Vol. 139, No. 1, 1989

Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Translation to and fro over Kac-Moody algebras

Wayne L. Neidhardt

Vol. 139 (1989), No. 1, 107–153
Abstract

Over a (not necessarily symmetrizable) Kac-Moody algebra, we define translation functors in both the dominant and the antidominant directions, and prove an adjoint-like property relating the two translation functors. Using this property, we show that for any x and y in the Weyl group, the numbers dimExtn(M(x λ),L(y λ)) relating Verma modules and irreducible modules do not depend on the choice of dominant integral weight λ. We then define operators of coherent continuation and polynomials analogous to the Kazhdan-Lusztig polynomials and study some of their properties.

Mathematical Subject Classification 2000
Primary: 17B67
Milestones
Received: 11 August 1987
Revised: 17 August 1988
Published: 1 September 1989
Authors
Wayne L. Neidhardt