn for all n > m and r - p = ΣZ=i(QnbH - Qnan\

 w h e r e

we have written λnj = λq"jDn, λ = e~lπlτ (see above). The modular
transformation B is then the restriction of a\ to the algebra si of S-
invariant elements of L°°(A xZ,μxv) where v is any measure whose
support is Z.

Define Ψn: An -+ Z by Ψn(j) = qnj, and let σn = Ψn(μn). The
measures σn define the group-invariant Markov random walk on Z
associated to the given eigenvalue list. As above, the map Ψ: AxZ —•
Z x ZN given by Ψ((an),p) = (p, (ψn(^n))) identifies the algebra J /
with the asymptotic algebra S/Q of the random walk, and commutes
with the restriction of the Z-action to these algebras. D

Proof of Theorem 3.4. This follows immediately from Theorems 2.2
and 3.3, and the fact that all approximately transitive transformations
occur as the modular transformation F^,τ for some ITPFI factor M
with T e T(M) ([7], Theorem 8.3 and Lemma 2.5). D
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(iii) Matrix-valued random walks on R and Z. Let M be an ap-
proximately type I (not necessarily ITPFI) factor. Let φ be a faithful
normal state on M. By [4] and [5] there exists an increasing sequence
of conditional expectations En on M such that

(i) EnM is finite-dimensional,
(ii) EnEm = EmEn = En if n < ra,

(iii) φ o En = φ, and
(iv) strong lim^oo Enx = x for all x e M.

We will associate a "matrix-valued" random walk on R to the triple
(M,φ,(En)).

Let EnM = φ y = 1 MΛ</ be the central decomposition of EnM into
finite type I factors Mnj. (The random walk at the nth step will take
place in ln copies of R.) Consider the embedding of EnM in En+\M
relative to the state φ. Each Mnj will appear qnjΊ times in Mn+χj. Let
enj be the identity in Mnj9 and let enβp be the pth copy of ewy in Mn+\j9

p = l,...,qnjΊ. Then eΛy = Σiptnjip Let Λ Λ Λ , = φ(enJιp)/φ(enj).
Then X /̂/? λΛ</7p = 1 for all n9 j .

For each n e N, let σΛy /, j = 1,..., /w, / = 1,..., /Λ+i be the matrix
of measures on i? obtained by assigning the weight λnβP to the point
logλnβp for each p = \,...,qnβ. Then Σισnji(&) = ! f o r a 1 1 w

? 7
The random walk is now defined by giving the transition probability
from the point x in the jth copy of R at the nth step, to the point y
in the /th copy of R at the (n + l)th step, to be

It is again possible to identify the flow of weights for M with the
Poisson boundary of the random walk. Recall that all ergodic flows
occur as the flow of weights for some approximately type I factor [12].
Thus we get

THEOREM 3.5. Let M be an approximately type \ factor, φ a faithful
normal state on M, andEn an increasing sequence of conditional expec-
tations as above. There is associated to this situation a "matrix-valued"
group-invariant Markov random walk on R whose Poisson boundary is
identified, as an R-action, with the flow of weights for M. All ergodic
flows occur as the Poisson boundaries of such random walks.

It would be more natural to phrase Theorem 3.5 in terms of the
numbers λnβp and (P\EXM* They determine a state φ on the AF algebra
A which is the C*-inductive limit of the EnM. In general, such a state
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will not be a factor state. If this "generalized eigenvalue list" satisfies
the factor condition, then πφ(A)" is an approximately type I factor.
However, this is a somewhat more involved situation to describe.

As in section (ii) above, the corresponding "matrix-valued" random
walks on Z are obtained by considering a faithful normal state φ on
an approximately type / factor M, satisfying σ^ = 1 for some T > 0.
We omit the details.

4. Application to the T set. We will derive the Γ-set condition
for eigenvalue lists ([3], Corollaire 1.3.9) by an extremely simple ar-
gument. We consider the problem in the more general setting of a
group-invariant Markov random walk J o n a locally compact abelian
group G.

DEFINITION 4.1. The Γ-set T{β) is the set of all χ e G for which
there exist fχ G L°°(B, μ) (where (B, μ) is the Poisson boundary of &
such that (gfχ)(b) = χ{g)fχ{b) for all geG, and a.e. beB.

THEOREM 4.2. Let & be a group-invariant Markov random walk on
the locally compact abelian group G, given by the measures σn. Then
χ e T{β) if and only if

oo f

(4.1) Π X(g)dσn(g)

REMARK. For an ITPFI factor M with the eigenvalue list (λn\,...9

λnkn)> l e t ^ be the associated random walk on G = R (see Theo-
rem 3.1). Then T G T(M) if and only if the character χτ(x) = eiTx

is in T(β). (4.1) then becomes

π
«=1

Σ'ίT
7=1

which is the desired condition.

Proof. Recall that the Poisson formula maps / G L°°(B,μ) to
bounded harmonic functions, and commutes with the G-action. Thus
χ G T{β) if and only if there exists a bounded harmonic function hχ

satisfying (gh$)(x) = χ(g)h$(x) for all g, x G G, and all n G N. In
particular this gives h*+ι(g) = χ{g)h*+ι{e). Since ΛΛ = Λw+1 * σn+u

we get

nn\P)— I nni\\ό)aσn-\-l\ό) — n

nΛ.\\t:) / /lό^ UΌn+\\S)
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Clearly such a bounded hχ will exist if and only if (4.1) is satis-
fied. D

If G is not abelian, the question becomes which irreducible unitary
representations Π of G occur. That is, when there is a subspace V
of the space of harmonic functions, so that forheV we have gh =
H(g)h for some Π. The answer to this question is more involved.

APPENDIX A. Cocycles, the Mackey range, and the Poisson boundary
of a group-invariant Markov random walk. Let S be a standard Borel
space, let μ be a probability measure on S, and let K, G be groups.
We suppose there is a right Borel action of K on S such that μ is
quasi-invariant and ergodic under K. A Borel function a: S x K —> G
is called a cocycle if for all k\, kι £ K, a(s, k\kι) = a(s, k\)a{sk\, kι).
That is, α is a homomorphism from SxK (considered as a groupoid)
to G

Given a cocycle α, there is a natural action of K on 5 x G defined
by (s, #)Λ; = (sk, ga(s, k)). We denote the space S x G, together with
this # action, by S xa G. There is also a natural action of G on SxaG
defined by (s, g\)g2 = {s, g^Xg\)> which commutes with the AΓ-action.
Let i /bea measure equivalent to Haar measure on G, and let J / be
the fixed points of L°°(S xa Gfμx v) under the AΓ-action. Then si
is an abelian von Neumann algebra, and G acts by *-automorphisms
on sf. It follows that we can write si = L°°(S, σ) where (X, σ) is an
essentially unique ergodic (/-space.

DEFINITION A.I. The G-space (X, σ) is called the Mackey range of
the cocycle a.

Now let J b e a right group-invariant Markov random walk on the
group G, defined by the probability measures σn. Let S = G1* and let
μ = Π^Li &n- For the measure v on G, we take the initial distribution
σo (see §2). Let K be the group of sequences {gn)neN where gn e G
and gn = e for all but a finite number of indices n. We define a right
action of K on 5 by (sn)(gn) = (.srt£n). Note that the equivalence
relation on S defined by this ^-action is just tail-equivalence. Given
(gn) G K, there exists m < oo such that gn = e for all n > m. The
equation

defines a cocycle α, which can be thought of as the formal product

Γ G L Γ G L 1
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If (s, g), (sf, g1) G S xQ G belong to the same ΛΓ-orbit, then there
exists some k e K such that sf = sk and g' — ga(s, k). Choose m < oo
so that kn = e for all n > m. Then we have s'n = sn for all n > m and

(A.2) gf = gs{s2 sm(smgm)~ι - - (s i^iΓ 1 .

We now proceed to show that the fixed-point algebra $/ coincides
with the asymptotic algebra JZ?Q defined in §2. It follows from this
definition that $f& is the SQ-invariant subset of L°°(S xa G,μxσo)
where Sςi is tail-equivalence for the Markov chain (Yn) where Yn =
Y0X\X2 - Xn Since Yn = Tn^Xn, it follows that in G x GN we have
(g>s) ~ (g*> S')(SQ) if and only if there exists m < oo such that sn = s'n
for all n > m and

(A.3) Jm

which agrees with (A.2), where one makes the obvious identification
sn — sngn- Thus ^-equivalence coincides with the equivalence re-
lation defined by the AΓ-action on 5 x α G. It follows that the Pois-
son boundary for the random walk 31 is the Mackey range of the
cocycle a.

APPENDIX B. The Choquet boundary. Let X be the convex proper
cone of all (not necessarily bounded) positive harmonic functions for
the group-invariant Markov random walk defined by the measures σn.
The representing measure in Choquet's integral representation theory
is unique if and only if X is a lattice in its own order ([2], vol. II,
p. 201).

LEMMA B1. X is a lattice in its own order.

Proof. Let f,g€X. Consider

h% = (fn+k Λ gn+k) * σn+k * σn+k__x * . . . * σn+x

where fs Λ gs denotes the usual point-wise infimum. Since

fsλgs < (Λ+i Λ Ss+i) * σs+ι

the /*£ are monotone decreasing in k. Since h% > 0, we can define

( f A g ) n = l i £
k—*ΌO

Since Λ^+1 = h^{ * &n+u it follows from the monotone convergence
theorem that (/ Λ g)n = (/ Λ g)n+\ * cr«+i? i e. / Λ g is harmonic.
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Similarly, / V g is defined by

(/ V g)n = lim (fn+k V gn+k) * σn+k * σn+k_{ * * σn+ι.
k—•oo

Since the series is monotone increasing and bounded above by / + g,
it follows that / V g exists and is harmonic. D

REFERENCES

[I] H. Araki and E. J. Woods, A classification of factors, Publ. Res. Inst. Math. Sci.,
Ser. A., 4(1968), 51-130.

[2] G. Choquet, Lectures in Analysis, Benjamin: New York, 1969.
[3] A. Connes, One classification des facteurs de type III, Ann. Sci. E.N.S., 4eme

Serie, 6 (1973), 133-252.
[4] , Classification of injective factors, Ann. of Math., 104 (1976), 73-115.
[5] , On hyperfinite factors of type III and Krieger's factors, J. Funct. Anal.,

18, 318-327.
[6] A. Connes and M. Takesaki, The flow of weights on factors of type III, Tohoku

Math. J., 29(1977), 473-575.
[7] A. Connes and E. J. Woods, Approximately transitive flows and ITPFI factors,

Ergodic Theory Dynamical Systems, 5 (1985), 203-236.
[8] A. Connes, J. Feldman, and B. Weiss, An amenable equivalence relation is gen-

erated by a single transformation, Ergodic Theory Dynamical Systems, 1(1981),

431-450.

[9] F. P. Greenleaf, Invariant Means on Topological Groups, Van Nostrand: New
York, 1969.

[10] U. Haagerup, Connes' bicentralizer problem and uniqueness of the injective factor
of type IΠi, Acta Math., 158 (1987), 95-148.

[II] W. Krieger, On the infinite product construction of non-singular transformations
of a measure space, Invent. Math., 15 (1972), 144-163.

[12] , On ergodic flows and the isomorphism of factors, Math. Ann., 233
(1976), 19-70.

[13] F. J. Murray and J. von Neumann, Rings of operators IV, Ann. of Math., 44
(1943), 716-804.

[14] D. Revuz, Markov Chains, North-Holland: Amsterdam, 1975.
[15] R. J. Zimmer, Amenable group actions and an application to Poisson boundaries

of random walks, J. Funct. Anal., 27 (1978), 350-372.
[16] , Ergodic Theory and Semisimple Groups, Birkhauser: Basel, 1984.

Received May 2, 1988.

IHES
35, ROUTE DE CHARTRES

91440 BURES-SUR-YVETTE, FRANCE

AND

QUEEN'S UNIVERSITY

KINGSTON, ONTARIO

CANADA K7L 3N6





PACIFIC JOURNAL OF MATHEMATICS
EDITORS

V. S. VARADARAJAN R. FINN ROBION KIRBY

(Managing Editor) Stanford University University of California
University of California Stanford, CA 94305 Berkeley, CA 94720
Los Angeles, CA 90024 τ τ _ _ _ w

6 ' HERMANN FLASCHKA C. C. MOORE

HERBERT CLEMENS University of Arizona University of California
University of Utah Tucson, AZ 85721 Berkeley, CA 94720
Salt Lake City, UT 84112 ., _ _ _ __

VAUGHAN F. R. JONES HAROLD STARK

THOMAS ENRIGHT University of California University of California, San Diego
University of California, San Diego Berkeley, CA 94720 La Jolla, CA 92093
La Jolla, CA 92093 c

STEVEN KERCKHOFF

Stanford University
Stanford, CA 94305

ASSOCIATE EDITORS
R. ARENS E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

(1906-1982)

SUPPORTING INSTITUTIONS
UNIVERSITY OF ARIZONA UNIVERSITY OF OREGON
UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA UNIVERSITY OF HAWAII
MONTANA STATE UNIVERSITY UNIVERSITY OF TOKYO
UNIVERSITY OF NEVADA, RENO UNIVERSITY OF UTAH
NEW MEXICO STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
OREGON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are
not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed
form or offset-reproduced (not dittoed), double spaced with large margins. Please do not use built up fractions
in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters
in red, German in green, and script in blue. The first paragraph must be capable of being used separately as
a synopsis of the entire paper. In particular it should contain no bibliographic references. Please propose a
heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to
any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. Supply
name and address of author to whom proofs should be sent. All other communications should be addressed
to the managing editor, or Elaine Barth, University of California, Los Angeles, California 90024.

There are page-charges associated with articles appearing in the Pacific Journal of Mathematics. These
charges are expected to be paid by the author's University, Government Agency or Company. If the author or
authors do not have access to such Institutional support these charges are waived. Single authors will receive
50 free reprints; joint authors will receive a total of 100 free reprints. Additional copies may be obtained at
cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate:
$190.00 a year (5 Vols., 10 issues). Special rate: $95.00 a year to individual members of supporting institu-
tions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should be
sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Old back numbers
obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

The Pacific Journal of Mathematics at P.O. Box 969, Carmel Valley, CA 93924 (ISSN 0030-8730) publishes
5 volumes per year. Application to mail at Second-class postage rates is pending at Carmel Valley, California,
and additional mailing offices. Postmaster: send address changes to Pacific Journal of Mathematics, P.O. Box
969, Carmel Valley, CA 93924.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Copyright © 1989 by Pacific Journal of Mathematics



Pacific Journal of Mathematics
Vol. 137, No. 2 February, 1989

Alain Connes and E. J. Woods, Hyperfinite von Neumann algebras and
Poisson boundaries of time dependent random walks . . . . . . . . . . . . . . . . . . 225

R. Coquereaux and D. Kastler, Remarks on the differential envelopes of
associative algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

Uffe Haagerup, The injective factors of type IIIλ, 0< λ < 1 . . . . . . . . . . . . . . 265
Vaughan Jones, On knot invariants related to some statistical mechanical

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Paul Scott Muhly, Kichi-Suke Saito and Baruch Solel, Coordinates for

triangular operator algebras. II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
Klaus Schmidt, Mixing automorphisms of compact groups and a theorem

by Kurt Mahler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
Irving E. Segal, Algebraic characterization of the vacuum for quantized

fields transforming nonunitarily . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
Colin Eric Sutherland and Masamichi Takesaki, Actions of discrete

amenable groups on injective factors of type IIIλ, λ 6= 1 . . . . . . . . . . . . . . . 405

Pacific
JournalofM

athem
atics

1989
Vol.137,N

o.2

http://dx.doi.org/10.2140/pjm.1989.137.245
http://dx.doi.org/10.2140/pjm.1989.137.245
http://dx.doi.org/10.2140/pjm.1989.137.265
http://dx.doi.org/10.2140/pjm.1989.137.311
http://dx.doi.org/10.2140/pjm.1989.137.311
http://dx.doi.org/10.2140/pjm.1989.137.335
http://dx.doi.org/10.2140/pjm.1989.137.335
http://dx.doi.org/10.2140/pjm.1989.137.371
http://dx.doi.org/10.2140/pjm.1989.137.371
http://dx.doi.org/10.2140/pjm.1989.137.387
http://dx.doi.org/10.2140/pjm.1989.137.387
http://dx.doi.org/10.2140/pjm.1989.137.405
http://dx.doi.org/10.2140/pjm.1989.137.405

	
	
	

