APÉRY BASIS AND POLAR INVARIANTS OF PLANE CURVE SINGULARITIES

ANGEL GRANJA
APÉRY BASIS AND POLAR INVARIANTS OF PLANE CURVE SINGULARITIES

ANGEL GRANJA

Let C be an irreducible plane algebroid curve singularity over an algebraically closed field K, defined by a power series $f \in K[[X, Y]]$. In this paper, we study those power series $h \in K[[X, Y]]$ for which the intersection multiplicity $(f \cdot h) = \dim_K(K[[X, Y]]/(f, y))$ is an element of the Apéry basis of the value semigroup for C. We prove a factorization theorem for these power series, obtaining strong properties of their irreducible factors. In particular we show that some results by M. Merle and R. Ephraim are a special case of this theorem.

Introduction. In this paper we denote by K an algebraically closed field of arbitrary characteristic.

Let C be an irreducible plane algebroid curve over K (i.e. $C = \text{Spec}(R)$, where $R = K[[X, Y]]/(f)$, with f irreducible). We will suppose $f \not\in YK[[X, Y]]$ and we will write $n = \text{Ord}_x(f(X, 0))$.

We will denote by $S(C)$ the semigroup of values of C (see [2], 11.0.1 and [3], 4.3.1), by $A_n = \{0 = a_0 < a_1 < \cdots < a_{n-1}\} = \{\min(S(C))n(k + n\mathbb{Z}_+); 0 \leq k \leq n - 1\}$ the Apéry basis of $S(C)$ relative to n (see [2], 1.1.1) and by $\{v_0, \ldots, v_r\}$ the n-sequence in $S(C)$, where $v_0 = n$, and $v_i = \min\{v \in S(C); \gcd(v_0, v_1, \ldots, v_{i-1}) > \gcd(v_0, v_1, \ldots, v_{i-1}, v)\}, 1 \leq i \leq r$ (see [1], 6.6, [2], 1.3.2 and [6]). (Note that $\gcd(v_0, \ldots, v_r) = 1$.)

The main objective of this work is the proof of the following theorem.

Factorization Theorem. Let $h \in K[[X, Y]]$ be such that $0 \leq k = \text{Ord}_x(h(X, 0)) \leq n - 1$. Then $(f \cdot h) \leq a_k$. Suppose $(f \cdot h) = a_k$. If $k = \sum_{0 \leq q \leq r} s_q(n/d_{q-1})$, where $d_q = \gcd(v_0, \ldots, v_q), (d_0 = v_0 = n, d_r = 1), 0 \leq s_q \leq r$ and $0 \leq s_q \leq d_{q-1}/d_q$, then

$$h = \prod_{1 \leq i \leq r} h_i \quad \text{and} \quad h_i = \prod_{1 \leq j \leq m_i} h_{ij},$$

with h_{ij} either irreducible or unit in $K[[X, Y]]$, $1 \leq j \leq m_i$, $1 \leq i \leq r$, and

$$1 \leq j \leq m_i \quad \text{Ord}_x(h_j(X, 0)) = s_i(n/d_{i-1}), 1 \leq i \leq r.$$
Here \((f \cdot h) \) denotes, for two power series \(f \) and \(h \), the intersection multiplicity of the algebroid cycles defined, respectively, by \(f \) and \(h \).

In the fourth section we see that the polars of an irreducible complex analytic germ of a plane curve singularity satisfy the hypotheses of the above theorem for \(k = n - 1 \). Thus, the Theorem 3.1 of [5] and Lemma 1.6 of [4] follow from the above Factorization Theorem.

1. Apéry basis and the \(n \)-sequence. In this section we will summarize some properties of the Apéry basis. For other properties you can see [2] and [6].

Proposition 1. If \(M_j = K[[Y]] + K[[Y]]X + \cdots + K[[Y]]X^j, 0 \leq j \leq n - 1 \), then:

1. \(\{a_j\} = v(M_{j-1} + X^j) - v(M_{j-1}), 1 \leq j \leq n - 1 \),
2. \(v(M_j) = \bigcup_{0 \leq i \leq j} (a_i + n\mathbb{Z}_+), 0 \leq j \leq n - 1 \),
3. \(a_i + a_j \leq a_{i+j}, 0 \leq i + j \leq n - 1 \),

where \(v(M_i) = \{(f \cdot g); g \in M_i - \{0\}\}, 0 \leq i \leq n - 1 \) and \(v(M_{i-1} + X^i) = \{(f \cdot (g + X^i)); g \in M_{i-1}\}, 1 \leq i \leq n - 1 \).

Proof. See [2], Satz 3 and [6], Proposition 2.

Remark 2. Note that in the above proposition \(a_j \geq (f \cdot (g + X^j)) \) for each \(g \in M_{j-1}, 1 \leq j \leq n - 1 \). (If \((f \cdot (g + X^j)) > a_j \), then there exists \(g_{j-1} \in M_{j-1} \) such that \((f \cdot (g_{j-1} + X^j)) = a_j \), so \(a_j = (f \cdot (g - g_{j-1})) \) and we get a contradiction.)

Proposition 3. One has

\[
as_1(d/d_0) + \cdots + s_j(d/d_{j-1}) = s_1v_1 + \cdots + s_jv_j,
\]

and \(v_{j+1} > (d_{j-1}/d_j)v_j, 0 \leq j \leq r - 1, \) with \(0 \leq s_i \leq (d_{i-1}/d_i), 1 \leq i \leq r \).

Proof. See [2], Satz 2 and [6], Proposition 1.

Remark 4. Note that \(v_j = a_{d/d_j}, 1 < j < r \) and

\[
A_n = \{as_1(d/d_0) + \cdots + s_r(d/d_{r-1}); 0 \leq s_i < (d_{i-1}/d_i), 1 < i < r\}.
\]

Example 5. Here we give some examples of different possibilities for the Apéry basis and \(n \)-sequences. Let us consider the curves
\(C_i = \text{Spec}(K[[X, Y]]/(f_i)), 1 \leq i \leq 3, \) where \(f_1 = X^2 + Y^5, f_2 = (Y + X^2)^2 + X^5 \) and \(f_3 = Y^2 + X^5. \) It is easy to check that
\[
S(C_1) = S(C_2) = S(C_3) = \{0, 2, 4, 5, 6, 7, 8, \ldots \},
\]
and one has \(f_i \notin YK[[X, Y]], 1 \leq i \leq 3, \) and \(\text{Ord}_X(f_1(X, 0)) = 2, \)
\(\text{Ord}_X(f_2(X, 0)) = 4 \) and \(\text{Ord}_X(f_3(X, 0)) = 5. \) So \(A_2 = \{0 = a_0, a_1 = 5\}. \) The 2-sequence is \(\{v_0 = 2, v_1 = 5\}, a_1 = (f_1 \cdot X), d_0 = d = 2 \) and \(d_1 = 1. \) \(A_4 = \{0 = a_0, a_1 = 2, a_2 = 5, a_3 = 7\}. \) The 4-sequence is \(\{v_0 = 4, v_1 = 2, v_3 = 5\}, a_1 = (f_2 \cdot X), a_2 = (f_2 \cdot (Y + X^2)), a_3 = (f_2 \cdot (Y + X^2))X, d_0 = d = 4, d_1 = 2 \) and \(d_2 = 1. \) And \(A_5 = \{0 = a_0, a_1 = 2, a_2 = 4, a_3 = 6, a_4 = 8\}. \) The 5-sequence is \(\{v_0 = 5, v_1 = 2\}, a_i = (f_3 \cdot X^i), 1 \leq i \leq 4, d_0 = d = 5 \) and \(d_1 = 1. \)

2. \(n \)-sequences and Hamburger-Noether expansions. Let \(x \) and \(y \) be, respectively, the residue classes of \(X \) and \(Y \) in \(R. \) Assume that \(n_0 = (f \cdot X) \leq (f \cdot Y) = n, \) that is, \(X \) is a generic coordinate (or \(x \) is a transversal parameter of \(C, \) see [3]) and \(Y \) could be generic, or have maximal contact with \(f, \) or any thing in between. In this form, we can study all of these possibilities for \(Y \) simultaneously. This is the point of taking the Apéry basis with respect to a general \(n, \) rather than \(n = n_0. \) If \(n = n_0 \) then \(Y \) should be generic.

Let
\[
y = a_{01}x + \cdots + a_{0h_0}x^{h_0} + x^{h_0}z_1,
\]
\[
x = z_1^{h_1}z_2,
\]

\[
z_{s_1-1} = a_{s_1k_1}z_{s_1}^{k_1} + \cdots + a_{s_1h_{s_1}}z_{s_1}^{h_{s_1}} + z_{s_1}^{h_{s_1}}z_{s_1+1},
\]

\[
z_{s_g-1} = a_{s_gk_g}z_{s_g}^{k_g} + \cdots
\]

be the Hamburger-Noether expansion of \(C \) in the basis \((x, y)\) (see [3], 2.2.2 and 3.3.4), and let \(n_i = \text{Ord}_{z_{s_g}}(z_i), 0 \leq i \leq s_g (z_0 = x), \)
\((1 = n_{s_g} < n_{s_g-1} < \cdots < n_0 \leq n = \text{Ord}_{z_{s_g}}(y), \) see [3], 2.2.5).

Note that the Hamburger-Noether expansion is nothing but an explicit description of the minimal resolution of singularities \(C \) of \(C \) by a sequence of point blowing-ups. \(z_i, z_i-1 \) are the regular parameters of the ambient plane at the \(h_0 + \cdots + h_i \)th blowing up. \(z_{s_g} \) is a regular parameter of \(C. \) In particular, for any \(h \in K[[X, Y]] \) such that \(f \) does not divide \(h \)
\[
(f \cdot h) = \text{Ord}_{z_{s_g}}(h).
\]
The following proposition is an easy consequence of the Hamburger-Noether expansion and the formula for Zariski exponents of a plane curve (see [3] 4.2.7 and 4.3.10).

Proposition 6. With the above notations one has:

1. \(n_0 = \min(S(C) - \{0\}) \),
2. \(n_0 \leq n = v_0 \leq h_0 n_0 + n_1 \),
3. (i) If \(v_0 \leq v_1 \), then \(r = g \), \(v_0 = n_0 \) and
 \[
 v_{i+1} = \left(1/n_{s_i}\right) \sum_{0 \leq j \leq s_i} h_j n_j^2 + n_{s_i+1},
 \]
 \(0 \leq i \leq r - 1 \), \((s_0 = 0) \). Moreover \(a_{01} \neq 0 \).

 (ii) If \(v_0 > v_1 \) and \(d_1 = v_1 \), then \(r = g + 1 \), \(v_0 = k_0 v_1 \), \(k_0 \geq 2 \), \(v_1 = n_0 \) and
 \[
 v_{i+2} = \left(1/n_{s_i}\right) \sum_{0 \leq j \leq s_i} h_j n_j^2 + n_{s_i+1},
 \]
 \(0 \leq i \leq r - 1 \), \((s_0 = 0) \). Moreover \(a_{0j} = 0 \), \(1 \leq j < k_0 \) and \(a_{1k_0} \neq 0 \).

 (iii) If \(v_0 > v_1 \) and \(d_1 < v_1 \), then \(r = g \), \(v_1 = n_0 \), \(v_0 = h_0 n_0 + n_1 \) and
 \[
 v_{i+1} = \left(1/n_{s_i}\right) \sum_{0 \leq j \leq s_i} h_j n_j^2 + n_{s_i+1},
 \]
 \(0 \leq i \leq r - 1 \), \((s_0 = 0) \). Moreover \(a_{0j} = 0 \), \(1 \leq j \leq h_0 \).

Proof. (1) and (2) are obvious from the Hamburger-Noether expansions. We must only prove (3).

For this, if one writes \(\overline{\beta}_0 = n_0 \) and
\[
\overline{\beta}_i = \left(1/n_{s_i}\right) \sum_{0 \leq j \leq s_i} h_j n_j^2 + n_{s_i+1},
\]
\(0 \leq i \leq g - 1 \), then one has

(I) \(\overline{\beta}_i = \min(S(C) - \{0\}) \) and \(\overline{\beta}_i = \min\{\overline{\beta} \in S(C); \gcd(\overline{\beta}_0, \ldots, \overline{\beta}_{i-1}) \>
\]
\(\gcd(\overline{\beta}_0, \ldots, \overline{\beta}_{i-1}, \overline{\beta})\}, 1 \leq i \leq g \) (see [3], 4.2.7 and 4.3.10).

On the other hand, note that one has the equalities

(II) \(v_0 = n \) and \(v_i = \min\{v \in S(C); \gcd(v_0, \ldots, v_{i-1}) \>
\]
\(\gcd(v_0, \ldots, v_{i-1}, v)\}, 1 \leq i \leq r \).

We distinguish the following three possibilities:

(i) \(n_0 = n < h_0 n_0 + n_1 \). In that case \(a_{01} \neq 0 \), \(v_0 = n_0 \) and it follows from (I) and (II) that \(r = g \) and \(v_i = \overline{\beta}_i \), \(1 \leq i \leq g \).

(ii) \(n_0 < n = k_0 n_0 < h_0 n_0 + n_1 \). Then \(a_{0j} = 0 \), \(1 \leq j \leq k_0 \), \(a_{0k_0} \neq 0 \), \(v_0 = k_0 n_0 \), \(v_1 = n_0 \) and it follows from (I) and (II) that \(r = g + 1 \) and \(v_{i+1} = \overline{\beta}_i \), \(1 \leq i \leq r - 1 \).
(iii) $n_0 < n = h_0 n_0 + n_1$. Now $a_{0j} = 0$, $1 \leq j \leq h_0$, $v_0 = h_0 n_0 + n_1$, $v_1 = n_0$ and it follows from (I) and (II) that $r = g$ and $v_i = \beta_i$, $2 \leq i \leq r$.

3. Infinitely near points and intersection multiplicity. Now consider another irreducible plane algebroid curve over K, $C' = \text{Spec}(R')$, with $R' = K[[X, Y]]/(f')$, $C' \neq C$ and $f' \notin YK[[X, Y]]$. Let x' and y' be the residue classes of X and Y, respectively, in R'. We denote by

$$y' = a_{01}' x' + \cdots + a_{0h_0}' x'^{h_0} + x'^{h_0} z'_1,$$

$$x' = z'_1 z'_2,$$

$$z'_{s_i'-1} = a_{s_i'k_i'} z'^{k_i'} s'_i + \cdots + a_{s_i'k_i'} z'^{k_i'} s'_i + z'_1 z'_1 z'_1 z'_{s_i'-1},$$

the Hamburger-Noether expansion of C in the basis (x', y'). We also put $n'_i = \text{Ord}_{z'_i}(z'_i)$, $0 \leq i \leq s'_i$, $(x' = z'_0)$ and $n' = \text{Ord}_x(f'(X, 0)) = \text{Ord}_{x'}(y')$.

Let N be the number of infinitely near points that C and C' have in common (i.e. $N = h_0 + h_1 + \cdots + h_{s-1} + i - 1$, s being the largest integer for which $h_q = h'_q$, $0 \leq q \leq s - 1$, and $a_{jk} = a'_{jk}$, $i \leq k \leq h_j$, $0 \leq j \leq s - 1$, and i being the least index such that $a_{si} \neq a'_{si}$ $(i \leq h_s + i, i \leq h'_s + 1)$) (see [3] 2.3.2).

Proposition 7. If

$$\sum_{0 \leq q \leq s_i - 1} h_q + k_i - 1 \leq N \leq \sum_{0 \leq q \leq s_i - 1} h_q + k_i - 1,$$

$1 \leq i \leq g$, $(s_0 = 0)$, then $(f \cdot f') \leq n'd_{j-1} v_j / n$, where $j = i$ if $v_0 < v_1$ or $v_0 > v_1$, $d_1 < v_1$, and $j = i + 1$ if $v_0 > v_1$, $d_1 = v_1$. Furthermore, if $(f \cdot f') < n'd_{j-1} v_j / n$, then d_{j-1} divides $(f \cdot f')$.

Proof. One has $n = h_{q+1} n_{q+1} + n_{q+2}$, $s_j \leq q \leq s_{j+1} - 2$, $n_{s_{j+1}-1} = k_{j+1} n_{s_{j+1}}$, $0 < j \leq g - 1$, and $n'_p = h'_{p+1} n'_{p+1} + n'_{p+2}$, $s'_j \leq p \leq s'_{j+1} - 2$, $n'_{s'_{j+1}-1} = k'_{j+1} n'_{s'_{j+1}}$, $0 < j \leq g' - 1$.
So \(n_{s_i} \) divides \(n_i \), and \(n'_{s_i} \) divides \(n'_k \) for \(i < s_j \) and \(k < s'_j \). On the other hand, since

\[
\sum_{0 \leq q \leq s_{i-1} - 1} h_q + k_{i-1} \leq N
\]

then \(h_q = h'_q \), \(0 \leq q \leq s_{i-1} - 1 \) and \(k_{i-1} = k'_{i-1} \), so

(III) \(n/n_{s_{i-1}}, n_q/n_{s_{i-1}} = n'_q/n'_{s_{i-1}}, 0 \leq q \leq s_{i-1} \).

From Proposition 5 we see that

(IV) \(d_{j-1} = n_{s_{i-1}} \).

Thus, one can compute \((f \cdot f')\) in terms of the possible values of \(N \) (see [3], 2.3.2 and 2.3.3). Namely, one has the following possibilities:

(A) \(N = \sum_{0 \leq q \leq s_{i-1} - 1} h_q + k_{i-1} \), with \(k_{i-1} < k < \min(h_{s_{i-1}}, h'_{s_{i-1}}) \).

In that case one has

\[
(f \cdot f') = \sum_{0 \leq q < s_{i-1} - 1} h_q n_q n'_q + k n_{s_{i-1} - 1} n'_{s_{i-1}}
\]

so \(d_{j-1} \) divides \((f \cdot f')\) by (IV), and \(\alpha = n'd_{j-1}v_j/n \), by (III), (IV) and Proposition 6.

(B) \(N = \sum_{0 \leq q \leq s} h_q \), with \(s_{i-1} \leq s < \min(s_i, s'_i) \) and \(h_s < h'_s \).

Now one has

\[
(f \cdot f') = \sum_{0 \leq q \leq s} h_q n_q n'_q + n_{s+1} n'_s
\]

\[
< \sum_{0 \leq q \leq s-1} h_q n_q n'_q + h'_s n sn'_s + n sn'_s+1 = \beta.
\]

(Note that \(h_s < h'_s \), so \(n_{s-1} n'_s = h_s n sn'_s + n_{s+1} n'_s < (h_s + 1)n_s n'_s \leq h'_s n sn'_s < h'_s n sn'_s + n sn'_s+1 \).) By (III), (IV) and Proposition 6, it follows that

\[
(f \cdot f') = \sum_{0 \leq q < s_{i-1}} h_q n_q n'_q + n_{s_{i-1}+1} n_{s_{i-1}} = n'd_{j-1}v_j/n, \quad \text{or}
\]

\[
(f \cdot f') = \sum_{0 \leq q < s_{i-1}} h_q n_q n'_q + n_{s_{i-1}} n'_{s_{i-1}+1} < \beta = n'd_{j-1}v_j/n,
\]

and \(d_{j-1} \) divides \((f \cdot f')\).

The other cases can be proved in a similar way:

(B') \(N = \sum_{0 \leq q \leq s-1} h_q + h'_s \), with \(s_{i-1} \leq s < \min(s_i, s'_i) \) and \(h'_s < h_s \).

(C.1) \(N = \sum_{0 \leq q \leq s_{i-1}} h_q + k_i - 1 \), with \(s_i < s'_i \) and \(k_i < h'_{s_i} \).

(C.2) \(N = \sum_{0 \leq q \leq s_{i-1}} h_q + h'_{s_i} \), with \(s_i < s'_i \) and \(h'_{s_i} < k_i \).
(C') \(N = \sum_{0 \leq q \leq s_i - 1} h_q + k_i - 1 \), with \(s'_i < s_i \) and \(k'_i < h_{s'_i} \).

(C.2) \(N = \sum_{0 \leq q \leq s_i - 1} h_q + h_{s'_i} \), with \(s'_i < s_i \) and \(h_{s'_i} < k'_i \).

(D) \(N = \sum_{0 \leq q < s_i - 1} h_q + k_i - 1 \), with \(s_i = s'_i \) and \(k_i < k'_i \).

(D') \(N = \sum_{0 \leq q < s_i - 1} h_q + k_i - 1 \), with \(s_i = s'_i \), \(k_i = k'_i \) and \(a_{s_i, k_i} \neq a'_{s_i, k_i} \).

Corollary 8. For each nonnegative integer \(j \), \(1 \leq j \leq r \), the following statements are equivalent:

(1) \((f \cdot f') > n'd_{j-1}v_j/n \),

(2) \(N = \sum_{0 \leq q < s_i - 1} h_q + k_i - 1 \),

where \(i = j \) if \(v_0 < v_1 \) or \(v_0 > v_1 \) and \(d_1 < v_1 \), and \(i = j - 1 \), \(k_0 = v_0/v_1 \) if \(v_0 > v_1 \) and \(d_1 = v_1 \). In particular, if either (1) or (2) is true then \(n' = n's_n/d_j \).

Proof. (1) \(\Rightarrow \) (2). If \(v_0 > v_1 \), \(d_1 = v_1 \) and \((f \cdot f') > n'v_1 \) then \(N > k_0 - 1 \). Indeed, suppose \(N \leq k_0 - 1 \). Then \(a_{0q} = a'_{0q} \), for \(q \leq N \) and \(a_{0N+1} \neq a'_{0N+1} \). If \(a'_{0N+1} \neq 0 \) then \((N + 1)n_0 = n' \) and if \(a'_{0N+1} = 0 \) then \(N + 1 = k_0 \) and \((N + 1)n_0 \leq n' \), so in any case \((f \cdot f') = (N + 1)n_0n'_0 \leq n'v_1 \) and we get a contradiction.

Now suppose \((f \cdot f') > n'd_{j-1}v_j/n \) and

\[
\sum_{0 \leq q < s_i - 1} h_q + k_i - 1 < N
\]

with \(j \geq 1 \) if \(v_0 < v_1 \) or \(v_0 > v_1 \) and \(d_1 < v_1 \), and with \(j \geq 2 \) if \(v_0 > v_1 \) and \(d_1 = v_1 \). Then we can assume

\[
\sum_{0 \leq q \leq s_{p-1} - 1} h_q + k_{p-1} < N \leq \sum_{0 \leq q \leq s_{p-1} - 1} h_q + k_p - 1,
\]

with \(1 \leq i \leq p \). It follows from Proposition 7 that \((f \cdot f') \leq n'd_{s-1}v_s/n \), with \(s \leq j \) and \(d_{s-1}v_s \leq d_{j-1}v_j \) (see [2], Satz 2) which is a contradiction.

(2) \(\Rightarrow \) (1). If \(v_0 > v_1 \), \(d_1 = v_1 \) and \(N > k_0 - 1 \), then \((f \cdot f') > k_0n_0n'_0 \), and \(n' = k_0n'_0 \), \((a_{0k_0} = a'_{0k_0}) \), so one has \((f \cdot f') > n'v_1 \) \((n_0 = v_1) \).

Now if

\[
\sum_{0 \leq q \leq s_i - 1} h_q + k_i - 1 < N
\]
with \(i \geq 1\) then \(n/n_{s_i} = n'/n'_{s_i}\), \(n_q/n_{s_i} = n'_q/n'_{s_i}\), \(0 \leq q \leq s_i\) and
\[
(f \cdot f') = \sum_{0 \leq q \leq s_i-1} h_q n_q n'_q + k_i n_{s_i} n'_{s_i} = \gamma.
\]

By Proposition 6
\[
(n'/n)d_{j-1} v_j = (n'_{s_i-1}/n_{s_i-1}) \left(\sum_{0 \leq q \leq s_i-1} h_q n_q^2 + n_{s_i-1+1} n_{s_i-1} \right).
\]

Now
\[
\gamma = \sum_{0 \leq q \leq s_i-1} h_q n_q n'_q + k_i n_{s_i} n'_{s_i} = (n_{s_i-1}/n_{s_i-1}) \left(\sum_{0 \leq q \leq s_i-1} h_q n_q^2 + k_i n_{s_i}^2 \right).
\]

Thus we have to show that
\[
\sum_{0 \leq q \leq s_i-1} h_q n_q^2 + n_{s_i-1+1} n_{s_i-1} = \sum_{0 \leq q \leq s_i-1} h_q n_q^2 + k_i n_{s_i}^2.
\]

But this follows by repeated application of the identities \(n_{q-1} = h_q n_q + n_{q+1}\), since \(k_i n_{s_i} = n_{s_i-1}\).

Corollary 9. For \(1 \leq j \leq r\), if \((f \cdot f') < n'd_{j-1} v_j/n\), then \(d_{j-1}\) divides \((f \cdot f')\).

Proof. If \(v_0 > v_1\), \(d_1 = v_1\) and \((f \cdot f') < n'v_1\) then \(N \leq k_0 - 1\) (Corollary 8). Thus, if \(a_{0q} = a'_{0q}\), \(1 \leq q \leq N\), and \(a_{0N+1} \neq a'_{0N+1}\) then \(N + 1 = k_0\) and \((f \cdot f') = (N + 1)n_0 n'_0 = n_0' v_0\). (For if \(N + 1 < k_0\) then \((f \cdot f') = n'v_1\) which is a contradiction.)

Now we can assume \((f \cdot f') < n'd_{j-1} v_j/n\), with \(j \geq 1\) if \(v_0 < v_1\) or \(v_0 > v_1\) and \(d_1 < v_1\), and \(j \geq 2\) if \(v_0 > v_1\) and \(d_1 = v_1\). By Corollary 8 one has
\[
\sum_{0 \leq q \leq s_i-1} h_q + k_i - 1 \geq N
\]
with \(i = j\) if \(v_0 < v_1\) or \(v_0 > v_1\) and \(d_1 < v_1\), and with \(i = j - 1\) if \(v_0 > v_1\) and \(d_1 = v_1\). So, by Proposition 7, \(d_{j-1}\) divides \((f \cdot f')\).

4. Proof of the Factorization Theorem. As \(\text{Ord}_x(h(X,0)) = k\) we can write \(h = uh'\), with \(h' \in M_{k-1} + X^k\) and \(u \in K[[X, Y]]\) being a unit. So \((f \cdot h) = (f \cdot h') \leq a_k\).

Also, we can write \(a_k = \sum_{0 \leq q \leq s} s_q v_q\) and \(k = \sum_{0 \leq q \leq r} s_q (d/d_q)\), with \(0 \leq s_q < d_{q-1}/d_q\) (see Remark 4). Let \(q\) be the greatest index such that \(s_q \neq 0\) and let
\[
h = \prod_{0 \leq j \leq m} h_j
\]
be the factorization of h as a product of irreducible elements in $K[[X,Y]]$.

If for any j

$$\frac{(f \cdot h_j)}{\text{Ord}_x(h_j(X,0))} > d_{q-1}v_q/n$$

then, by Corollary 8, $\text{Ord}_x(h_j(X,0)) = an/d_q$ ($a \neq 0$), but $k < n/d_q$ which is a contradiction. (Note that $s_p = 0$ for $p > q$ and

$$k \leq \sum_{1 \leq p \leq q} \left(\frac{(d_{p-1}/d_p)}{d_{p-1}} - 1\right) = \frac{d}{d_{q-1}} - 1 < \frac{d}{d_q} = n/d_q.$$)

On the other hand, if for $1 \leq j \leq m$

$$\frac{(f \cdot h_j)}{\text{Ord}_x(h_j(X,0))} < d_{q-1}v_q/n$$

then d_{q-1} divides $(f \cdot h)$ by Corollary 9. So d_{q-1}/d_q divides s_q, and hence $s_q = 0$ since $0 \leq s_q < d_{q-1}/d_q$, and we get a contradiction.

Thus, there exists h_{j_0} such that

$$\frac{(f \cdot h_{j_0})}{\text{Ord}_x(h_{j_0}(X,0))} = d_{q-1}v_q/n.$$

Moreover, if $q \geq 2$ then $\text{Ord}_x(h_{j_0}(X,0)) = an/d_{q-1}$ by Corollary 8, as $d_{q-1}v_q > d_qv_{q-1}$ (see Proposition 3). If $q = 1$ then $(f \cdot h_{j_0}) = \text{Ord}_x(h_{j_0}(X,0)) = an/d_{q-1}$. In any case $\text{Ord}_x(h_{j_0}(X,0)) = an/d_{q-1}$ with $0 \leq a \leq s_q$.

(Note that $k \leq \sum_{1 \leq p \leq q} (\frac{(d_{p-1} - 1)}{d_{p-1}} + s_q d/d_{q-1} - (d/d_{q-1}) + s_q d/d_{q-1} = (s_q + 1)d/d_{q-1} = (s_q + 1)n/d_{q-1}.)$

So $h' = h/h_{j_0}$ satisfies $\text{Ord}_x(h'(X,0)) = k' = k - an/d_{q-1}$ and

\[(f \cdot h') = a_k - a(n/d_{q-1})d_{q-1}v_q/n = a_k - av_q = a_k';\] hence the Theorem follows by iterating the above reasoning using h' instead of h in the next step.

5. **The complex analytic case.** In this section, C is assumed to be an irreducible complex analytic germ at $0 \in C^2$ of a plane curve singularity.

Let n be the multiplicity of C and let $P(C)$ be a general polar of C (i.e. $P(C)$ is defined by a reduced element $h = \lambda(\partial f/\partial X) - \mu(\partial f/\partial Y)$ of $C\{X,Y\}$, and $n - 1$ is the multiplicity of $P(C)$). M. Merle in [5] has proved that $P(C)$ decomposes into g curves $\Gamma\{1\}, \ldots, \Gamma\{g\}$, where $\Gamma\{g\} (1 \leq q \leq g)$ is such that

1. its multiplicity is $(n/e_{q-1})((e_{q-1}/e_q) - 1)$,
2. every irreducible component of $\Gamma\{q\}$, $\Gamma\{q\}$, has a contact of order β_q with C and $\frac{(\Gamma\{q\}) \cdot C)\cap (\Gamma\{q\}) = \beta_q/(n/e)$.

Here \(\{\beta_0, \ldots, \beta_g\} \) is the minimal system of generators of \(S(C) \), \(e_q = \gcd(\beta_0, \ldots, \beta_q) \), \(0 \leq q \leq g \), \(\beta_0 < \beta_1 < \cdots < \beta_g \) are the Puiseux exponents and \(m(\Gamma_{(q,i)}) \) denotes the multiplicity of \(\Gamma_{(q,i)} \).

Without loss of generality, we may assume that \(n = \text{Ord}_x(f(X,0)) \), and therefore \(n - 1 = \text{Ord}_x(h(X,0)) \).

On the other hand,
\[
(f \cdot h) = \sum_{0 \leq q \leq g} ((e_{q-1}/e_q) - 1)\beta_q.
\]
and hence \(f \cdot h = a_{n-1} \), since \(\{\beta_0, \ldots, \beta_g\} \) is the \(n \)-sequence in \(S(C) \) (see [2], Satz 2 and [5], Prop. 1.1).

Thus, \(h \) satisfies the hypotheses of the Factorization Theorem for \(k = n - 1 \), and the above Theorem 3.1 of [5] is a special case of ours. (Note that \(\Gamma_{(q,i)} \) has a contact of order \(\beta_q \) with \(C \) if and only if \((\Gamma_{(q,i)} \cdot C)/m(\Gamma_{(q,i)}) = \beta_q/(n/e_{q-1}) \), see [5], Prop. 2.4.)

In general, if \(M \) is a smooth germ of a plane curve singularity defined by \(z \in C\{X, Y\} \), then the polar of \(C \) with respect to \(M \) is the (possibly nonreduced) germ whose defining ideal is generated by the Jacobian \(J(f, z) = \partial(f, z)/\partial(X, Y) \) (see [4]). In particular, a general polar \(P(C) \) of \(C \) is defined by \(h = J(f, \lambda X + \mu Y) \) with \((\lambda, \mu) \) general.

Thus, without loss of generality, we may assume that \(z = Y \) (since \(M \) is smooth) and \(J(f, z) = \partial f/\partial X \).

Proposition 10. Keeping the above notations, one has
(a) \(\text{Ord}_x((\partial f/\partial X)(X,0)) = \text{Ord}_x(f(X,0)) - 1 = n - 1 \).
(b) \((f(\partial f/\partial X)) = a_{n-1} \).

Proof. (a) It is obvious.
(b) If \(n = \text{Ord}_x(f(X,0)) \geq \text{Ord}_y(f(0,y)) = m \) then one has a Puiseux type parametrization of \(C \)
\[
X = t^m, \quad Y = \Psi(t)
\]
and we can write (up to multiplication by a unit)
\[
f(X, Y) = \prod_{0 \leq q \leq m} (X - \Psi(W^q X^{1/m})),
\]
Thus,
\[
(f \cdot (\partial f/\partial X)) = \text{Ord}_t((\partial f/\partial X)(t^m, \Psi(t)))
\]
\[
= \text{Ord}_t(\Psi^1(t^m)) + \text{Ord}_t \left(\prod_{1 \leq q \leq m-1} (\Psi(t) - \Psi(W^q t)) \right).
\]
where \(\Psi^1(X^{1/m}) = \partial/\partial X(\Psi(X^{1/m})) \).
On the other hand, we can write
\[\Psi(X^{1/m}) = \sum_{1 \leq j \leq i_0} a_{0j} X^{jn/m} + \sum_{0 \leq j \leq i_1} a_{1j} X^{(\beta_1 + je_1)/m} + \cdots + \sum_{0 \leq j} a_{gj} X^{(\beta_g + je_g)/m}, \]
where \(m = \beta_0 < \beta_1 < \cdots < \beta_g \) are the Puiseux exponents of \(C \) and \(e_i = \gcd(\beta_0, \ldots, \beta_i), 1 \leq i \leq g. \)

Then we have \(\text{Ord}_t \Psi(X^{1/n}) = n - m, \) and
\[\text{Ord} \left(\prod_{1 \leq q \leq m-1} (\Psi(t) - \Psi(w^qt)) \right) = \sum_{1 \leq q \leq g} (e_{i-1} - e_i) \beta_i. \]
(Note that \(\text{Ord}_t(\Psi(t) - \Psi(w^qt)) = \beta_j, \) if
\[q \in \{k(e_{j-2}/e_{j-1}); 1 \leq k < e_{j-1}\} - \{k(e_{j-1}/e_j); 1 \leq k < e_j\}, \]
\[1 \leq j \leq g \quad (e_{-1} = e_0 = m). \]

Now
\[\sum_{1 \leq i \leq g} (e_{i-1} - e_i) \beta_i = c + m - 1, \]
where \(c \) is the conductor of \(S(C) \) (i.e. \(c = \min\{d \in S(C); d + \mathbb{Z}_+ \subset S(C)\} \), see [3], 4.4) and \(c + n - 1 = a_{n-1}, \) since
\[A_n = \{\min(S(C) \cap (j + n\mathbb{Z}_+); 0 \leq j \leq n - 1\}. \]

Finally, a similar argument shows that \((f \cdot \partial f/\partial X) = c + n - 1, \) if \(n = \text{Ord}_x(f(X,0)) < \text{Ord}_y(f(0, Y)). \)

Remark 11. Proposition 10 shows that if \(h \) defines the polar of \(C \) with respect to \(M \) then \(h \) satisfies the hypotheses in the Factorization Theorem for \(k = n - 1, \) so Lemma 1.6 of [4] is also a special case of (2) in the Factorization Theorem.

Acknowledgments. I would like to the thank the referee for this valuable suggestions and kind help.

References

Received December 31, 1986 and in revised form November 18, 1988.

Facultad de Ciencias
Universidad de Valladolid
47005-Valladolid, Spain

and

Facultad de Veterinaria
Universidad de Leon
24007-Leon, Spain
Michel Brestovski, Algebraic independence of solutions of differential equations of the second order .. 1

Bohumil Cenkl, Cohomology operations from higher products in the de Rham complex ... 21

Gustavo Corach and Daniel Suarez, Generalized rational convexity in Banach algebras ... 35

Keresztély Corrádi and Sándor Szabó, A new proof of Rédei’s theorem 53

Steven R. Costenoble and Stefan Waner, Equivariant orientations and G-bordism theory .. 63

Angel Granja, Apéry basis and polar invariants of plane curve singularities ... 85

Young Soo Jo, Isometries of tridiagonal algebras ... 97

Ronald Leslie Lipsman, Harmonic analysis on exponential solvable homogeneous spaces: the algebraic or symmetric cases 117

Erich Miersemann, On the behaviour of capillaries at a corner 149

Marian Nowak, On the finest Lebesgue topology on the space of essentially bounded measurable functions .. 155

Pascal J. Thomas, Hardy interpolating sequences of hyperplanes 163

H. Bevan Thompson, Differentiability properties of subfunctions for second order ordinary differential equations 181