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We study “heavy” n-dimensional surfaces suspended from some
prescribed (7 — 1)-dimensional boundary data. This leads to a mean
curvature type equation with a non-monotone right hand side. We
show that the equation has no solution if the boundary data are too
small, and, using a fixed point argument, that the problem always has
a smooth solution for sufficiently large boundary data.

Consider a material surface M of constant mass density which is
suspended from an (n ~ 1)-dimensional surface I' in R” x R*, Rt =
{t > 0}, and hangs under its own weight. If M is given as graph of
a regular function u: Q — R™ on a domain Q C R”, n > 2, then u
provides an equilibrium for the potential energy & under gravitational

forces,
&(u ——/ uy/1 + |Dul2.
(u) |Du|

Thus u solves the Dirichlet problem

(1) div{%}:dl%—wmz inQ,

u=¢ on 8Q

The corresponding variational problem

1 .
2) /Qu\/l+|Du|2+§/(m|u2—¢zldf?;,_l — min

in the class
BV (Q):={ue L)Q): u>0, u> € BV(Q)}

has been solved by Bemelmans and Dierkes in [BD]. It was shown in
[BD, Theorem 7] that the coincidence set {# = 0} of a minimizer  is
non-empty provided that
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3 00 < ——FAv
( ) ‘(ol L0Q %’_1(69)

47



48 U. DIERKES AND G. HUISKEN

where || denotes the Lebesgue measure of Q and /%, denotes n-
dimensional Hausdorff measure.

We want to show here that (1) has no solution in case (3) holds,
whereas (1) has a/ways a solution for sufficiently large boundary data.
More precisely we prove the following existence-non-existence result.

THEOREM. Let Q C R", n > 2, be a bounded domain of class
C?**, a > 0, with non-negative (inward) mean curvature. Suppose
g € C2(Q) satisfies
(4) ko = inf g > c(n) (1 + 2n+1)2|9|1/"

o:=1nfgp 2 ,
where c(n) = n='w, /" is the isoperimetric constant. Then the Dirich-
let problem (1) has a global regular solution u € C 2.2(Q). Moreover, if
u € C%Y(Q) is a weak positive solution of (1) with Lipschitz constant
L, then we have
||

5 h:=supp >+ L H/2_ 1L
®) A A7)
for every Caccioppoli set A C Q.

Since c(n) is the isoperimetric constant, we have
<2
Zn-1(0Q2)
and therefore it is an interesting question whether our existence result
remains true if we replace (4) with an inequality of the form

|2 _
#p-1(0Q)

The proof of the theorem is based on a priori bounds for solutions to
the related problem

c(m)Q'" >

ko > const.

DiUD ju

1 + |Duj?
which enable us to apply a fixed point argument. Notice that the
operator

Au DiDju= !,

DiuD iU
1+ |Duf?
where Ay, is the Laplace-Beltrami operator on M = graph u.
Let us make some comments on the literature. For two dimensional
parametric surfaces in R3 the existence problem has been investigated

D;D; = (1 +|Dul?) - Ay
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by Bohme, Hildebrandt and Tausch [BHT]. To our knowledge the first
existence result for the Dirichlet problem (1), in case n = 2, is due
to Dierkes [D1]. The variational problem (2) is solved in [BD]. It is
shown in [D2] that minima « of (2) are regular up to the boundary pro-
vided only the boundary is mean curvature convex. A non-existence
result of a different type has been proved by J.-C. C. Nitsche in [N].

Proof. We consider regular solutions uy € C 22(Q) of the related
problem

Du
6 1+ |Dul2div——e— = ! in Q,
(6) V 1+ 1Dyl et

u=g¢ on 9Q,

where f € C1(Q) and 0 < d < f. As a first step we establish a priori
bounds for supg # and infg, u.

LEMMA. Letuy € C*° (Q) be a solution to the Dirichlet problem (6).
If
f2d> (14 V) cm)i@l”

and
. 2
ko =infaqp > (1+V2+1) e(m)|Q)'/7,

then we have h > u, > d.

Proof of the Lemma. The first inequality follows immediately from
the maximum principle since f is positive. To prove the second re-
lation we chose 6 > —ky and put w = min(u + 6,0), A(5) = {x €
Q: u < —4}. Multiplying (6) with w, integrating by parts and using
wlyq = 0, we obtain

2
/ |Dw| = [w] hence
Q

VI+[Dwl2  Jaw) fV/1+|DuP?’
/{Dw(5|A(6)|+d“/ ).
Q A(3)

We use Sobolev’s inequality on the left and Holder’s inequality on the

right hand side and get with c(n) = n~1w}, /"

[Wlajnor - {c™! (n) —d~1QI'"} < 1A(),
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where |w|,/,—; stands for the L,,_;-norm of w. Another application
of Holder’s inequality yields

01~ 8146 < { oo @)

for all 6; > &, > —kj. In view of a well-known lemma due to Stam-
pacchia, [St, Lemma 4.1], this is easily seen to imply

|A(—ko + 2"" - ¢)|A(—=ko)|V/™)| = 0, where
c(n)d

T d Qi

Clearly this means that

2”+1dc(n)|§2|1/”

quo—

d —c(n)|Q/n -
Since kg > (1 + V27+1d and d > (1 + V27t )e(n)|Q|Y/" we finally
obtain u > d. a

To derive a gradient estimate at the boundary, we rewrite (6) into
(7) (1 + |Dul*)Au — D;uD;juD;D;ju = f~'(1 + |Dul?).

We can then apply the results of Serrin [Sel], see also [GT, Chapter
14.3]. Equation (7) satisfies the structure condition (14.41) in [GT]
and the RHS is #(|Du|?). So we obtain a gradient estimate on the
boundary which is independent of |Df]:

sup |Dus| < ¢ = c2(n, 2, h, |0l 0),
provided only that 92 has non-negative (inward) mean curvature.

It is not possible to derive interior gradient estimates independent
of |Df], but we can prove

(8)  sup|Du,| < max {2, % sup [Df], 2e*d™' =D gup )Dufl} ,
Q Q Q

which will be sufficient for our fixed point argument. Estimate (8)

can be obtained from a careful analysis of the structure conditions in

[GT, Chapter 15]. Here we present a selfcontained proof, using the

geometric nature of equation (6). For a similar procedure we refer to

[K].
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In the following let v = (1 + |Du|?)!/? and denote by H and A the
mean curvature and the Laplace-Beltrami operator on M = graphu
respectively. Then equation (6) takes the form

(9) vV:Au=fle H=flo L

Let 71,75,..., Ty, v be an adapted local orthonormal frame on A, such
that v is the upper unit normal and

Vv =—h;1, Vitj = hijv,

where V; is the tangential derivative with respect to 7; and #;; is the
second fundamental form. Then we get for v = (1 + |Du|?)!/? =
(v,en41)”! the Jacobi-Codazzi equation

Av =V, Vi{v,e,1) " = V(v byt ens1))
= |A|>v + 2v~ 1| Vv + v} (VH, e,11),

where |4|?> = h;h"". Now (9) implies
(10)  Av =|4Pv + 207" |Vu? = f20(V S en1) = [V, e011).
If we now extend all functions from M to R"*! by
J(X, Xp41) = f(X)
such that
(11) Vf=Df-v(Df,v),D,, f=0 and
(VSfient1) = v~ (Df,v)
then we derive from (10) and (11)
(12) Av > 207V = 71V, e01) - f2DS].
Next we compute for a > 0 and g = e“¥ - v the inequality

Ag > e”‘“{2v_l|V’U|2 — f‘l(Vv,é’n+1) - f—lefl
+2aVvVu + avAu + va?|Vul?}.

Using again the equation (9) and
Vig =Vve*™ + ave*™Vu
we obtain

Ag > 207'VuVg - fTHVg, enp) + af e (Vi e,
— 4D fle™ + {v 'af ! + va?|Vu|* e
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In view of relation (11) we finally conclude
Ag >207'ViuV,g— Ve, enit) +H{|Vul* —af v~ 2D} g
Now let again d < f < h and choose a = 4d~!. Then, since

s _Dup 1 S
|Vul” = T+ [Duf 2 2 for |Du| > 1,

we see that g cannot have an interior maximum if
v > max {2,;};sgp|Df|}.
Therefore we get the estimate

supv < max {2, Lsup|Df],ehd™'=1) supv}
Q Q 2Q
yielding (8).

To prove existence of a solution to equation (1) we now define the
set

= {fe C'(@):d < f < hsup|Df| < M}

for M > 0 large and consider the operator
T:# — Ch(Q),

f — Ur.
In view of our estimates for u, and |Du,| we may then choose M so
large that

T(#)C#.

Moreover, standard theory ensures that 7" is continuous and 7(.#) is
precompact. So we can apply Schauder’s fixed point theorem, see e.g.
([GT], Cor. 11.2) to obtain the existence of a regular u € C>*(Q)
satisfying (1).

To prove the necessary conditions (5) we proceed similarly as in
[G]. To this end let 4 € Q have finite perimeter M(0 A4). There exists
a sequence of positive functions ¢, € C!(Q) such that g, — ¢4 in
L,(Q), and

/ IDgy| — M(@A4),
Q

where ¢ 4 denotes the characteristic function of the set A.
We test (1) with ¢, and integrate,

DuDg,,
13 / PRk 1 /1 + DupP b dx =o0.
(13) Q{ T Dl Pk | u|} X
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Now, since u € Lip(Q) it follows from standard regularity theory that
u € C*(Q) and therefore

div L >0 on £, whence u < A.

V1+|Dul? ~

Using this in (13) we get

h-L
dxg———/D
fyoedx < i [ 10w

and, letting k — oo,
h-L
1+ L2
h>{1+L2}/?

4] < M(94), or

4]
M@ A)

The general case follows by an approximation argument, using the fact
that

M(O[ANQ]) > M(DA4) ase— 0,

where
Q, = {x € Q: dist(x,0Q) > ¢}.

This completes the proof of the theorem.

REMARK. With the same method we could as well deal with the

integral
u’\/1 + |Du|?, y >0,
w1+ 1y

the Euler equation of which is given by
div Du = Y .
V1+|Dul2  u\/1+|Dul?

Clearly, in this case the constants appearing in the theorem would
depend on y too, however we shall not dwell on this.
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