CORRECTION TO: “GALOIS THEORY OF DIFFERENTIAL FIELDS OF POSITIVE CHARACTERISTIC”

Kayoko Shikishima-Tsuji
The proof of Proposition 11 of this paper contains an error in the stage of proving that $C(\sigma)$ is finitely generated over C. We present here a correct proof.

Proof. Since σN is finitely generated over K and σ is strong, $N\sigma N = NC(\sigma)$ is finitely generated over N. Hence, there exist elements $\gamma_1, \ldots, \gamma_s$ of $C(\sigma)$ such that $NC(\sigma) = N(\gamma_1, \ldots, \gamma_s)$. For each element c of $C(\sigma)$, there exist polynomials F and G in $N[X_1, \ldots, X_s]$ such that

$$F(\gamma_1, \ldots, \gamma_s) - cG(\gamma_1, \ldots, \gamma_s) = 0$$

and $G(\gamma_1, \ldots, \gamma_s) \neq 0$. Among the monomials of $\gamma_1, \ldots, \gamma_s$ in the equation (1), we choose linearly independent elements c_1, \ldots, c_r over C and rewrite (1) in the form

$$\sum_{i=1}^r c_i a_i - c \left(\sum_{i=1}^r c_i b_i \right) = 0$$

where $a_1, \ldots, a_r, b_1, \ldots, b_r \in N$ and $\sum_{i=1}^r c_i b_i \neq 0$. If $\{\alpha_1, \ldots, \alpha_t\}$ is a maximal set of linearly independent elements over C in $\{a_1, \ldots, a_r, b_1, \ldots, b_r\}$, then a_i and b_i ($i = 1, \ldots, r$) are represented by

$$a_i = \sum_{j=1}^t a_{ij} \alpha_j \quad (a_{i1}, \ldots, a_{it} \in C)$$

and

$$b_i = \sum_{j=1}^t b_{ij} \alpha_j \quad (b_{i1}, \ldots, b_{it} \in C).$$

By (2), we have

$$0 = \sum_{i=1}^r c_i \left(\sum_{j=1}^t a_{ij} \alpha_j \right) - c \left(\sum_{i=1}^r c_i \left(\sum_{j=1}^t b_{ij} \alpha_j \right) \right)$$

$$= \sum_{j=1}^t \left(\sum_{i=1}^r c_i a_{ij} - c \left(\sum_{i=1}^r c_i b_{ij} \right) \right) \alpha_j.$$
Since N and $C(\sigma)$ are linearly disjoint over C, $\alpha_1, \ldots, \alpha_t$ are linearly independent over $C(\sigma)$ and thus

\begin{equation}
\sum_{i=1}^{r} c_i a_{ij} - c \left(\sum_{i=1}^{r} c_i b_{ij} \right) = 0 \quad (j = 1, \ldots, t).
\end{equation}

Suppose $\sum_{i=1}^{r} c_i b_{ij} (j = 1, \ldots, r)$ are all equal to zero, then

\[b_{ij} = 0 \quad (i = 1, \ldots, r, j = 1, \ldots, t) \]

since c_1, \ldots, c_r are linearly independent over C. Thus,

\[\sum_{i=1}^{r} c_i b_i = \sum_{i=1}^{r} c_i \left(\sum_{j=1}^{t} b_{ij} \alpha_j \right) = 0, \]

and this contradicts $\sum_{i=1}^{r} c_i b_i \neq 0$. Therefore, there exists at least one index k such that $\sum_{i=1}^{r} c_i b_{ik} \neq 0$. Consequently, by (3),

\[c = \frac{\sum_{i=1}^{r} c_i a_{ij}}{\sum_{i=1}^{r} c_i b_{ij}} \in C(\gamma_1, \ldots, \gamma_s). \]

ACKNOWLEDGMENTS

The editors gratefully acknowledge the service of the following persons who have been consulted concerning the preparation of volumes one hundred thirty-five through one hundred thirty-eight of the Pacific Journal of Mathematics.

Edoardo Ballico, Spanned and ample vector bundles with low Chern numbers ... 209
Marcy Mason Barge, Richard Swanson and Russell Bruce Walker,
Conjugacy class structure of smooth hyperbolic sectors 217
Jeffrey Stephen Fox, Adeles and the spectrum of compact nilmanifolds 233
Robert D. Little, Homotopy complex projective spaces with divisible splitting invariants .. 251
M. Scott Osborne and Garth William Warner, Jr., The Selberg trace formula. VII. Application of the truncation process to the continuous spectrum ... 263
John R. Stembridge, On the eigenvalues of representations of reflection groups and wreath products .. 353
Ibrahim Salama, Corrections to: “Topological entropy and recurrence of countable chains” .. 397
Robert Greene and Hung-Hsi Wu, Addendum to: “Lipschitz convergence of Riemannian manifolds” ... 398
Kayoko Shikishima-Tsuji, Correction to: “Galois theory of differential fields of positive characteristic” ... 399