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In this article we exhibit a continuum of explicit, cubic plus flat,
nonconjugate hyperbolic sectors [Theorem 3.1]. We further show that,
regardless of conjugacy class, any flat vector field with a hyperbolic
sector can be locally C*° approximated by a conjugate of a linear
model; however, there exist non-flat hyperbolic sectors which can be
arbitrarily C*°-approximated by linear conjugates, but are not conju-
gate to any of them [Theorem 5.2].

In addition, we address the following:

Problem. Which smooth maps can be realized as the pass-by or
“sojourn time” map of some hyperbolic sector?

Such sojourn time maps must go to co at zero; the asymptotic behavior
at zero determines the sector’s conjugacy class. We prove that if
7: (0, 1) — R* is a smooth map such that 1/7 is smoothly extendible
to zero, then there is a smooth hyperbolic sector with 7 as sejourn
time map [Theorem 3.1]. In other results, the variation in successive
oscillations of 7 provide sufficient conditions for the realization of 7
as a sojourn time map [Theorems 2.1 and 4.2].

These results greatly extend previous work. F. Dumortier gave suf-
ficient conditions for local conjugacy (via a time preserving homeo-
morphism) of two smooth flows with hyperbolic sectors [D1]. Later
in [SSW], a first example appears of a smooth flow with hyperbolic
sector which is not conjugate to a linear model. This construction
involves meticulous surgery on the sector domain.

We make two related conjectures: Call the conjugates of linear mod-
els the central class. Then the Hartman-Grobman Theorem [H] guar-
antees that the central class has interior in the C! topology. Vec-
tor fields C"-interior to the central class are C”-structurally stable un-
der time conjugacy. Our evidence supports the converse in the C*-
topology:

Conjecture A. The collection of time conjugacy stable hyperbolic
sectors comprises, in the C* topology, the interior of the central class.
Finally, do the C*-flat sectors represent all the conjugacy classes?

Conjecture B. Every time conjugacy class of C*® hyperbolic sectors
contains a vector field which is C>-flat at the singularity.
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1. Statement of results. Assume X; and X, are two fixed C*°-smooth
transversals to a C*®°-smooth flow ¢,, having a hyperbolic sector (Hart-
man [H]) at the singularity p (see §5 for more precise definitions). The
flow ingresses the sector on X; and egresses through X,. Let W*(p) de-
note the stable manifold of p. The sojourn map t: Z,\W?*(p) — R* is
defined by requiring ¢,(,)(¢) € Z; and ¢,(q) & X, for all 0 < 1 < 7(q)
(see Figure 1).

W (p)

FIGURE 1

Our results concerning the realization problem depend on the se-
quence of time-dips and rises {(a;, b;)} in the candidate 7 for a sojourn
map and on the degree of smoothness of 1/7 near 0.

For now, we shall confine our attention to C*-maps 7: (0,1) — R*
having a countable collection of ordered critical points {c;}{° such that
the following hold:

(1) lim¢; =0as i — oo.
(2) all ¢;’s occur at local maxima or at local minima.

(3) t(c1) > t(co)-

Let a; = t(cy;—1) — t(cy;) and also b; = t(cy;—1) — 7(¢2;~2). Thus, for
each i, T > 0 on [¢y;,¢y;—1] while T/ <0 on [¢3;_1, ¢2,-2].

The resulting sequences {a;} and {b;} will be called, respectively,
the time-dips and time-rises in 1(s) as s — 0+ (see Figure 2).

If the map 7 actually coincides with the sojourn map of a hyperbolic
sector, then any cofinite collection of pairs {(a;, b;)};>, determines that
sector’s time-conjugacy class ([SSW]). Also the collection corresponds
to the standard conjugacy class unless the sequence {a;} does not tend
to zero as i — oo [SSW].
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T(s)

FIGURE 2

THEOREM 2.1. Given any sequence {a;} with a; > 0 there exists an
explicitly constructed C*®-smooth hyperbolic sector whose sojourn map
7 realizes these {a;} as its time dips.

THEOREM 3.1. Let t: (0,a) — R* be a C*®-map such that

(1) limz(s) = o0 as s — 0+, and

(2) 1/t is C*-extendible to [0, 1).
Then there exists a C*®-flow on a hyperbolic sector whose sojourn map
is given by 1.

THEOREM 4.2. Suppose {a;} and {b;} are sequences of positive real
numbers such that, for some constant K,

(1) K+) (bj—a)>0, forallnand
i=1

0 n -1/p
(2) {K + ) (bi— ai)} < o0,
1 i=1

n=

for all positive integers p. Then there is a C®-hyperbolic sector whose
sojourn map t has the time-dips and rises given by the sequences {a;}
and {b,}
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Conjecture C. If the vector field X is C*®-flat and generates a hyper-
bolic sector, then the inverted sojourn map 1/t is C*®-flat at zero.

Conjecture D. The induced sequences {a;} and {b;} of time-dips and
rises in the sojourn map t of a C*®-hyperbolic sector satisfy conditions
(1) and (2) of Theorem 5.

Conjectures A, C, and D, if true, would imply that every conjugacy
class contains a C*°-flat representative that is explicitly constructible.
That conclusion combined with Theorem 5.2 below would prove that
every conjugacy class meets the boundary 01 of the central class.

Our main contribution to the CCCP is that the C*°-flat hyperbolic
sectors lie on the boundary of the central class containing all the linear
hyperbolic sectors.

THEOREM 5.2. If the generating vector field X of a C®-smooth hy-
perbolic sector is C*-flat at the singularity, and the stable and unstable
manifolds are transverse, then that sector lies on the boundary 81 of
the central class. The boundary 81y also contains hyperbolic sectors
that are not in Iy and not C*®-flat.

REMARKS. We also know that if a sector is “straight,” i.e., the or-
bits have at most one transversal intersection with a radial line from
the origin, then that sector lies in the closure of the central class.
It follows that an element in the exterior of I[,—a candidate for a
new conjugacy-stable sector——cannot be either C*°-flat or straight. In-
deed such a hyperbolic sector cannot be polynomial or satisfy any
Lojasiewicz inequality [D2].

2. Proof of Theorem 2.1. In a previous paper ([SSW]), the authors
constructed a C*®°-smooth vector field, denoted by X;, having the fol-
lowing properties:

(1) X, has a hyperbolic sector.

(i) X; = F - Xy, that is X; is a rescaling by a C* positive function

F(x,y) of the C*-flat vector field

x'=— x3 e—-l /x
Xo: y = y3e—l/y
(iii) The rescaling function has the form F = }~7° (1 + F;), such that
the sequence of F;’s have disjoint supports P; (as in Figure 3).
(iv) The sequence {(a;, b;)}, as defined before, corresponding to the
sojourn map 7; of X is such that a; > 1 for each i > 1.
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FIGURE 3

By rescaling the bump functions F;, if necessary, employed in the
construction of X it is easy to create an example such that a; = 1 for
alli > 1.

Note that we may further adjust any particular F; to equal zero
without sacrificing smoothness.

Let {a’} denote the desired sequence of “dips” we need to attain in
a sojourn map deriving from some rescaling X, of Xj, as above.

The restriction X;|P; has the form (1 + F;) Xy, for each j. The so-
journ times of the flow within P; tend to co as j increases. Thus, given
a;, there exist mj, for all j sufficiently large, such that (1 +m  Fj)Xo
gives rise to a dip of size precisely a;. Since g; corresponds to an
increasingly smaller proportion of the sojourn time in P;, as j in-
creases, the sequence 7 is bounded (in fact tends to zero). Suppose
mj < My for all j.

Since X; is C*-flat at the origin, we may choose j(k) such that

|1 Fjiey Xollk < 1/kMj
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for all k > 1 where || - ||, denotes the uniform C*-norm on vector
fields. Putting my = mjy, x, the vector field

o0
X = (1 + ZMka) Xo

k=1
has the desired properties. O

REMARK. For further details of this construction consult [SSW].
This result will also be obtained as an easy corollary (Corollary 4.3)
of the main theorem of §4.

3. Sojourn map realization: The Proof of 3.1. Let a # 0 be a con-
stant, and suppose

e ()] el ()

Then the sojourn map time to pass from the (ingress) point (1,s) to
the (egress) point (s, 1) is given by
! dx
1 7(s) =
M 0= [ e o
since Xy = s is constant on solution curves. Given the substitution
u=(x-y)/2=(x—s/x)/2, the integral in (1) becomes

(1-s5)/2 du
2 = .
@ 7e) [s—l)/Z (\/u2 + s) (u? + a?)

Now replace a? by sg2(s) where g2(s) < 1. Trigonometric substitu-
tions now yield the result

2\ Tan™! (£/(T =851 =5)/(T+5)
- () T

Our aim now is to implicitly solve for g as a C* function of s. Toward
this end, we can recast (3) in the form

(4) gy/1-g*—(2/st(s)) Tan™! (é\/(l -8g3)(1-s5)/(1 +s)> =0.

Suppose the left-hand side defines a function 7'(s, g) for 0 < s < 1
and 0 < g < 1. Our hypotheses imply that 1/s7 is C*®-extendible to
[0,1) as s — O+. Also, if the inverse tangent is defined to be 7 /2 when
g = 0, then T'(s, g) is C*-extendible to [0,1) x [0,1). Now extend
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T(s,g) to (—1,1) x (—1,1) in an arbitrary, but C*°, manner. This is
possible by a theorem due to Borel (e.g. see [GG], p. 98). Suppose that
lim;_,0(2/st(s)) = ap > 0. If ap < 1, the intermediate value theorem
shows there exists a number 0 < gy < 1 such that 77(0,g,) = 0. A
simple computation shows that (07)/9g(0, go) # O.

The implicit function theorem implies that there isa d > 0 and a
C® function g(s) defined for |s| < J such that

(5) T(s,g(s)) =0
for |s| < 4. It also follows that g(s) < 1 for |s| < . Thus, the system

X, : x'=—x(sg(s) + ((s —¥)/2)%)
8y =y(sg?(s) + ((x —»)/2)?)

has a sojourn map 7, which equals 7 for |s| < J.
If ag > 1, then the map o0 = 2437 can be realized in the above
fashion asa sojourn map of some X, since

lim 2 —l<1
s—or \sa(s)) 2

To realize t(s) itself, use the vector field (1/2ap)X,. Again, this is
valid for s < 4.

To realize 7(s) on 6 < s < 1, first extend g(s) in a C*°-manner so
that g(s) # 0 on d < s < 1. This smoothly extends the vector field
X, still denoted by X,. Let 7, denote the sojourn map on (0, 1) for
Xg. The function 14(s)/1(s) is C* on [0, 1) and is identically 1 for
s < d. Define Y = (15(xy)/t(xy)) - X;. Since xy = s is constant, the
vector field Y has sojourn map 7y = (7/15) T, =71 for0<s < 1.

4. Realizing rises and dips in the 7-map.

LEMMA 4.1. Let f: [0, 1] — RTU{0} be a C* function with f(0) =0
and f(x) > 0 for x > 0. Suppose that. f has local extrema at ¢y =
1 >c >c > f(cy) is a local max, f(cyiyy) is a local min, and
S is monotone on [ciy1,¢] for i = 0,1,2,...; and ¢; — 0 as i — oo.
Leta; = f(cyi) — f(cai—1) and b; = f(c2i-2) — flcaizy) fori = 1,2,....
Then:

(1) X21(b;i—a:) >0, 352,(bi —a;) > bpy1 + 357 (bi — @) for all
n>1, and

(i) %,(0,)? < oo and Y2 ,(@)'/? < oo for all positive inte-

gers p.
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Conversely, if {a;} and {b;} are sequences of positive integers satisfy-
ing (i) and (ii) then there is a function f and a sequence of points
c =1>c¢ > - > 0 satisfying the above hypotheses such that

a; = f(cy) — f(c2i1) and b; = f(c2i—2) — f(C2i=1)-

Proof. Let f be as hypothesized. Then (i) follows from the fact that
f(x)>0for x >0. Let AX; =c; —ciy fori=0,1,2,....

We claim that for each i > 0 and positive integer p there is a zf €
[civ2p~ Y, ¢;) such that f(P) (zf) = 0. This is clear for p = 1 since
f’(c,-) =0fori=1,2,.... Also, if zl+2p 1 € [cis2p,Cipap — 1) and
2? € [ciyap — 1,¢;) are such that fP)(z? ,p—1) = f(l’)(zf) = 0, then,
by the mean value theorem, there is a z¥ e [2? oD — 1, 28] C [cia, i)
such that f(?+1)(z#*!) = 0. Induction on p establishes the claim.

Now we claim that for each i > 0 and positive integer p there is a
point 77 € [¢;42p — 1, ¢;] such that

|f(cir1) = f(ci)
(AX; + - +-;—AXhsz-—lp—lf ().

For p = 1 this is just the mean value theorem. Assume that the claim
is true for some positive p for all i > 0. Now |f(?)(x)| takes on values

|f@&7)l =0 and

|f(civ1) = f(ci)]
AU vy ++ AX; 0 — 1)

p+1

on the interval [¢;;2p—1, ¢;]. Thus there is a point #; " € [¢;1op—1,¢;]

such that
PO |f(civ1) = f(ci)]
T (AX;+ -+ AXip - DP(AX; + -+ AXiop — 1)
Lf(civ1) — f(ci)]
~ (AXi+ -+ AXGop)P

Since z — 0 as i — oo for each p and f is C*, f)(0) = 0 for all
p. Thus, f(P)(nf’) — 0 as i — oo for each p and we have:

a;
(AXzi—1+ -+ AXai_1 12D

as [ — oo for each p. It follows that, for each positive integer p, there
is a K, < oo such that

@:))'/P < Kp(AXpi—y + -+ AXpi— 1420 — 1)

— 1) <Pl =0
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for all i > 1. Thus,

[o o] [ o]
D @) < (Kp)2P Y AX; = 27K, < 0.
i=1 =0

Similarly, ‘1?21(5,-)1/1’ < oo for all positive integers p and we have
established (ii).

For the converse, let {d;} and {b,;} be sequences of positive real
numbers satisfying (i) and (ii). Let g: R — R have the properties:
g is C* and g(x) = 0 for |x| > 1; g(0) = 1 and g (0) = O for
all p > 1; g is monotone on [—1 0] and on [0,1]. Also, let L =

Z;";lbn—E?,ilan > 0.
Given a sequence co=1>c¢; >¢c; > ---> 0 with¢; — 0 as i — oo,
define f: [0 11— Rby

n+1
(Zb —Zal) +b,,+1g (Czn -Czn+1> ’

for x € [cany1,60n), n=0,1,...;
Sf(x) =4 A X-—c
5 -7 | +2 < 2042 )
Z Z : n+18 Con+1 — C2n42
for X € [02n+2>c2n+1]a h= 0: 1’ cees

L 0, forx=0.

Then f is C* on (0, 1], continuous at x = 0, and f(x) = 0 if and only
if x = 0. Also, f has local maxima at ¢,;, local minima at ¢,;_;, and
f is monotone on [¢;,¢;_1] fori = 1,2,.... Thus we need only choose
the ¢; such that f is C*® at x = 0.

Let M; =1 and, for p > 2,

M, =max{l +Mp_1,inf{m >1

S (B < 1/(,,2)}}_

i=m

For M, < i < M, define AXy;_| by AXy;_, = (1/K;)(b;)'/? where
K, is chosen so that ) 72, AXy;_» = 1/2. Similarly, let Ny = 1 and,
for p > 2,

Ny =max{1 +Np_1,inf{m >1

i(ai)l/p < 1/(p?) }} :

For N, < i < N, define AXy; by AXy; = (1/K3)(a;)'/? where K, is
chosen so that )72, AXy; = 1/2.
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It is an easy matter to check that @;/(AX,;)? — 0and b,/(AX5;_)? —
0 as i — oo for each positive integer p. Now let ¢ = 1 and ¢; =
1 - (Ej.:l AX;) for i > 1. With this choice of the ¢; we claim that f
is C* at 0. Indeed, let m, = max |g?)(x)| for p =0, 1,2,.... Then

b
|/P(x)] < my - m for x € [can+1,C2n]
and -
lf(p)(x)l Smy- E‘ﬁ for x € [cany2, Cony1]-
n
Thus, f?)(x) — 0 as x — 0 for all p and f is C*® at x = 0. O

THEOREM 4.2. If{a;} and {b;} are sequences of positive real numbers
such that, for some constant K,K + %7 ,(b; — a;) > 0 for all n and

© (K +30 (b —a;))~YP < oo for all positive integers p then there
is a C® hyperbolic sector X whose sojourn map tx has dips and rises
given by {a;} and {b;}.

Proof. Let

n -1 n -1
a, = <K + Z(b’ - a,‘)) - (K + Z(b, —a;)+ an)
i=1

i=1

and

n—1 -1 n -1
bp = (K +) (b — a,-)) ~ (K +> (bi—a)+ a,,) .
i=1 i=1
_Then {a,} and {b,} satisfy the conditions of Lemma 4.1. Let f be
the corresponding C* function given by that lemma and let 7 = 1/ f.
By Theorem 3.1 there is a C* hyperbolic sector X such that 7y = 1.
The dips and rises of 7y are then given by {a;} and {b;}.

COROLLARY 4.3. Let {a;} be any sequence of positive real numbers.
Then there is a C™ hyperbolic sector X whose sojourn map Ty realizes
the sequence {a;} as its sequence of dips.

Proof. In the preceding theorem, let b; = a; + 2°.

5. C>-flat hyperbolic sectors. In this section we prove that those
hyperbolic sectors having generating vector fields which are C*°-flat at
(0,0), lie on the boundary of the central class, I, as determined by
the C*°-uniform topology. This topology is now formalized.
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Our results apply to a class of “standard” C*-flows, /%, on R? hav-
ing hyperbolic sectors and, in fact, to all diffeomorphic images, #,
of such flows. In either case, we first fix the location of a hyperbolic
sector, then topologize the collection of C*-flows having sectors in
the same locale. The reader may consult Hartman ([H]) for standard
terminology.

Let # denote the collection of C®-flows ¢; on R? having a singu-
larity at (0,0) and such that

(a) the stable manifold, W*(0,0) = {(x, 0)|]x > 0}, and the unstable
manifold, W*(0,0) = {(0,y)|y > 0},

(b) the segments,

L ={2no<y<t}, L={(x20<x<1}

are differentiably transverse to the generating vector field X for ¢;,
(c) there exists a > 0 such that corresponding to

X ={(2,y)0<y<a} CZ,

there is a well defined sojourn map, 7: (0,4] — R with 7(y) > 0,
b:»)(2,¥) € Xy, and ¢4(2,y) & £, UZ, for all 0 < ¢ < 1(y) (see
Figure 4).

2 (1,2)

1 4 (2,1)
(2,a)

—

< 1 X
< T 1

1 2

FIGURE 4

Let D = {(x,)[0 £ x €£2,0<y <2 xy < 1}. The flows
¢, € #, are topologized by the induced C* uniform topology on their
generating vector fields, X. That is, a neighborhood base is given by

B ={Ax.(d:): k€N, €>0, ¢, € 4}, where
A e(d) = {m € Z: | X — Xyllx < €}
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Here || - || denotes the uniform k-norm,

o’y
o<j<k | peD ||0x>dyh 2 “} '
j=atB

Now form the set # of all C®°-flows, ¢; on R?, for which there exists
¢: € %, and a C* diffeomorphism f: R2 — R2 with y, = f¢,f L.
Flows y; in # can be C*-uniform topologized as have those of %, by
maximizing k-derivatives over an associated region, f(D), comparing
only those flows having a hyperbolic sector on f(D).

The conjugacy class of a flow in Z (or in #), which is generated
by a C°°-flat vector field at (0,0), can be altered either by gluing in
a slow linear flow near (0, 0), or another C*®-flat flow with dissimilar
conjugacy class. For example, those C°-flat flows which lie outside
the central conjugacy class, Iy, such as the example of [SSW], can
be C*-closely approximated by a C*°-flow which is linear near (0, 0).
This new flow will have an asymptotically monotone sojourn map, and
thus be an element of ;. On the other hand, C*°-flat flows within I,
can be C®-closely approximated by a flow having the Shafer-Swanson-
Walker example near (0,0). In this way, C*-flat flows are shown to
lie on 81,. Lastly, a specific example of a non-C>-flat flow, lying on
91, will be constructed.

First, a vector field gluing lemma is proven. Let § denote the usual
bump function such that for x <0and y > 1, f(x) =0, B(y) = (1),
and B(x) = [y e~ /Pe~1 /=1’ dt, for 0 < x < 1. Next set

M; = max |[D’B(x)|,

0<x<1

IY lx = max {max

and notice that, M; < M;_,, for all j > 0. The bump function f may
be rescaled to

Br(x) = B(x/R-1)/B(1),  for R>O0.
Then, ||D/Bgr|| < M;/R/, for all j > 0.
LEMMA 5.1. Fixk € N ande > 0. Let X be a C® vector field which

is C°-flat at (0,0). Then there exists Ry = Ry(e, k) > 0 such that, in
polar coordinates, for all p = (r,0) with r < 2Ry,

(1= Br)(r) - X(P)llx < &.

Furthermore, there exists d + d(e,k) > 0 such that, if L is a linear
vector field for which ||L|| < &, then

(1 = Br)(r) - L(p)llic < e.
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Proof. Since the k-norm is the maximum over the first k derivatives,
then for 0 < j <k,and 0 <r < 2R,

ID7 BrX|| < 1D/ Brll - 11X Il
< ID*Brll - 1 X Ik < Mi(1X11k)/RE.
But since X is C*-flat at (0, 0), we must have that X = o(R¥). Thus
there exists Ry such that || X(p)|lx < €/2 on {r < 2Ry} and ||.X||x

(sR’g)/ZMk, verifying the first inequality. Similarly, since || L[|
|L|| = &, choose & < min(e/2, (RK)/M,) and the Lemma follows.

A

Proof of Theorem 5.2. First assume that ¢, € # and is generated by
a C*-flat vector field X ¢ Ip. It does not suffice now to bump L off
into X, using Lemma 5.1. This is because X may have an opposite
sense from L at points of D: the newly formed vector field will thus
not be an element of #. Thus, a smooth bumped-off combination
of L and X is formed, which respects sense, as follows: For p €
(D\W*(0,0))\W*(0,0), let p € X; and ¢(p) > 0 be such that ¢,,\(p) =
p and ¢,(p) € D for 0 < ¢ < t(p). Then define the “total rotation” in
Y € % by

t(p)
6(Y)(p) = /0 o/ (Y ($:(P))) dt,

where

a(v) = Cos~ (v - (1,0))/|v].
Notice that (Y) is C* on (D\W?*(0,0))\W*(0,0) and can be C*®
extended to D\(0,0) in the obvious way.

Now fix £ and ¢ > 0, and let Z, be the vector field on D which
has magnitude and sense prescribed by, |Z;| = (1 — Br)|L| + Br|X]|
and, off (0,0), a(Z;) = [(1 — Br)O(L) + BrO(X)] mod 2x, where R =
Ry(e/4,k) and ||L|| = d(e/4,k) as in Lemma 5.1. Then Z, is C*®
and Z, € # because only (0,0) is a singularity and Z, ingresses and
egresses properly on D.

As constructed, outside the ball Ry, ||Z; — X||, = 0 since Z; = X.
Inside Bjpg,

1Ze — Xk < 2[I(1 — Br)L — (1 — Br)X]| <e.

The factor of 2 is required since (1 — fz)L and SrX may be opposed.
Thus, ¢; € ClI, since each Z, has a t-map which is asymptotically
monotonic near 0.

To show that, in fact, ¢, € 91y, we select in place of L above a
C>-flat element of I§. The vector field X; of [SSW] has undamped
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time oscillations and is C*°-flat at (0, 0). For each k and ¢ > 0, a new
Z, is formed which equals X, inside B. This is an element of /§ and
|Ze — X|lx < e. Thus ¢, € 01y.

Lastly, a flow ¢; € 91 which is not C*°-flat is constructed. Consider
the system

) {X’ =x(x? —y?)? + xg(xy),

V= -y(x?-yH) - yg(xy),
where
g(v) = { ([)exp(—lvl“) sin’(nv~!) + exp(—v2)], v #0,
, v = 0.

The first quadrant is a hyperbolic sector for (1). We will show that
the flow of (1) is not topologically conjugate, in any neighborhood of
the origin in the first quadrant, to the standard hyperbolic sector.

Let u = x? —y? and v = xy. Then

v'=0 and u' = (2u®+2g))(x*+?).
Thus, in -1 < u <1, 0 < v <1, and along a solution curve v =
constant, we have:
(2) (Qu? +2g(v))2v < u' < (2u* +2g(v))(3).

For fixed v,0 < v < 1, let 7(v) be the time it takes the solution of
(1) to pass from u = x2 — y?2 = —1 to u = 1 along the curve xy = v.
Integrating the inequality (2) we obtain:
(3) 1(g(v))~"/*arctan(g(v))~'/?
< 1(v) < 2v(g(v))'/? arctan(g(v)'/?).
Now let v, = 2/(n+ 1), n = 1,2,.... From (3) and the definition
of g(v) we obtain
T(van-1) 2 (n/12) exp(n?) and
7(v24) £ (((2n + 1)m)/8) exp(n + (1/2)).
Thus, 7(1/n) — t(1/(n + (1/2))) — o0 as n — oo. It follows from
Proposition 2.2 of [SSW] that the flow of (1) is not topologically con-
jugate, in any neighborhood of the origin, to the standard hyperbolic
sector.

Let X be the vector field given by (1). Then X is not in the standard
class Iy and X is not C*°-flat. Also, if L is the linear vector field

x'=x }
L.
y ==y
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Then X + ¢L is in [ for every ¢ > 0 by Hartman’s Theorem. Clearly

X+eL—- X

in the C*-uniform topology on any compact neighborhood of the
origin as ¢ — 0 so X € 81,.

Comment. The straight flows mentioned in §1 can be shown to lie
in Cl I, simply by the addition of a small linear vector field.
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