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A complete description of positive projections in ideals of mea-
surable functions is given in terms of conditional expectation-type
operators.

1. Introduction. As is well-known, conditional expectation opera-
tors on various function spaces exhibit a number of remarkable prop-
erties related either to the underlying order structure of the given
function space, or to the metric structure when the function space is
equipped with a norm. Such operators are necessarily positive projec-
tions which are averaging in a precise sense to be described below and
in certain normed function spaces are contractive for the given norm.
Conditional expectation operators on LP -spaces have been character-
ized in terms of their averaging property by Moy [M] and Rota [Ro]
and as contractive projections by Douglas [Dl] and Ando [A].

More recently, positive projections of a certain class of Banach func-
tion spaces have been characterized in terms of conditional expecta-
tion by Kulakova [Ku]. It is our intention in this paper to show that
the characterization of positive projections given by Kulakova remains
valid for arbitrary ideals of measurable functions. The method of [Ku]
is based on the approach of Douglas for the case of Lι-spaces and
makes essential use of the underlying metric structure via an appeal
to a well-known interpolation theorem for rearrangement invariant
KB-spaces. The approach to the present paper is on the other hand
purely algebraic and uses the underlying order structure via a suitable
adaptation of the ideas of Moy on averaging operators. The basic
link which in essence reduces the more general problem of describing
positive projections to the study of averaging operators is provided by
a result of Kelley [K] which implies that each positive projection on
an L°° -space with range a vector sublattice containing the constants is
necessarily averaging.

After gathering some preliminary notions in §2, we consider in §3
the relation between conditional expectations and averaging operators
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in the setting of ideals of measurable functions. The characterization
of averaging operators, given in Proposition 3.1 and inspired by the
work of Moy, is in turn an extension of her result. The connection
with positive projections via the Kelley theorem is given in Proposi-
tion 3.3. The principal result of the paper is Theorem 3.10, which
extends the work of Kulakova and which yields a complete descrip-
tion of positive order continuous projections in terms of (so-called)
weighted conditional expectation operators. This theorem implies, in
particular, that each strictly positive order continuous projection for
which the constant functions are invariant is of conditional expec-
tation type. We indicate in §4 the extent to which the present ap-
proach yields characterizations of conditional expectation on Banach
function spaces which extend those of Rota for averaging contrac-
tions and of Ando and Douglas for positive contractive projections on
ZAspaces. In general, satisfactory extensions are valid only under ad-
ditional smoothness assumptions which are automatically satisfied in
the LP -setting. Related results may be found in the thesis of Duplissey
[Du] and in the papers of Rao [Ral], [Ra2]. However, results from this
latter source should be treated with some caution, as has been pointed
out explicitly by Bernau and Lacey [BL]. Finally, we show that each
contractive projection in a Banach function space with range a sublat-
tice containing the constant functions is necessarily positive, provided
a certain smoothness assumption is satisfied (Proposition 4.13). While
this smoothness assumption is again necessarily satisfied in the case
of ZΛspaces, Example 4.11 shows that it cannot be omitted even in
the finite dimensional setting.

2. Preliminaries. We assume that the reader is familiar with the
basic concepts of the theory of vector lattices and Banach lattices
(Banach function spaces). For unexplained terminology and notations
we refer to the books [AB], [LZ], [Sch] and [Z]. The main purpose of
this section is to fix some of the notation and terminology to be used
in the present paper. Throughout this paper, (Ω,Σ,μ) is a finite mea-
sure space. If ΣQ is a σ-subalgebra of Σ, then we denote the restriction
of μ to ΣQ (abusively) by μ again. The characteristic function of a
set A G Σ is denoted by 1A. However, we write 1 rather than 1Q.
For any measurable function / on Ω the support of / is denoted by
supρ(/) = {ω e Ω: f(ω) Φ 0}. We shall consider only (extended)
real-valued functions in this paper, as all the results extend without
difficulty to the complex case.
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The space of all real valued Σ-measurable functions on Ω, with the
usual identification of μ-a.e. equal functions, is denoted by L°(Σ, μ).
Similarly, we write Lp(Σ,μ) for the corresponding LP-spaces (1 < p <
oc). By an ideal of measurable functions on (Ω,Σ,μ) we mean a linear
subspace E of L°(Σ, μ) such that geE,fe L°(Σ, μ), | / | < \g\ implies
/ G E. We shall always assume that L°°(Σ,μ) C E C Lι(Σ,μ). For
such an ideal E the associate space Ef consists of all g G L°(Σ,μ)
for which J Ω \fg\ dμ < oc for all f E E. Clearly, E1 is an ideal of
measurable functions on (Ω,Σ,μ). It is clear that any g G E1 defines a
linear functional φg on E given by (/, φg) = JΩ fg dμ for all / G E.
If, in addition, there is a norm || ||# in the ideal E which is absolutely
monotone (i.e., | / | < \g\ in E implies | |/ | |£ < \\g\\E) such that (E, \\ \\E)
is a Banach space, then (E, || ||^) is called a Banach function space.
Note that in this case the inclusions L°°(Σ,μ) c E C Lι(Σ,μ) imply
(by the closed graph theorem) that c\\ -\\\ < || | |^ < C\\ ||oo for some
constants c, C > 0. Furthermore, for all g G is' we have ^ G £**, the
Banach dual of E. The mapping g \-> φg is an embedding of £ ' into
E*. Henceforth, we shall consider Ef as a subspace of E*. As is well
known, E* = E' if and only if \\-\\E is order continuous.

Next we collect some simple properties of conditional expectations.
Suppose that Σ o is a σ-subalgebra of Σ. For any / G Lι(Σ,μ) we
denote by g^(/ |Σ 0 ) the (μ-a.e.) unique Σo-measurable function with
the property that

ί
JA

fdμ=

for all A e ΣQ. The existence of g^(/ |Σ 0 ) is an easy consequence
of the Radon-Nikodym theorem. The function <^μ(f\Σ0) is called
the conditional expectation of / with respect to Σ o. If there is no
possibility of confusion, we write <*?(/|Σo) instead of <8^(/|Σo). We
list some elementary properties (see e.g. [N]).

(i) δ"( |Σo) is a linear mapping from Lι(Σ,μ) into itself;
(ii) r ( |Σ0) is positive, i.e., ^ ( / | Σ 0 ) > 0 whenever 0 < fe Lι(Σ,μ);

(iii) r(/ |Σo) = / if and only if f e Lι(Σ0,μ), so r ( |Σ0) is a pro-
jection from Lι(Σ,μ) onto Lι(Σo,μ)m

9 in particular lf(l|Σo) = 1; fur-
thermore r ( / | Σ 0 ) G L°°(Σ0,μ) whenever / G L°°(Σ,μ);

(iv) i f / > Othen | | r ( / | Σ 0 ) | | i = | |/ | | i and by virtue of the positivity
of r(.|Σo) we have | r ( / | Σ 0 ) | < ^ ( | / | | Σ 0 ) , so that | | r(/ |Σo)| | i < | |/ | | i
for all / G L ι(Σ,μ). In other words, ^ ( |Σ0) is a contraction in
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(v) l?( |Σo) is order continuous, i.e., if 0 < fn T / a.e. in Lι(Σ,μ)
then r ( / , | Σ 0 ) ΐ W | Σ 0 ) a.e.;

(vi) <̂ ( |Σ0) satisfies the averaging identity i.e. ^(f^(g\Σ0)\Σ0) =
W|Σo)r te |Σo) for all / G L°°(Σ9μ) and g G Lι(Σ,μ).

Let M+(Σ, μ) be the collection of all positive extended real valued
Σ-measurable functions on Ω (with the usual identification). Using
(v) it is easy to see that ^( |Σ0) can be extended uniquely to an order
preserving, additive, positive homogeneous mapping from M+(Σ, μ)
into itself, which still satisfies (v) and also the averaging identity (vi)
forall/, £GM+(Σ,//).

As before, let E be an ideal of measurable functions on the measure
space (Ω,Σ,μ) such that L°°(Σ,μ) C E c Lι(Σ,μ). Let Σo be a σ-
subalgebra of Σ. Fix a function w G E'. Then If (w/|Σ0) is well
defined for all / e E. Now assume in addition that ^(wf\Σ0) G E
and put Tf = <^(wf\Σ0) for all / G E. The linear operator T: E ^ E
satisfies the averaging condition. If w > 0 then T > 0 and Γ is order
continuous. In the next lemma we collect some other properties of
such an operator T.

LEMMA 2.1. (i) T can be written as T = Γ+ - T~ where T+f =
gr(w+/|Σo), ^ " / = &{w-f\Σo)forallfe EandO< T+, T~:E-+E.
Hence T is order bounded in E and the modulus of T is given by
\T\(f) = T+f+T-f = ?(\w\f\Σo)forallfeE.

(ϋ) II7//!Hi -• 0 whenever fn -* 0 Λ.e αtfd |/«| < « G ̂ / o r α// n.
(iii) The function w is uniquely determined by T.

Proof, (i) It is clearly sufficient to show that ^ ( ^ + / | Σ 0 ) e E for all
/ G E. To this end, write w+ = pw for some p e L°°(Σ,μ). Then
pf e E and hence r ( w + / | Σ 0 ) = ^(^(p/) |Σ 0 ) e E for all / e E.
Now it is easily seen that the operator Γo: E —• £, defined by Γo/ =
^(i/;+/|Σ0) for all / G £ is the supremum of T and 0 in the vector
lattice of all order bounded linear operators on E, i.e. To = Γ+.

(ii) If /„ - ^ 0 a.e. and \fn\ < u e E for all ft, then wfn —> 0
a.e. and |^/^ | < |^|w G L^Σ,//). By the dominated convergence
theorem, | |^Λ||i —> 0. Since <?( |Σ0) is an Lx-contraction, it follows
that \\Tfn\\x -^Oasft-^oo.

(iii) For any A G Σ we have

ί wdμ= ί w\A dμ= ί %{wlA) dμ= ί T\A dμ,
JA JΩ JΩ JΩ

from which the uniqueness of w follows.
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In connection with (iii) of the above lemma we note that, contrary
to the function w, the σ-subalgebra Σo is not uniquely determined by
Γi f supp(rHΣo) 7̂  Ω.

We end this section with a lemma which will be applied in the
sequel. Although the result can be found in [IT], II. 1.2, we conclude
the proof for the reader's convenience.

LEMMA 2.2. For a linear subspace M o/L°°(Σ, μ) the following state-
ments are equivalent.

(i) There exists a σ-subalgebra Σo such that M = L°°(LQ, μ).
(ii) M is a subalgebra of L°°(Σ,μ) containing the constants such

thatfneM, \fn\ < aeL°°(Σ,μ) (n = 1,2,...) and fn-+f a.e. imply
that feM.

Proof. Only (ii) => (i) needs a proof. The uniformly closed subalge-
bra M of L°°(Σ,μ) contains 1, so that (by polynomial approximation)
M is a vector sublattice. The collection ΣQ = {A e Σ: 1A e M} is a
σ-subalgebra of Σ. Since any / e L°°(Σ0,//) is the uniform limit of
a sequence of Σ0-stepfunctions, it follows that L°°(Σo,μ) C M. For
the converse inclusion, take 0 < / e M. For a > 0 and n = 1,2,...
we have n(f - α l ) + Λ 1 G M. Now n(f - α l ) + Λl |« lAn, where
4 = {«; G Ω: f(ω) > a}. Hence lAa e M, and Af is closed for
dominated convergence, and so 4 E Σ O . This shows that / is Σo-
measurable so that / e L

3. The main result. We start this section with an extension of a
result due to Shu-Teh Chen Moy ([M, Theorem 2.1]), the proof of
which is patterned after [M]. As before, E is an ideal of measurable
functions on a finite measure space (Ω,Σ,μ), satisfying L°°(Σ,μ) c
ECLι(Σ,μ).

PROPOSITION 3.1. If T is a linear operator on E for which

(i) Tf e L°°(Σ, μ) whenever f e L°°(Σ, μ),

(ii) \\Tfn\\x -> Ofor all sequences {fn}™=\ i n E s u c h t h a t \M < u
(n = 1,2,...) for some u e E and fn —> 0 ^.e,

(iii) Γ(/ Tg) = Tf Tg for all f e L°°(Σ,μ) and all g e E,
then there exists a σ-subalgebra Σo ofΣ and there exists w e Er such
that Tf = £{wf\Σ0) for all feE.
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Proof. The subalgebra

s/ = {h G L°°(Σ,μ): T(fh) = Tf h for all fe L°°{Σ,μ)}

of L°°(Σ,μ) contains 1 and, by (ii), is closed under dominated a.e.
convergence in L°°(Σ,μ). Therefore, by Lemma 2.2, there exists a σ-
subalgebra Σ o of Σ such that si — L°°(Σo, μ). It follows from condition
(iii) that Γ(L°°(Σ,//)) C j / .

We now show that Tf if Σo-measurable for all / G E. Given / G E
there exist fn G L°°(Σ,μ) (n = 1,2,...) such that \fn\ < \f\ and fn-+f
a.e. As observed above, Tfn G L°°(Σo,μ) for all n, and by (ii), Tfn —•
Γ/ in L^norm, so that Γ/ is Σo-measurable. In order to obtain the
function w we define the set function v on Σ by

v(A)= f T\Adμ

for all AeΣ, which is easily seen to be cr-additive by (ii). The signed
measure v is absolutely continuous with respect to μ and the Radon-
Nikodym derivative of v with respect to μ is denoted by w. We claim
that w e E' and that

/ Tfdμ= [ wfdμ, feE.
JΩ. JΩ

Indeed, take 0 < / G E and let {tn}^L\ be a sequence of Σ-stepfunc-
tions such that 0 < tn T / a.e.. Let A = {ω G Ω: w(ω) > 0} and
B = Ω \ A. It follows from the definition of w that

/ T(lAtn)dμ= [ (lAtn)wdμ= ί w+tndμ
JΩ JΩ JΩ

for all n. Since 0 < \Atn | \Af a.e. condition (ii) implies that
T{\Atn) -+ T{\Af) in ZΛnorm, so fQT(lAtn)dμ -+ fQT(lAf)dμ.
On the other hand, fQw+tnfdμ^fΩw+fdμ; hence

ί w+fdμ= ί T(lAf)dμ<oo.
JΩ JΩ

Similarly we find that

ί w~fdμ = - ί T(lBf)dμ<oo
JΩ JΩ

and the claim is proved.
To finish the proof, observe first that (once more by (ii)), T(fh) =

Tf - h for aΆfeE and h G L°°(Σo,μ). Now take D e Σ o . Then we
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have for all feE,

ί Tfdμ= [ TflDdμ= [ T(flD)dμ= [ wflDdμ
JD JΩ JΩ JΩ

= / wfdμ.
JD

Since Tf is Σ0-measurable we may conclude that Tf = &(wf\Σo) for
all feE.

REMARKS. 3.2(i) For positive operators T, it is evident that the
above condition (ii) is equivalent to the order continuity of T (i.e.
fn I 0 a.e. in E implies that Tfn [ 0 a.e.). Furthermore, if E is a
Banach function space with order continuous norm || | |£, then (ii) is
satisfied for any norm bounded operator T on E. Indeed, if \fn\ <
u e E and fn—>0 a.e., then the elements vn = sup^>w \fk\ satisfy
VniO a.e., so \\vn\\E j 0, which implies \\fn\\E -> 0; hence \\Tfn\\E -> 0.
Consequently | |7#,||i —• 0, since || ||i < C\\ | |^ for some constant
C > 0. This observation shows that the above proposition is an exact
generalization of Moy's result on Lp-spaces [M].

(ii) Suppose that T: E —> E is given by Tf = ^(wf\Σ0), feE, for
some σ-subalgebra Σ o of Σ and some w e Ef. In general, such a T
need not be a projection. In fact, T2 = T if and only ^(w\Σ0) = I5
and supp(w) c S for some S e ΣQ. Indeed, if T2 = Γ, then T\ =
T{\ Tί) = (Γl) 2 , so ^(w\Σ0) = T\ = l s for some S e Σ o. Note
that Tf = T{\ Tf) = T\ Tf, so Tf = lsTf for all feE. Writing
\w\ = wp with p e L°°(Σ,μ) we get

ί \w\dμ= f g(wp\Σ0)dμ= ί Tpdμ=ί lsTpdμ = 0;
JΩ\S JΩ\S JΩ\S JΩ\S

hence supp(w) c S. Conversely, if ^(w\Σ0) = Is and supp(w) c S
then

\Tf\dμ= f \?(wf\Σo)\dμ< I g(\wf\\Σ0)dμ
JΩ\S JΩ\SΩ\S JΩ\S JΩ\S

wf\ dμ = 0.LIΩ\S

which implies that supp(Γ/) c S for all feE. Hence Tf = lsTf
and consequently T2f = T{\ • Tf) = T\ • Tf = lsTf = Tf for all
feE.

The condition that supp(w) C S in the above equivalence cannot be
omitted, as is illustrated in the following example. Let E = L'fO, 1]
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(with respect to Lebesgue measure) and let Σ o be the σ-subalgebra gen-
erated by [0, j]. The function w = l[o,3/4] -1(3/4,1] satisfies &{W\ΣQ) =
1 [0,i/2] but supp(w) is not contained in [0, j ] .

If n; > 0, which is obviously equivalent to T > 0, then t?(w\Σ0) =
l s does imply that supp(w) c S, as fΩ\Swdμ =
f

Note in this connection that an averaging projection need not be
positive, which is shown by taking E = Lι[0, 1], Σ o = {φ, [0,1]} and
W = 4 1 [0, l/2]-21(1/2,1] .

Finally recall that a positive function w is called a weight func-
tion with respect to the σ-subalgebra Σ o if ^(w\Σ0) = Is, where
S = supp(w) (see [Dl]). Clearly, if w is a weight function for Σo,
then the corresponding operator T is a positive projection. The con-
verse, however, is not true. By way of example, take E = Lι[0,1],
Σo = {</>, [0,1]} and w = 21[0,i].

Next we will use the above proposition to describe a certain class
of positive projections.

PROPOSITION 3.3. For a linear operator T: E -> E the following
statements are equivalent.

(i) T is positive and order continuous, T2 = T, T\ = 1 and the
range R{T) ofT is a sublattice.

(ii) There exist a σ-subalgebra Σ o ofΣ and a function 0 < w e E1

with &(w\Σo) = 1 such that Tf = ¥(wf\Σ0) for all feE.

Proof (i) => (ii) First note that T > 0 and Tl = 1 imply that
Tf e L°°(Σ,μ) whenever / e L°°(Σ,μ). Denote by T^ the restriction
of T to L°°(Σ, μ). Since T is a projection, R{Too) = R{T) Π L°°(Σ, μ),
so JR(ΓOO) is a sublattice of L°°(Σ,μ). Moreover, since T^ is positive,
Too is L°°-continuous so R(Too) is closed in L°°(Σ,μ). Hence, R(Too)
is a uniformly closed vector sublattice of L°°(Σ,μ) containing 1, and
so R(Too) is a subalgebra (see [D2] or [HP1], Theorem 3.5). Now by a
result of J. L. Kelley ([K], Theorem 2.5; see also [HP2], Theorem 6.1)
it follows that Too is an averaging operator in L°°(Σ, μ) so that, by the
order continuity of Γ, we have T(fTg) = Tf Tg for all / e L°°(Σ,μ)
and g G E. As observed in Remark 3.2(i), if T is positive and order
continuous, then T satisfies also condition (ii) of Proposition 3.1, and
hence this proposition yields the desired result.
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(ii) => (i) Given f e R(T) we have / = g(wf\Σ0) and we can
write I/I = pf for some p e L°°(Σ0,μ). Hence |/ | = p^(wf\Σ0) =
g(wpf\Σ0) = r ( w | / p 0 ) , showing that | / | e R(T)9 so R(T) is a
sublattice. The remaining statements concerning T are evident.

In general, the range of a positive order continuous projection T for
which 7Ί = 1 need not be a sublattice. This is shown by the projection
T in R3 (with coordinatewise ordering) onto the plane X\ +.X2-2.X3 = 0
(with respect to the standard basis) along the direction of the third
basis vector.

As an immediate consequence of the above proposition we obtain
the following result.

COROLLARY 3.4. For a linear operator T: E —• E the following state-
ments are equivalent

(i) T is a strictly positive {i.e. Tf>0iff>0) order continuous
projection with T\ — \.

(ii) There exist a σ-subalgebra ΣQ ofΣ and a strictly positive function
w eE' with r(w|Σo) = 1 such that Tf = g(wf\Σ0) for all feE.

Proof. By Proposition 3.3, we only have to observe that the range
of a strictly positive projection is a sublattice. In fact, if Tf = / , then

< nn and nnn -n = o s o nn = /+.
REMARK 3.5. If w is a strictly positive function in Er, then the mea-

sure v defined by dv — w dμ is equivalent with μ and E c Lι(Σ, v).
Then Spμ(w\Σ0) is strictly positive and

for all / e Lx (Σ, v). In particular, if w is a weight function for ΣQ, then
I^C/ΊΣo) = ^μ{wf\Σ0) for all / e Lι(Σ,μ). Therefore, the result of
the above corollary can be reformulated as follows: the linear operator
T from E into itself is a strictly positive order continuous projection
with 7Ί = 1 if and only if there exists a σ-subalgebra ΣQ of Σ and an
equivalent measure ^ o n Σ such that E c L{ (Σ, v) and Tf = %v(/|Σ0)
for all feE. This is the main result of [dJ].

Let (Ω, Σ, μ) and E be as above. In the following proposition we
shall relax the condition that Tl = 1 and we shall assume instead that
7Ί is strictly positive.
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PROPOSITION 3.6. For a linear operator T: E —• E the following
statements are equivalent.

(i) T is a positive order continuous projection onto a sublattice such
that T\ is strictly positive.

(ii) There exist a σ-subalgebra ΣoθfΣ,0<w£Ef and a strictly
positive function k e Lι(Σ,μ) with ^(wk\Σ0) = 1, such that Tf =
k% (w f\Lo) for all f E E. Moreover, if we choose k such that^(k\Σ0) —
1 then both w and k are uniquely determined by T.

Proof, (i) => (ii) The measure v on Σ, defined by dv — T\ dμ is
equivalent to μ9 so L°(Σ,v) = L°(Σ,μ). The set F = {(Tl)~ιf: f e
E} is an ideal of measurable functions in Ll(L,v) and the mapping
M: E -+ F, defined by Mf = ( Γ l ) ~ 1 / for all / e E is a lat-
tice isomorphism from E onto i 7. Furthermore, L°°(Σ,v) c i7, as
Af(Γl) = 1 G -F. The mapping 5 = MTM~ι is a positive projection
in F and 51 = 1. The range R(S) = M[R(T)] is a sublattice of i7.
As before, we denote by E' the associate space of E with respect to μ,
whereas by F' we denote momentarily the associate space of F with
respect to v. It is easily verified that F' = E'.

It follows from Proposition 3.3 that there exists a σ-subalgebra ΣQ
of Σ and function 0 < w G Ff such that Sg = ^{wg\Σ0) for all
g G F, and hence

for all f E E. Using the formula in Remark 3.5 we find that

for all / € E, and so

for all feE. The function A: = T\ • [^(ΓllΣo)]"1 satisfies 0 < k e
= 1, and is strictly positive. Since

Γl = T21 = ki?μ(wkgμ(w\Σ0)\Σ0)

= TWμ(wk\Σ0),
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we find that ^μ(wk\Σ0) = 1. Moreover, it follows from &μ{k\Σ0) = 1
that for all A e Σ we have

TlAdμ= ί k^(wlA\Σ0)dμ
JΩ

= ί ^(k^(wlA\Σ0)\Σ0)dμ
JΩ

= f ^(wlA\Σ0)^(k\Σ0)dμ
JΩ

= [ g?»(wlA\Σo)dμ= ί wdμ,
JΩ JA

which shows that w is uniquely determined by T. The uniqueness of
k is now immediate from T\ — k8?μ(w\Σo).

(ii) => (i). Now suppose that T: E -+ E is given by Tf = k^(wf\Σ0)
for all / G E, where ΣQ is a σ-subalgebra of Σ, k is a strictly pos-
itive function in Lι(Σ,μ), 0 < w e E' and ̂ (^A:|Σ0) = 1. Ob-
viously, T is positive and order continuous. In order to show that
T\ is strictly positive, it suffices to verify that £?(W\ΣQ) is strictly
positive. To this end, put A = {ω e Ω: <^(w\Σo)(ω) = 0}. Then
fAw dμ = fA &(w\Σo) dμ = 0, so w is zero on A, which implies that

μ(A) = f g(wk\Σ0)dμ = f wkdμ = 0.
JA JA

It is an immediate consequence oΐ8p(wk\Σo) = 1 that T2 = T. Finally
we prove that R{T) is a sublattice of E. If / e R(T)9 then / =
k^(wf\Σ0) and hence | / | = fc|r(w/|Σo)| = pk&(wf\Σo), for some
p G L°°(Σo,/ι), so that | / |

The following corollary is now obvious.

COROLLARY 3.7. For a linear operator T: E ^ E the following state-
ments are equivalent.

(i) T is a strictly positive order continuous projection such that 7Ί
is strictly positive.

(ii) There exist a σ-subalgebra ΣQ of Σ and strictly positive func-
tions w in E1 and k in Lι(Σ,μ) with &(wk\Σo) = 1 such that Tf =
k^(wf\Σ0)forallfeE.

The next result extends Proposition 3.6. The proof bears resem-
blance to the proof of Proposition 2.2 in [Dl].
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PROPOSITION 3.8. IfT:E-+Eisa linear operator, then the state-
ments (i) and (ii) are equivalent.

(i) T is a positive order continuous projection onto a sublattίce.
(ii) T can be written uniquely in the form T = Tγ + T2, where

(a) T\ is given by

Tιf = kgr(wf\Σ0), feE,

where Σ o is a σ-subalgebra ofΣ, 0 < k e Lι(Σ,μ), 0 < w e E',
g(wk\Σ0) = lSUpp(£)> and supp(w) c supp(fc). Moreover, if we choose
k such that ^(k\Σ0) = lSUpp(A:)> then w and k are unique.

(b) T2 is a positive order continuous linear operator on E such
that TxT2 = T2 and T2T{=0 (and hence T\ = 0).

Proof (i) => (ii). To show the uniqueness of the decomposition, it
suffices to show that T\f = T(f\s) where S = suρp(Γ(l)). We observe
first that supp(/c) = suρρ(l?(w|Σo)). Since suρp(w) c suρp(/c) and
supp(k) e ΣQ, it is clear that supp^wlΣo)) c suρp(/:). If we set

A = {ω e supp(fc): g{w\Σ0)(ω) = 0}

then it follows as in the proof of the implication (ii) >̂ (i) of Propo-
sition 3.6 above that μ(A) = 0 and so supp(g7(^|Σ0)) = supp(/c).
This shows that supp(7i(l)) = supp(A:) and from this it follows that
supp(fc) = supp(Γ(l)) = 5. In fact, from 0 < T{(1) < Γ(l), it follows
that supp(&) C supp(Γ(l)). On the other hand,

implies that supp T(l) C supp(fc) and so equality holds. If now 0 <
/ G E, we have that nT\(l) Λ / I 5 | / I 5 and so, by order continuity
of T2, it follows that T2(nTι(l])Λfls) T T2(fls). On the other hand

0 < T2(nTι(l)Afls) < nT2Tx\ = 0,

so that T2(fls) = 0. Further 7Ί(/ΪΩ\S) = 0 for all / € E since
supρ(w) C 5 and this implies that Txf = Tx{fls) for all feE.
Hence

Άf = Άifis) = TiiAs) + τ2(fis) = T(fis)
and so the decomposition is unique.

Next we show the existence of such a decomposition. Let S =
supp(Γl). Since T(fΛnl) | Tf for all 0 < / e E, and 0 < T(fΛnl) <
nT\ for all n, it follows that supp(Γ/) c S, and so Tf = lsTf for all
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feE. Now define Txf = T(fls) for all / e £ and set T2 = T-T{.
Obviously Γj and T2 are positive and order continuous, and T\f =
T(T(fls)ls) = T2(fls) = TJTor all feE. The relations TXT2 = T2

and Γ2Γ! = 0 are easily verified. An application of Proposition 3.6
to the restriction of Tx to the ideal E\ = {f\S: f e E} of measurable
functions on 5 yields the desired σ-subalgebra ΣQ and the functions k
and w. We leave the straightforward details to the reader.

(ii) =» (i). If Γ = T\ + Γ2 with Tx and Γ2 as in (a) and (b), then
^(wk\Σ0) = lsupp(̂ ) implies that Γ 2 = Tx. It now follows easily that
T2 = Γ. Furthermore, i?(Γ0 = Λ(Γ). Indeed, if / e Λ(Γ), then
Άf = Tx{TJ+T2f) = TJ+T2f =Tf=f, so R(T) c i?(Γ0.
Conversely, if / e Λ(7Ί) then Tf = Γ^^/) + 7 ^ / ) = Γ ^ = /,
which shows that R(Tχ) C i?(Γ). It follows from Proposition 3.6 that
R(T) = R(T\) is a sublattice of £". The remaining statements on T
are evident.

It should be observed that T2 = 0 in the above decomposition if and
only if Tf = 0 for all / e R(T)d. The latter condition is the regularity
condition (*) of Douglas ([Dl], §1).

COROLLARY 3.9. For a linear operator T: E —• E the following state-
ments are equivalent.

(i) T is a strictly positive order continuous projection.
(ii) T can be written uniquely in the form T — T\ + T2, where

(a) T\ is given by

feE

where Σ o is a σ-subalgebra ofΣ,0<keLι(Σ,μ),0<we E\
^(k\Σ0) = %{wk\Σ0) = l s u p p W and supp(w) = supp(/c);

(b) T2 is a positive order continuous linear operator on E, which
is strictly positive on {/ln\SUpp(£): / Ξ E}, such that Tλ T2 = T2 and
T2TX = 0 .

Proof, (ii) => (i). It follows from (a) that T\ is strictly positive on
the ideal {/lSUpp(£)' f € E} and hence T is strictly positive on E.

(i) =» (ii). As observed before, the strict positivity of T implies that
R(T) is a sublattice of E, so we can apply Proposition 3.8. Therefore,
it remains to show that supp(w) = supp(/c) and that T2 is strictly
positive on {/lΩ\SUpp(fc)): / e ^}. This follows, however, immediately
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from the fact that Txf = Γ ( / l s u p p W ) and T2f = Γ(/ l Ω χ s u p p ( i k ) ) for
all feE.

Now we are in a position to prove the main result of this paper.
This result was proved by different methods by V. G. Kulakova ([Ku],
Theorem 2) for the special class of weakly sequentially complete rear-
rangement invariant Banach function spaces.

THEOREM 3.10. Let 0 < T: E —• E be an order continuous projec-
tion. Then Ω can be written as a disjoint union Ω = S\ US2US3 (5, G Σ)
such that with respect to the corresponding direct sum decomposition
E = E{®E2® E3, with Et = {f\Sι: / e E} the operator T has the
matrix representation

'Tn Tn 0-
0 0 0

T31 3̂2 0.

where 0 < 7/7 : Ej —> E[ are order continuous, T\\ and T\i are strictly

positive and

1 1 = ^ 1 1 ? ^

Furthermore, there exists a σ-subalgebra Σ o 0/Σ α«̂ / //zer̂  exist func-
tions 0<w c E',0<keLι(Σ,μ) such that Tnf = fcgr(w/|Σ0) /or
α// / € £1, g'(fclΣo) = ^(^A:|Σo) = l 5 l α/irf supp(A:) = suρp(w) = 5Ί.
This decomposition is uniquely determined by T.

Moreover, any operator of this form is a positive projection in E.

Proof. Since T is order continuous, the ideal £3 = {/ e E: T\f\ =
0} is closed with respect to monotone convergence in E, and so £3 =
{/15 3 : / G E} for some S3 G Σ. Define the projection P in E by
Pf = /1Ω\5 3 for all / G £ . Then ΓP = Γ, so (PΓ) 2 = PT and hence
P Γ is a positive projection in E. Let T: E$ -^ E$ be the restriction
of P Γ to Ef It follows from Γ = T2 = Γ P Γ that f is strictly
positive, so Λ(f) is a sublattice of E$. Take £Ί = /{(f)^ c E<*
and £ 2 = R{f)d n £ f Then £/ = {flSl: feE} for some St G Σ
(/ = 1,2). An application of Corollary 3.9 to the operator T yields
the strictly positive operators T\\ and Γ12. The verification of the
remaining statements is straightforward and is therefore left to the
reader.
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4. Averaging contractions and contractive projections. Throughout
this section, we assume that (E, || ||^) is a Banach function space
on some finite measure space (Ω,Σ,μ) for which L°°(Σ,μ) c E c
Lι(Σ,μ). The linear map T: E —> E is called averaging if T(fTg) =
Tf Tg for all / e L°°(Σ, μ) and all g e E. It has been shown by Rota
([Ro], Theorem 1) that if (Ω,Σ,μ) is a probability space, then each
averaging contraction on Z/(Σ,μ), 1 < p < oo, which preserves 1 is a
conditional expectation operator. We now indicate how the results of
the previous section yield extensions of Rota's theorem to the setting
of Banach function spaces.

We start with a simple observation, which in the case that E is an
LP-space (1 < p < oo), may be found in [Ro], Proposition 2.

LEMMA 4.1. If the contraction T: E —• E is averaging, then Tf e

L°°(Σ,μ) and \\Tf Woo < \\f \\oo for all f e L«>(Σ9μ).

Proof I f / € L°°(Σ,/ι) and H/IU < 1, then (Tf)2 = T(JTf) so that
{Tf)2eE and

| |(77)2 | |£ = \\T(fΓf)\\E < WfTfh < ll/l|oo||7/|U < II/IU

Proceeding inductively, it follows that (Tf)n e E and \\{Tf)n\\E <
\\f\\E holds for each n = 1,2,... . If ε > 0 is given, let A = {ω e
Ω: \Tf(ω)\ > 1 + ε}. From \Tf\n > (1 + ε)nlA, it follows that

and hence μ(A) = 0.

The following result is well-known and for L°°-spaces is a simple
exercise. A simple proof for Lι-spaces may be found in [S], Lem-
ma 5.

LEMMA 4.2. (a) IfT is a contraction on L°°(Σ,μ) and ifTl = 1,
then T > 0.

(b) IfT is a contraction on Lx (Σ, μ) and ifTl = 1, then T > 0 and
T*l = 1.

A direct application of Proposition 3.1 and Lemma 4.1 now yields
the first part of the following result.
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PROPOSITION 4.3. IfT: E -> E is an averaging contraction for which
\\Tfn\\\ —• 0 whenever {fn} is an order bounded sequence in E which
converges to zero almost everywhere, then there exists a σ-subalgebra
Σ o ofΣ and a function w e Ef such that Tf = ^(wf\Σ0) for all f eE.

If in addition T preserves 1 then Γ > 0 and T2 = T.

The second part of the proposition follows by noting that the restric-
tion Too of T to L°°(Σ,μ) is an L°°-contraction (Lemma 4.1) which
preserves 1 and so T^ > 0 (Lemma 4.2 (a)). The continuity condition
now implies that T > 0. That T2 = T is an immediate consequence
of the fact that T is averaging and preserves 1.

As noted earlier (see Remark 3.2 (i)), the continuity condition of
the preceding proposition is satisfied if E has order continuous norm.
In particular the proposition holds if E — Lp(Σ,μ), 1 < p < oo with
μ(Ω) = 1, which is the setting considered by Rota. In this special case,
it may be shown that w = 1. That this need not be the case in general
is illustrated by the next example.

EXAMPLE 4.4. Let Ω = [0,1] with Lebesgue measure μ. The mea-
sure v is defined by dv = w dμ where w = ^l[o,i/2] + |l(i/2,i] Let E
be the Banach function space Lp(Σ,v), 1 < p < oo with the function
norm

ί r ι Y/p

Wf\\E=U \f\PdΛ , feE,
and let Σ o = {</>,[0,1]}. The operator T: E -> E defined by Tf =
^(W/IΣQ) = &"{f\Σo) for aWfeE satisfies the conditions of Propo-
sition 4.3.

As is noted in Proposition 4.3, an averaging contraction on the Ba-
nach function space E which satisfies the given continuity condition
and which preserves 1 is necessarily a positive order continuous con-
tractive projection which preserves 1. We turn now to the question of
characterizing such operators in terms of conditional expectation. We
recall that a Banach lattice F is said to have strictly monotone norm
if whenever x, y e F satisfy 0 < x < y9 it follows that \\x\\F < \\y\\F-
We shall need the following simple result.

LEMMA 4.5. If the Banach lattice F has strictly monotone norm, and
if T is a positive contractive projection on F, then the range of T is a
sublattice.
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Proof. If x e F and Tx = x then x+ < T(x+) and so \\X+\\F <
+)II/Γ ^ II * + I I F From strict monotonicity of the norm it follows

that T(x+) = jc+.

We remark that the example following Proposition 3.3 shows that
the range of a positive contractive projection on a Banach lattice need
not be a sublattice if the norm is not strictly monotone. In fact, in
this example, one need only equip R3 with the || ||oo-norm.

The following basic characterization of conditional expectation on
Lι(Σ,μ) is due to R. G. Douglas [Dl] and independently by G. L.
Seever [S]. It is an immediate consequence of Proposition 3.3 via
Lemma 4.2 (b) and Lemma 4.5.

PROPOSITION 4.6 (Douglas, Seever). If T is a continuous linear map
on Lι(Σ,μ) then the following statements are equivalent.

(a) There exists a σ-subalgebra Σo ofΣ such that Tf = l?(/|Σo) for
allfeLι(Σ9μ).

(b) T is a contractive projection which preserves 1.

We now extend this characterization to an arbitrary ideal E of
L°(Σ,μ). The result which follows is a certain sharpening of Propo-
sition 3.3. If 0 < T: E —> E is an order continuous linear map, we
denote by V: E1 —• E1 the dual mapping defined in the usual way.

PROPOSITION 4.7. IfT:E^Eisa linear map, then the following
statements are equivalent

(a) There exists a σ-subalgebra ΣQ ofΣ such that Tf = ̂ (/ |Σ 0) for
allfeE.

(b) T is a positive order continuous projection such that T and V
preserve 1.

Proof. We need only show that (b) => (a). An argument of Ando
[A] shows that T is contractive for the ZΛnorm. In fact, if / € E,
then

f \Tf\dμ= ί TfsgnTfdμ
JΩ JΩ

< ί |/|Γ'(|sgn Tf\)dμ< [ \f\T'ldμ= ί \f\dμ.
JΩ JΩ JΩ
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Since E is dense in Lι (Σ, μ) for the Z^-norm, the assertion now follows
from Proposition 4.6.

For the case that E = L°°(Σ,μ) the preceding Proposition 4.7 re-
duces to [Ro], Proposition 5. To see that Proposition 4.7 yields exten-
sions of [Ro], Theorem 1 (see also [Du] Theorem II 5.5), some further
considerations are necessary. We recall the following notions. Let
(X, || \\χ) be a real Banach space. The functional φ e X* is called
norming at the point 0 Φ x e X if (JC, φ) = \\x\\x and \\φ\\χ* = 1. If
such a norming functional is unique, then the norm is called smooth
at the point x. As is well known, this is equivalent to Gateaux-
differentiability of the norm at the point x (see, for example, [Di],
Chapter 2). The norm || \\χ is called smooth if || \\χ is smooth at each
non-zero point of X. The following remark is implicit in the proof of
[A], Lemma 1.

LEMMA 4.8. Suppose that T is a contractive projection on the Banach
space X and that x e X lies in the range ofT. If the norm is smooth at
x and if φ e X* is the (unique) norming functional at x, then T*φ = φ.

Proof. Since | |Γ*^||^* < 1 and since

(x,T*φ) = (Tx,φ) = {x,φ) = \\x\\χ

it follows that T*φ is also norming at x and consequently T*φ = φ.

We now assume that (£, || ||^) is a Banach function space as con-
sidered earlier. It is not difficult to see that a constant function is
norming at 1 if and only if ||1||£||1||£, = μ(Ω). We then obtain the
following consequence of Proposition 4.7.

COROLLARY 4.9. Suppose that the norm on E is smooth at 1 and
that ||1||^||1||£/ = μ(Ω). IfT is an order continuous positive contractive
projection on E which preserves 1, then there exists a σ-subalgebra ΣQ
ofΣ such that Tf = r(/|Σ0) for all feE.

It will be shown in Proposition 4.16 below that if E is assumed to
have order continuous norm then the positivity assumption on T can
be replaced by the condition that the range of T is a sublattice.
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It follows from Example 4.4 via a simple computation that the con-
dition ||1||£||1||£' = μ(Ω) cannot be omitted from the preceding Corol-
lary 4.9. We remark that the Corollary applies immediately to the case
that E = Z/(Σ,μ), 1 < p < oc. In this special case, the resulting char-
acterization of positive contractive projections on Lp(Σ,μ) is due to
T. Ando [A] and is itself an extension of [Ro], Theorem 1, referred
to earlier. It should be mentioned that Ando ([A], Theorem 1) has
proved somewhat more in this special setting: each contractive pro-
jection on LP(Σ, μ) which preserves 1 is contractive with respect to the
ZΛnorm, provided 1 < p < oc and p φ2 and hence is necessarily pos-
itive. While it does not appear that there is an immediate extension
of this result to the more general setting, we consider in some detail
the related question as to what extent a contractive projection onto a
sublattice is positive, which is of independent interest.

First we make some remarks concerning smoothness of the norm
in Banach lattices. Let F be a Banach lattice. For any 0 < u e F
there exists a positive norming functional φ which vanishes on {u}d.
Indeed, if ψ e F* is norming at w, then we can take for φ the minimal
positive extension of the restriction of \ψ\ to the ideal in F generated
by u (see [Z], §83). In particular, if the norm in F is smooth at w,
then the norming functional at u is positive and vanishes on {u}d.
Furthermore, it is worthwhile to note that a Dedekind σ-complete Ba-
nach lattice F, with smooth norm, necessarily has order continuous
norm. Indeed, suppose on the contrary that the norm in F is not
order continuous. Then F contains a closed subspace which is norm
isomorphic to l^ (see e.g. [Sch], II, 5.14). This however, is contra-
dictory to a result of M. M. Day [Da] which states that /^ cannot be
renormed smoothly.

PROPOSITION 4.10. Any contractive projection T onto a sublattice of
a Banach lattice F with smooth norm is positive.

Proof. Take 0 < x e F and suppose that (Tx) > 0. Let φ be
the norming functional at (Tx)". Then φ > 0 and φ vanishes on
{(Tx)~}d, so ((Txy,φ) = 0. Furthermore since the range of T is a
sublattice, (Tx)" is a fixed point of Γ, and hence T*φ = φ. Therefore,

0 < {x9 φ) = (x, Γφ) = (Tx, φ) = -((Tx)-, φ) < 0,

a contradiction. Hence x > 0 implies that Tx > 0.
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EXAMPLE 4.11. We give an example of a contractive projection
onto a sublattice of a Banach lattice which is not positive. Let B
be the rhombic dodecahedron (see e.g. [C], §2.7) in R3 which is the
absolute convex hull of the points

Let E = R3 with coordinate wise ordering and define the norm || ||^
to be the Minkowski functional of B. Then (E, || ||^) is a Banach lat-
tice, but the norm is not smooth. Considering E as a Banach function
space on the three point measure space Ω, each of the points having
measure^ we have ||. ||! < \\.\\E < IHU, and hence \\.\\x < || | | ^ < || |U.
Therefore, | | 1 | | £ = | | 1 | | £ , = 1, and thus \\1\\E | | 1 | | ^ = μ(Ω). Note fur-
thermore that || ||^ is rearrangement invariant.

Let T be the projection onto the plane X\ = X2 along (—1,1,1). It is
easy to verify that T is a contractive projection with respect to || ||^.
Furthermore, 71 = 1 and the range of T is a sublattice of E, but T is
not positive.

In certain spaces in which the norm is not smooth, there is still an
abundance of points at which the norm is smooth. For instance, in the
space Lι (Σ, μ) the norm is smooth at all functions / with f{ω) Φ 0 a.e.
In such cases it is sometimes possible to conclude that a contractive
projection onto a sublattice is positive. The details follow. The next
lemma will be useful.

LEMMA 4.12. If F is a Dedekind σ-complete Banach lattice and if
the norm is smooth atO<ueF then the norm is smooth at all points
x € F for which \x\ = u.

Proof. If x e F and |JC| = w, let P be the band projection in F onto
the band generated by x~. If π = I - IP then Pu = x~ implies that
πu = x. Further, \πz\ = \z\ for all z e F and π2 = I and so π is an
isometry of F onto itself. Hence π induces a one-one correspondence
between the norming functionals at x and u and from this the result
follows.

PROPOSITION 4.13. Let F be a Banach lattice with order continuous
norm and let T be a contractive projection in F onto a sublattice. If
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the range R{T) contains weak units ofF and if the norm is smooth at
all such weak units then T > 0.

Proof. Observe first that if 0 < v, w e R(T)9 then it is a simple con-
sequence of the order continuity of the norm on F that the component
W\ ofw in the principal band generated by v is again in R(T) since
W\ = supn(w Λnv). Suppose now that 0 < v e R(T). We claim that
there exists a weak unit u e R{T) such that the norming functional
φ at u satisfies (v,φ) > 0. In fact, let 0 < w G R(T) be any weak
unit with \\w\\f = 1. Let W\ be the component of w in the principal
band generated by υ and set w = W\ + w2. If 0 < e < \\W\\\F, define
u = εw2 + W\. It is clear that u is a weak unit in F and from the
opening observation it follows that 0 < u G R(T). If φ is the norming
functional at u then

< \\ew2 + wι || <e + {wΪ9φ)
so that (w\,φ) > 0. Since 0 < φ is order continuous and since W\ =
suprt(w Λnυ) it follows also that (v, φ) > 0 which proves the claim.

Suppose now that 0 < x e F. If (Tx)~ > 0, then there exists
a weak unit 0 < u e R(T) with norming functional 0 < φ G F*
such that {(Tx)"9φ) > 0. Since the range of T is a sublattice, it
follows that T*φ = φ. Let P denote the band projection in F onto
the principal band generated by (Tx)~ and let u = (2P - I)u. Since
\u\ = uy it follows from Lemma 4.12 above that the norm is smooth at
u and moreover the functional φ = (2P* — I)φ is norming at ft. Since
u G R(T)9 it follows also that ue R(T) and hence T*φ = φ.

It now follows that T*(P*φ) — P*φ and consequently

0 < <x, P » = (x, r P » = (PΓx, p) = -((Γx)" ? p) < 0

and this is clearly a contradiction. Thus 0 < x e F implies Tx > 0
and the proof is complete.

A combination of Proposition 3.6 with the preceding result yields
the following corollary.

COROLLARY 4.14. Let E be a Banach function space with order con-
tinuous norm and let T be a contractive projection in E onto a sub-
lattice. If the range of T contains strictly positive functions and if
the norm is smooth at all such strictly positive functions then there
exists a σ-subalgebra Σo of Σ, 0 < w G E' and a strictly positive
function 0 < k e Lι(Σ,μ) with g(wk\Σ0) = ^(k\Σ0) = 1 such that
Tf = k&iwflΣo) for all feE.
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In general the existence of at least one weak unit in the range of T
at which the norm is smooth need not imply that T is positive as an
inspection of Example 4.11 shows. On the other hand, the proof of
Proposition 4.13 shows that the following variant holds.

PROPOSITION 4.15. Let F be a Banach lattice with order continuous
norm and let T be a contractive projection ofF onto a sublattice. If the
range ofT contains a weak unit w of F at which the norm is smooth
and for which the norming functional is strictly positive, then T > 0.

The final result of the paper now follows by combining Proposition
4.15 with Corollary 4.9.

PROPOSITION 4.16. Let E be a Banach function space with order
continuous norm such that the norm is smooth at 1 and such that
\\1\\E\\1\\E' = μ(Ω). If T is a contractive projection in E onto a sub-
lattice containing 1, then there exists a σ-subalgebra Σ o ofΣ such that
Tf=P(f\Σo)foralIfeE.
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Added in proof After completing our paper it was pointed out to us
by A. V. Buhvalov that Proposition 3.3 and Corollary 3.4 also occur
in some recent work of A. A. Mekler from Leningrad.
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