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A sufficient condition is given on unions of complex hyperplanes
in the unit ball of C” so that they allow extension of functions in
the Hardy H' space. The result is compared to Varopoulos’ theorem
about zeros of H” functions.

1. Notations and definitions. For z,w € C",

n
zZ-Ww= Z zZ;W;,
i=1
B'={zeC":|z)P=z-2<1}.
For a;, € B", a; #0,
e
|a|”
4p = p real-dimensional Lebesgue measure. For instance, on C,
~5dzNdz=d,.
Automorphisms of the ball.

a, =

i (2) = ¢g(2) := G — ?(f)zf;:Qk(Z)

where P (z) := ﬁﬁ%ak is the projection onto the complex line through
a, Qx(z) := z — P,(z) is the projection onto the complex hyperplane
perpendicular to a, s? := 1 — |a|*.

The map ¢, is an involution of the ball (see Rudin [4]). Note that
Ok(B") ={z: P(2) =0} ={z: z-a, = O}

We write

_ =z~ w]?)
[l -z w2

de(z,w)? = |pw(2)? =1

This is an invariant distance: if ¢ is an automorphism of the ball
(i.e. any composition of unitary transformations and the above invo-

lutions), dg(¢(z), p(w)) = dg(z, w).
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164 PASCAL J. THOMAS

We will study hyperplanes in the ball, denoted by:
V:={ze€B": z-a; =|aj|*}.

The point g; is the point in V; closest to the origin. It is also the cen-
ter of the n — 1-complex-dimensional ball which V; defines inside B".
This definition makes no sense when a; = 0, so we will not consider
that case. However, the problem we will consider is automorphism-
invariant and if there is a hyperplane going through the origin, apply-
ing to the whole sequence an automorphism ¢,, with |a| small enough,
will preserve the hypotheses (at the expense of a change in the value
of J, see below) and yield the conclusion. We define c?k to be the
“center” of the hyperplane ¢ (V)), i.e.

$c(V) = ¢;' (V) ={z € B": z- T}y = |y '}
We further consider the angle between ¢, (V;) and Vj:

|9 - a
cos B := Tk
19, llax| el
LEMMA 1.

lk Cik

(1) 0 — J
jk chkl2

where

4 -, *
Cik = (I—Sk)W—lajl aj + Skdj,
L = ar - a} — |aj|* = (ax — a)) - a};

lejil* = 1Lk + (1 — Ja;1)(1 = |ag|?).

chk'akl)z _ lag-ag—lajllagl?

2 c0520~=( = ,
@ = \edad) = TP+ A= 1aP){d = e )

02 = (& — a)) - aj|?

l(ar —aj) - a;|* + |a;|2(1 = |a;[2)(1 = |a|?)’
(1 —laj])(1 = |a?)

jil? + (1 = |aj12)(1 — |a|?)

(3)

L= )? =

The proofs of all lemmas are deferred until §4.



SEQUENCES OF HYPERPLANES 165

The interpolation problem. The Hardy space HP(B") is the space of
functions f holomorphic on the ball and verifying

A1 i=sup [ 17D da(d) < o0
r<1 JoBp»

where o is 2n — 1-dimensional Lebesgue measure on 0 B”.
The Bergman space AP (V},) is the space of functions « holomorphic
on the hyperplane V; and verifying

ey = [ la()P dizn-a(2) < oo
k

DEFINITION. [P(A4P(V}),1 — |ai|?) is the product of the Bergman
spaces on each hyperplane, endowed with the following norm: if a =
{ak}kez,, where oy is a function defined and holomorphic on V,

”a“p = ”a”]p(AP Vi) 1=lap]2) = Z(l - |ak| )”ak”Ap Ve)*
k

Notice that ¢, |y, is just an affine map from V} to Qi (B") ~ Bl
so that we can rewrite

D
i = llelfo 4o (ma-1),(1- g 12ym)

- 0=y o 2 90 i 2(w).

Given a function f € H(B"), the space of holomorphic functions,
we consider the following map

oo
T:HB") - [[HW)
i=1
f — {fl Vi}iZl .
DEFINITION. We say that {V}}cz, is an HP-interpolating sequence
of hyperplanes if 7 maps H?(B") onto I7(A4”(V}), 1 — |ai|?).

Equivalently, given {a;} a sequence of functions holomorphic on
Vi, such that

(1 - g ) /V o (2)P dAgn_s(2) < o0,

k
there exists f € H?(B") such that

Sy, = ox.
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This definition is the one given by Amar [1] and reduces in the case
n =1 to that of Shapiro and Shields [5].

REMARK. With this definition, if a sequence of hyperplanes is H?-
interpolating and we take points b; € V, Vk, then the sequence {b;}
is HP-interpolating (in the sense of [2]).

Proof. If we are given a sequence of complex numbers {f;} such
that

D (L= 1) Bl < oo,

k
then define N
_ (115 )
ak(Z) = ('—‘——1 2. Bk ﬁk.
Then
[ e dizns(z)
Ve
116 |”
= pl_ L 10kl i
/Qk(Bn)lﬂkl 1—y(w)- by [y (W)l dhon—a(w),

where y(w) = a + s, w.
[Jy(w)| = s7" 2 = (1= |ax[)""!, and
L—y(w) gw)=(1-|a)(1-w- o),
so, setting b, = y~1(by), we get

[ (@) dineaz)
v,

2yn-1 -2 |
= P 1— a n= / —_— di _Hw
| Bic? (1 = |ag %) ouom | T=w B 2n-2(W)
< C|BlP(1 = |ag|)™ (1 - |b,|*)" because np > n — 1,
(1= B *)"
- pL2 —10IT)”
C'ﬂkl 1_|ak|2 .

It follows that
501 - g ) /V ok ()PP dAan—2(2) < C (1 = BBl
k k k

and the function f € H? which we get by interpolating the a; on the
hyperplanes verifies f(b;) = ai(by) = Bx. a
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Taking b, = a;, we get from [8] (for p > 1) the following necessary

condition:
n
(1 —|a>)(1 - a;]?)
sup — < 00
k ;( |1 —a - aj|?

We also get that any sequence {b; } must be separated in the Gleason
distance; thus there exists > 0 such that if j # k, then

dec(V;, Vi) = inf{dg(z,w),z e Vj,w eV} >J > 0.
We say that the hyperplanes are separated.

2. The main result. We are looking for a sufficient geometric condi-
tion to ensure that a sequence of hyperplanes be H!-interpolating. To
do so, we define another family of neighborhoods for the hyperplanes.

DEFINITION. Given ¢ a positive number, we call fube around V), the
following open subset of B”:

T5(Vi) = {z € B": |(z - &) - a5| < 6(1 — |a ")}

Those neighborhoods of the hyperplanes will be larger than those
given by separatedness in the Gleason distance. This will follow from:

LEMMA 2. (1) Given any z € B",

2 _ | Py © by (2)|?
62 Ve = B s gD + (1~ 8@
Q) VinVi=23 & cos’ 0 > (1 - e ?).
(3) If (2) is satisfied,

0
(1—la;)(1 = a?) _ (1= 1ehl?)
@@ — [ajllal” | cos? Oy

(4)

de(V;, Vi) 2 61> 0 & (1 - 8F)cos? 0 > (1 —|c% ).

From this we can prove that all points of the ball which are close
enough to ¥}, in the invariant distance must be within the tube. Indeed,
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by applying Lemma 2(1) and the fact that

(z—a) a a
Pio¢y(z) =— =2 2

we see that

I(z — ak) - & |?
I(z = ar) - @ ]> + lar |2 (1 = |ae|>)(1 = |2|?)

Clearly then, if z € 8Ts(V}),

dg(z,Vy)* =

52 52

2 _

dg(z, Vi) T o2 Pl T T 2(1+3)
1-{a; |2

which shows the inequality holds for z & T5(V}).

THEOREM. There exists a number cy = cy(d) > 0 such that if

. (1= laH(1 =g \"

(i) sgpj%k( T—a 7] <
and

(it) Jorany j#k, T;(V)nTs;(Vy) =2

then {Vi}rcz, is an H'(B")-interpolating sequence of hyperplanes.

REMARKS. (1) It was proved in [6] that (ii) together with

(1 —lae (1 — a;1%)
(B) sup}: Tea 2f <%

forms a sufficient condition for {V;} to be an H* interpolating se-
quence of hyperplanes.

(2) A similar result holds for a sequence of points, but condition
(1) is enough, with any constant ¢; < 1 [8]. Here ¢y will have to
be even smaller; therefore condition (i) by itself is enough to ensure
separatedness of the points, since in particular each term of the sum
must be less then cg.

Proof of the Theorem. We will construct an approximate extension,
i.e. an operator

E: 1N(4'(Vi),1 = |ay|*) — H' (B")
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such that

(E1) | Ellop < 0
and

(E2) ITE ~Illop < 1.

Then TE is invertible, and one can write a true extension by letting
E = E(TE)~!. The operator TE will be the identity map on /! and
for a € [!, E(c) will be a solution to the interpolation problem.

Let ,
~ _ 1— |ak|2 g ~
E(a)(z) = k§+ (m) ax(z),

where &; = a0y 0 Q) o ¢y 1s an extension of oy, to B”. Note that for
z € V}, the jth term in the sum is exactly 12"a;(z) = a;(z). (E1) is
easily checked, for the coefficient of &, (z) is bounded and it follows
from the computations in [6] that

1_|ak|2>n N
— 2} &z
,/(;Bn (I—Z'ak k( )

< C(1-|aP) /V ok (2)] dAgn(2).

do(z)

This step fails for p > 1, and prevents us from proving H? results
for hyperplanes similar to those for points in [8].
The theorem reduces to:

MAIN LEMMA. For ¢y small enough, there exists ¢, < 1 such that for
any a € I'(A'(Vi), 1 — |ai|?),

Sa-lh [ | 5 (f—_‘i“—ﬁ)z u(2)

j Vilk: k#j

EPY
<e zkja @) /V s (2] dhzg2(2)

dAyn_2(2)

Comparison with zero-set results. Clearly, if {V}rez, satisfy the
hypotheses of the theorem, then their union will be a subset of a zero
set for H'! functions. To see it, simply adjoin to the sequence a hyper-
plane V; such that (i) and (ii) still hold (this can be achieved by taking
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aj on 0B"\ U<, T25(Vx) and |ap| very close to 1); then interpolate 1
on ¥, and 0 everywhere else.

This needs to be compared to the results of N. Th. Varopoulos, at
least in the special case of a divisor made up of a countable union of
complex hyperplanes [9, §8]. In that case, he showed:

PRroPOSITION 8.2. There exist constants Cy, ..., Cy such that if
(8.18) > (1-laj|)" < Co(1 — |ag |*)"
Ji1=aj-ar|<Ci(1-|a|?)
and

(8.19)  Card{j: V;nKu() #@, V; ¢ Kew(0)} < C

where K;,({) := {z € B": |l — z - {| < h}, then there exists p > 0 such
that \J, Vi is a zero set for HP (B").

It can be shown (see e.g. [3]) that (8.18), which is a Carleson measure
condition, is equivalent to

n
(1 —la)( =gl
sup — < 0.
k ;( Il_ak.a}.|2

On the other hand, if we assume separatedness in the invariant dis-
tance, (8.19) is satisfied in the following stronger form:

3Cs > 0 such that Card{j: V;NK,({) #3, V; € Kca(£)} < 1.

Note that the above set is non-empty only when # < 2/Cs.

The idea of the proof is first to use the triangle inequality for the
Koranyi distance to reduce oneself to the case where { € V;n0 B"; then
to apply an automorphism to bring V; to ¢;(V}), which is a hyperplane
through the center of B”. The region K,({) is transformed into a
similar region, because a;, by the assumption that j is in the above
set, is far enough away from {. If another index k was also in the
set, the hyperplane ¢;(V;) would pass through ¢;(K,({)), and thus its
projection onto ¢;(¥;) would come too close to the boundary, violating
the conclusion of Lemma 5, given below.

Varopoulos’ theorem, as he pointed out, provides no control over
the value of p (which could indeed be very small, if one works out
the constants involved). This is essentially because the norm of the
Carleson measure supported by the divisor cannot be made arbitrarily
small. For this very special structure of the divisor |J ; V;, our result
provides additional control on the exponent, although the actual zero
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set involved could be much larger than |J ; Vj. Namely:

PROPOSITION. If {V} }kez, Satisfies

((1 ~ lay[2)(1 - la,-P))" < 2M,

(im) sup » —
1—a aP
ko ik | a jl

and
(iin) Jor any k, Card{j: T5(V;) N T5(Vy) # @} < N,

where M > 0, N > 0, are integers, then there exists f £ 0, f €
HY/2M(N+1)(B"), such that f|y, = 0 for all k.

Proof. An elementary combinatorial argument shows that under
(iiy), the sequence can be split into N + 1 subsequences, each of
which satisfies (ii), and of course (ijs). Then Mills’ Lemma [8] al-
lows us to split each such subsequence into 2™ further subsequences
verifying (i). Thus we are reduced to the case M = 0, N =0, i.e. the
assumptions of the theorem; by the argument given at the beginning
of this section, each subsequence has a nonzero H! function vanish-
ing on it. Taking the product of the annihilating functions, we find
fe HI/ZM(NH)(Bn).

3. Proof of the main lemma. For convenience, we shall introduce
the notation A; = oy o¢;. Thus A4, is a function defined on A4 (B") ~
B"-1 and

A=ty [ 14l dinea()

= (1 - &) /V o (2)| dAzn—2(2).

Furthermore, &; = Ay o Oy o ¢;. With this new notation, it is enough
to bound

> a-laPi- e [ A0 Q0 bu(2) 4 ().

k itk ;= zeal

The integral in question is equal to

/ [k 0 Qi (w)]
¢

vy 11—z - a2

[ g1y, (D! dAgp_a(w),

where Jy, |, (2) is the Jacobian of the map ¢, restricted to V.



172 PASCAL J. THOMAS

LEMMA 3.
1-la 2\n—1 .
a1 = S e - 0 a3 + (1~ oy (1 — fae )
_ = laklz)"_llc‘ 12
|1 =z @ |2 k1>

with the notations from Lemma 1.

Thus the terms in the sum reduce to:

(1~ la;)(1 = Jax ) )
T (TR > Q0 s

(1 =]a;»)(1 = |ag )™+ -
- J lekl2 /Qk0¢k V')lAk(u)”JQ"I"‘k(Vj)(w)l ldizn_Z(u)'
i

LEMMA 4. Givena € B", let V = {z € B": z-a = |a|*}. Then

(1) ,
la-a|\" _.
1oy = (Tc—lm—”:—l- =: cos® 6.

(2) In the case where a-a; # 0, Qi (V) is the subset of Q. (B") given
by the equation

= -2
a-a
(' "’) w1 — Qu@) + lwsf < 1~ al?,

|allax|

where w, is the coordinate in the Qi (a) complex direction, and w,
represents the n — 2 complex coordinates in the orthogonal directions
within Qi (B"). Qx(V) is thus an ellipsoid of radii (cos 8)(1 — |a|?)!/?
in the w, direction, and (1 — |a|?)!/? in each of the w, directions. In
the case where a - a; = 0, we get simply Q,(B") NV as the projection.
(3)
max |z| = |a|sin 6 + (1 — |a]*)!/? cos 6.
(V) '

We apply this lemma with a = c and 6 = 6. Since, under the
separatedness condition, V; NV} = @ we always have |c? Tk S| =
|akllch | cos 6x > larllcI( l-—lc})klz)‘/2 >0, i.e. ¢ -a; # 0. Replacing
the Jacoblan by its value (see Lemma 1(2)), we get for each term of
the sum:

( ' jl ) l kI ) l kl / iAk(u)ldAZn—Z(u)‘
Qiodi(

lag - ¢jic|? V)
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We now make use of (ii):

LEMMA 5. If T5(V;) N T5(Vy) = &, then there exists 6; = 6,(6) > 0
such that

max{|z|: z € Qg o ¢ (V})} S /1 -0% < L.

Thus the distance to dB" from Qy o ¢ (V) is at least d, = 1 —

\/1 — 62. By the classical theory of Bergman spaces, this implies that
Ay, satisfies a uniform estimate on Qy o ¢ (V;):

C
IS s [ k0 ()

k(

It follows from Lemma 4(2), applied with g = cj.’k, that

Aan—2(Qx © Pi(V))) = cos® i (1 — |c9 7)™ .
Thus each term in our sum is bounded by

(1 =) (X = la )" 1(1 = |, 7"~

€@ lcjicl?

/ A ()] d Az (1)
Qk(B")

which Lemma 1(3) and some arithmetic reduces to:

(1—la;)"(1 — & *)>"

= C(J) leklZ"

[ @)l i),
Qx(B™)

We must estimate |c; > = |[|* + (1 — |a;|®)(1 — |ax|?) from be-
low. Simply writing that a; ¢ T5(V}), condition (ii) implies |/;;| >
o(1 ~la;l?).

Case 1. (1 =0)|1 —a;-ay| < 2(1 —|aj|). Then

o(1-9o
(2 )Il—dj-dk.

Case 2. (1 -0)|1 —a;-ax| > 2(1 —|aj|). Then

ikl > 6(1 ~ la;?) 2

Uil = lag - @ = laj
=1 - ap-a;— (1~ lgj)(1 +a - @)| 2 8|1 - @ - a.
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In either case, |c;x[*" > |1jx|*" > C(6)|1 — a; - @|*", and our whole
sum is majorized by

C6) Y (1 ~lal?)"

k
(1 —la;(1 = la )]
" (]Xj;:ék[ T —a; a2 ] )/Qk(Bn) | Ak (u)| dA2p—2(u)

<@C@ Y1~ 1aP) [ la()ldian-a(2).
k Vie

It will now be enough to pick

o < 83D ((1 - 6))2 w6574,

=
which concludes the proof of the Main Lemma.
4. Proof of the Lemmas.

Proof of Lemma 1. Since ¢ = ¢; !,

$(V)) = ¢ (V) = {z € B": $y(2) - a; = |ajI*}.

This equation becomes:

_ Z-ay _
- a; — AL —ak-a;j(1 —sx) —s,z-a; = |aj|2(1 —Zz-ay),
ay - a;j _ _ _
zZ- Iajlz————z—j(l—sk) Qi — Sa; =|aj|2—ak-aj.
|a|
Let |ajlcjx == ((1-sk)(aj @ /|ax*) - |aj|P)ar +seay, L = ax-a; —lajl.
The equation now reads z - Cj; = [j;, or equivalently
7 A 2
_ljkcjk _ |1jk|2 _ likCik
el Tl 1ejil?

We need to compute |cj;|2. Note first that
\ajlei - a = (1 = s0)a; - & —\a;Plar)® + sea; - @
— 2 .
=a; - — |aj’|ac %
and

_ la; - a|? -
Iajlcjk ‘aj = (1 —Sk)—-f—a—klz— — |aj|2ak -aj +Sk|dj|2.
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Thus
laj|lejil? = |ajlejx - |ajlejx

_ a; - a _

~lajlepe ax (1= 507 ~lajl) + (el @)y
|a4 . C_lklz _ _

=(1- Sk)kalz— — (1= si)ay - ajlaj|® - |ajI*a; - i + |a;|*|ai |

+ 85 (1 — s8) J > —sklaj|2ak - aj +s,f|a,-|
|ak|

=la; - &) - |a;/*(a - a; + a; - &) + |aj)*(1 = |a]?) + |aj]*|ax )
= la; - a — |a;]*)* + (la;* — |a;|*)(1 — |ax[?)
= a2 (lay - @} — la;|1* + (1 = |aj|*)(1 = |ag ).
This proves (1).
We get from the above
la; - ax — laj[*|ag*?
|ai12laj 12 (1] + laj]2(1 = |a;|?)(1 = |ae )’
which proves (2) after cancelling |a;|?|a;|* from top and bottom. Fi-
nally,

cos? 0 =

2 k)2

Le|"
el + (1 = la;P)(T — lax?)

C ik
from which (3) follows.

lcﬁ-)klz =

Proof of Lemma 2. Since dg; is automorphism-invariant, we can
compute dg(Pr(Vy), z) first. But P (z) = ay for z € Vj, so ¢ (Vi) =
Ox(B™"). Now fix z € B". We need to find

(1-4= |2/)(1 - |w|2>)

inf =z ap

weQy(B")

1 - |wp?
=1-(1-|z») sup ———.
(1=l )wer(B")ll —z-wf?
If z.w = Qi(z) - w remains fixed, the largest value is obtained
for |w| minimal, i.e. w parallel to Qu(z). Set w = aQ)(z)*, with
a € A= B! c C. We have to study

max L=lol®_
aeA |A + Bal?’

with 4 = 1, B = Qy(2)* - Z = |Qy(z)| < 1. This function is always
differentiable and the gradient vanishes for o = —B/A. The maximum
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equals (|4 —|B|*)™" = 1/(1 - |Qk(2)P).

1-zl>  _ 2P~ 1Qk(2)P _ Pe(2)1>
1-1Q(2)> 1-1Q(2)>  1-|z]2+|Pc(2)?
That gives the distance from z to ¢;(V}). By invariance under auto-
morphisms, dg(Vy, z) = dg(dr(Vi), #x(2)), and we get (1) by substi-
tuting ¢, (z) into the above formula.

Now we want to minimize dg(¢x(Vi), z) over z € ¢, (V}), i.e. for

z- E?: = |c%*. Recall that P;(z) = z - aj. Let

1 -

|z - ak|2 1

b 4
(z):= |z - ak|2+1—[z|2 1+(1—|z|2)/|z-a;;|2’

so to minimize ¥ we have to maximize 1— |z|2 /z-a;|*. We can reduce
ourselves to the case where z € Span(ak, ) otherwme projecting
z onto it will not change z - a; and will 1ncrease 1—|z)2. If z €
¢« (V;) N Span(ay, ¢, ), we can write

z=ch+(1—|chl )‘/Zcoka,

where « is a complex number, a € A, and |c |=1 c?k € Span(ay, ¢ k)

and c?k - c?k = 0. With this notation,

L=z = (1= |} P)(1 = laf),

cap=cy-ap+(1- |c 1?) 1/Zozcok ap =: A+ Ba.
Note that 0 )
% @P
jk_ "k 0 . ~%12 _
—— 4+ |cY, -ailc =1,
IC;)klz Ijk kl
so that , o ) 0
|4]= = |cjy, - ag|® = |cji|” cos” Oy,
0 . ~%|2
¢ -ag|
2 _ _ jk %k
1B = (1~ e} 1)( e )
jk
= (1 - [cD|*)(1 — cos® B).

As above, the maximum of (1—|a|?)/|4A+ Bal|? is (|4|*>—|B|?)~!, pro-
vided that |4| > |B|. This last condition simply means that ¢, (V) N
¢(V;) =3, i.e. VNV = &. This is equivalent to |4|?> > | B|?, which
is easily rewritten into (2).
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Getting back to 1 — inf{d3(z,w), z € ¥}, w € V;}, we find

1 _ 1= )?
T+ (1— 0 P)/( AP — [BE) AP — [BR + (1 — &%)
cos? 6

Writing d2(V}, Vi) > 6} gives (4) immediately. (3) follows from sub-
stituting the values given by Lemma 1 (2) and (3).

Proof of Lemma 3. Recall from [4] that the global Jacobian of ¢, is

;o 1 — Iaklz n+l1
- \lT-z-aP2) -
To restrict to V;, we must divide out the dilation corresponding to the
directions orthogonal to the source set, a; LV}, and to the target set,

Cik L (V). This will be |Da;(¢k(z) -Ejk/léjkl)lz, where Da; denotes
the derivative in the complex direction of a;.

i (2) - Cik
_a(l-(-s)z a/la?) — sz
11—z a;
a;f - ay .
. [((1 - Sk)W - |aj|) ay +skaj]
1

- [(1 — Sp)a - af — |ajllag)? + seax - a;

l—z-ak
[0 =507t = (1 =0l = 1 - 30
— Sk — L =s)laj| = sk(L = Sk) 5
|a | ’ |a|?
as - a B )
+silaj| — sk (1 —sk)—IJEIF] Z Qg —Siz- a}f]
1 _* 2
= ———Ila-a; —|ajl|a
ol @ - lallad

+ (@ —ap)-aj(z-a) — (1 - |al?)z - a]l.

Since z - @ and z - a; are linear forms,

=1 and Dalf(Z Say) = d; - Q.
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Thus
D (b1 (2) - Cjie)
¢k(z) jk * = 1 * _ 5
= Toza O Wt T gk a— (- lad))

For z €V}, z-a; = |a;|*> and ¢;(z) - Cik = ljk, so that all that remains
is the second term inside the square brackets:

2 _ 2)2
(¢k(z) ch ) _ (1 Iakl )
Ijk'

CelPll =z @
Dividing the global Jacobian by this quantity yields the result.

Proof of Lemma 4. (1) At any point of V, split the tangent space 7
into an orthogonal direct sum:

7 =7 NSpan(a,a,) ® 7.

The projection Q; induces the identity on Z”, so it is enough to con-
sider the situation on the complex line " N Span(a, a;) = Span(#),
where i := a; — (ay - a/|a|?)a. Thus

1Ok (@)
1o, | = _IﬁT’

and an easy computation gives (1).
(2) If a-a; # 0, then Qy|y is one-to-one. Let (Qly) '(w) =

w + Aay, where 4 € C.
2 —
ac—w-a
(w+/1ak)-c‘1=|a|2=>/l=|—l—_—.
a, -da

Since we want the image under the projection of those points inside
the ball,

. lla]> —w - af?
0uv) = {we u(en: jwp + L= i <1,
Using the w,, w, notation, the above equation is written
|la|* —

-al? 2
2 a|2 lag|” < 1.

lwy|* + |wa)? +
Notice that w - a = w; - Qr(a), |w; - Qk(a)|* = |wi]?|Q(a)|?, and

la - a|?
lal® = |Qx(a)|? + =5
|lax|?
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The equation becomes:

2 2,12
Jw; |? (1 + Iakl_ ) _laflal (wy - Qk(a) + wy - Qk(a))

|ay - al? |y - al?
| |*lal*
lay - al?

-+ +lw2|2< 1

which simplifies to

|2 |*|al?

2 2 2
wy — a)l” + lwy|* < 1 —lal“.
|ak'a|2‘ 1 Qk( )l l 2' | I

(3) In the above ellipsoid, the minimum distance to the boundary
is attained when w, = 0, and equals

1—-|0Qk(@)| - (1—1a>)/?cos =1 — |a|sin @ — (1 — |a]?)"/?cos 0.

Proof of Lemma 5. First, since VN T5(Vy) = D, ¢ (V) N (Ts5(Vic))
= (. Although tubes have no reason to be invariant under automor-
phisms, ¢;(Ts(V})) is not far from being a tube around Q,(B") =
o (Vi). More precisely, if |P,(z)] < d/(1 +6), then (j),:l(z) = ¢r(z) €
T5(V;). Indeed,

—(1 — |ax[*) Pi(2)

((2) —ar) - a =

1—2z- (_lk
(660 ~ @) 351 < (1~ o) oty
(1= ‘“k'2>1|—1)|+% < (1 - lagl)

under the above hypothesis. It follows that for z € ¢, (V]}), since
z & ¢i(T5(Vk)), |Pi(2)] 2 /(14 ) =: d1, and consequently |Q(z)| =

(1= 1P(2))'/? <4 /1~ 6. u!
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