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For a shift o on the hyperfinite II; factor R, we define the derived
shift 0 to be the restriction of o to the von Neumann algebra gener-
ated by the (6% (R))' N R. Outer conjugacy of shifts implies conjugacy
of derived shifts. In the case of n-shifts with n prime, we calculate
0w explicitly. Combining this with the known classification of 7n-
shifts up to conjugacy, we obtain useful outer-conjugacy invariants for
n-shifts.

Following Powers [5], we define a shift ¢ on a von Neumann al-
gebra M to be a unit-preserving x-endomorphism of M such that
N2, 6% (M) = C, the complex numbers. We define the derived shift
Oy 10 be the restriction of ¢ to the von Neumann algebra M, gener-
ated by all the (6X(M))' N M. When two shifts on a factor of type II;
are outer conjugate, their derived shifts are conjugate (Theorem 1.2,
below). This gives us a useful outer-conjugacy invariant. In particular,
for shifts ¢ such that g, = g, this shows that outer-conjugacy implies
conjugacy (when specialized to binary shifts, this is the affirmative
answer to a conjecture of Enomoto and Watatani [3]).

In §2, we compute g, explicitly when ¢ is an #n-shift on the hyper-
finite II, factor R and # is prime. 2-shifts, called binary shifts in [5],
were introduced by R. Powers in [5]. n-shifts have been studied in [1],
[2] and [7]. In the notation of [1], every n-shift can be associated with
a doubly-infinite sequence (a(k))rcz in Z, which is odd and fails to be
periodic mod p for all primes p dividing #n. Furthermore, every such
sequence occurs. In case n is square-free, two shifts with sequences
(a;(k)) and (ay(k)) are conjugate if and only if there exists an m in
Z, such that ay(k) = m?(a,(k)) for all k. Thus, up to multiplication
by a square, the sequence associated with g, is an outer conjugacy
invariant for a.

The computation of o, breaks down into three cases. First, if (a(k))
fails to be ultimately periodic then R, = C; in this case 0 is trivial
and contains no information. Secondly, at the opposite extreme, if
a(k) = 0 for all but finitely many k then R, = R and g, = 0; in
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this case outer conjugacy is equivalent to conjugacy. Finally, the most
interesting case occurs when (a(k)) is ultimately periodic but doesn’t
end in 0’s: here R is a factor not equal to C or R and g, is an
n-shift; we are able (Theorem 2.1) to calculate explicitly the sequence
associated with o4, from (a(k)).

ProBLEM. If g; and g, are n-shifts with R, # C, does conjugacy
of the derived shifts (¢;) and (02)« imply outer conjugacy of o; and
0,? Equivalently, if ¢ is an n-shift with R, # C, are ¢ and o, outer
conjugate?

In attempting to answer this problem, we present in §3 a method
for producing many shifts outer conjugate to a given shift. This yields
many interesting examples. But even in simple specific cases, given
that (01)e = (03)c 1t is still not clear whether o; and o, are outer
conjugate.

Acknowledgment. The second named author wishes to thank Ed
Granirer for support through NSERC.

1. Definition and properties of g... As in [5], a shift ¢ on a von
Neumann algebra M is defined to be a unital x-endomorphism of A
such that ({2, ¥ (M) = C. Two shifts o; and 03, on M; and M, re-
spectively, are said to be conjugate when there exists a *-isomorphism
¢ of M, onto M, such that g; o ¢ = ¢ o g3, and outer conjugate when
there exists a unitary « in M, such that (adu)oo, and o, are conjugate.

Let o be a shift on M. Define

M, = ("M nM fork=0,1,2,....

Evidently M, is the center of M and My Cc M, C M, C ---. Let M,
be the von Neumann subalgebra of M generated by the M) and let
O be the restriction of ¢ to M,,. We call o, the derived shift of o.

LEMMA 1.1. g, is a shift on M.
Proof. First note that 0., (M) C My, since x € M) implies that
forally e M,
o(x)o* 1 (y) = o(xa*(»)) = a(c*(¥)x) = " (»)a (x),
which shows that o(x) € M, .| C M.
Then o, is a shift because 32, 0% (Mw) C N3, 0¥ (M) = C.

THEOREM 1.2. Let o, and o, be shifts on the type 11-factors M, and
M, respectively. If g, and g, are outer conjugate then their derived
shifts (01)e and (02)e are conjugate.
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Proof. Evidently if g, and g, are conjugate then so are (0;)s and
(02)00- Hence given that g, and o, are outer conjugate we may assume
without loss of generality that M|, = M, = M and that g, = (Adw)oa,

for some unitary w in M. Set w; = w and for k = 2,3,... set
wy = woy(w)o(w) - --of ~!(w). Then we can see that:
(1.1) (Adwy)oaf =0f fork=1,2,....

For (1.1) holds for k = 1, and, for all y € M,
[(Adwy) o of ]y = (Adwy_y) 0 o~} (w)af (¥)(of ™ (w))*
= (Adwy_y) o of "H(wa (P)w*) = [(Adwi_) 0 6~ [o2(¥)].
Thus (1.1) follows by induction.
From (1.1), Ad wy maps g} (M) isomorphically onto o%(M); there-
fore Adw;, maps M,El) = (afC (M))' N M isomorphically onto M,Ez) =
(6k(M)Y' N M. For all x e M_",

(Adwgy1)(x) = (Adwy)(of (w)x(of (w)")) = (Adwg)(x).

Hence the isomorphisms Adw; are compatible with the inclusions
M,El) C M,E”l and M,Ez) c M? : the following diagram is commuta-

] + k+1°
tive: _ D . Iy0

k k+1 -
Ad w, l l Ad wiy,y
(2) (2)
- M, - M, -

Thus there exists a unique *-isomorphism ¢ from the C*-algebra gen-
erated by the M,El) onto the C*-algebra generated by the M,Ez) such
that
¢(x) = (Addwy)(x)  forall x € MV,
Because Ad w; preserves the trace 7 on M, so does ¢. Hence ¢ extends
to an isomorphism ¢ of von Neumann algebras from (M;), onto
(M) 0.
Finally we check that ¢ o (61)e = (02)s0 © ¢. For x € M,El):

¢ 0 (01)oo(X) = #(01(X)) = (Ad wy11)(01(x))
= (adw)(ay (wxwy)) = a2 (wexwy) = ((92)o0 © #)(X).

CoROLLARY 1.3. Suppose that o, and o, are shifts on the type
I1,-factors M, and M, respectively. Suppose that (M) = M, and



248 DONALD BURES AND HONG-SHENG YIN

(My)oo = M. Then g, and o, are outer conjugate if and only if they
are conjugate.

The following are examples of shifts o such that M, = M so that
0 = 0 and Corollary 1.3 applies.

ExXAMPLE 1. Let 0 be an n-shift with determining sequence (a(k))icz
such that a(k) = 0 for all but finitely many k (see §2 for details).
Corollary 1.3 applied in this case demonstrates a conjecture of [3].

ExAMPLE 2. Let ¢ be the canonical shift of the hyperfinite II,-factor
R realized as the von Neumann algebra of the GNS-representation
associated with the unique tracial state on a UHF-algebra of type n*.

ExAMPLE 3. Let R be realized as the von Neumann algebra gener-
ated by a sequence of projections py,p,,... satisfying the Jones rela-
tions

(i) pipjpi = tp; for |i — j| = 1.

(i) pipj = pjp; for |i — j| > 2.

(iii) There is a trace on R for which the conditional expectation E,
onto the x-algebra generated by p,,...,p, and 1 satisfies: E,(p,.1) = 7.
Let o be the shift a(p;) = p;;; (see [4] and [1, §5}).

The common feature of these examples is the existence of a € R
such that the a;, = 6% (a) generate R and that each a; commutes with
all g for all kK > ko(j). Then a; € Ry, ;) C R, 50 R = R and
0w = 0. We have shown:

LEMMA 1.4. Suppose that o is a shift on M and that there exists an
a in M such that:
(i) a,0(a),c?(a),... generate M, and
(i) there is a ko such that a commutes with a*(a) for all k > k.
Then My, = M and 6, = 0.

LEMMA 1.5. (Mx)oo = Moo, (00)oo = Too-
Proof. Let S, = (6%(Rx)) N Reo. Then
Sk O (6X(R)) NReo = ((6%(R)) NR) N Re = Ry N Ry = Ry.

Thus (R )0, the W*-algebra generated by the Sy, contains R,. Since
the opposite inclusion is evident, (R)oo = Roo-

LEMMA 1.6. Suppose that o is a group shift, o0 = d(G,s,w) in the
notation of [1], where s is a shift on the abelian group G, and w is
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an s-invariant cocycle on G. Define p(g A h) = w(g,h)w(h, g) for all
h,g €G. Let, fork=0,1,2,...,

D, ={g€G|p(gns*(G) =1}

and let Do, = \Ji2g Dy Let § and @ be the restrictions of s and w to
Do.. Then o is the group shift 0(Dwo, §, @).

Proof. Use Proposition 1.2 of [1].

COROLLARY 1.7. There exist shifts on the hyperfinite 11,-factor R
which fail to be outer conjugate to any group shift.

Proof. By Lemma 1.6 and Theorem 1.2, it suffices to display a shift
o on R which is not a group shift and for which g, = . In Example
3 above, take 7 = 1/p where p is a prime > 4. Then 0, = ¢ and ¢ is
not conjugate to a group shift by Proposition 5.4 of [1].

2. n-shifts on the hyperfinite factor: calculation of .. Fix an integer
n > 2. For the main results of this section n will be assumed prime.
Fix y = exp(2zmi/n).

An n-shift o on the hyperfinite factor R may be characterized (see
[1], [71, [2]) by the existence of a unitary u in R such that:

i ur=1u"¢Cform=1,2,...,n—1,
(ii) R is generated by the o*(u) for k =0,1,2,..., and
(iii) # and 0¥ (1) commute up to scalars:
u(d*(u))u*(e*(u))*eC fork=1,2,....
We write:
up =0 (w),  wwiup =y**) forall jk=0,1,...

where a(k) € Z,. Then we call (a(k)),cz a determining sequence for
o. The sequence (a(k)) is odd and fails to be periodic modp for
every prime p dividing n; furthermore all such sequences occur as
the determining sequence of an n-shift ¢ on R (see [1]). When # is
square-free, two sequences (a;(k)) and (a,(k)) determine conjugate
shifts if and only if there is an m € Z, such that ay(k) = m2(a,(k))
for all k (see [1]).

Here we are concerned with the calculation of o, and R,. o is
a group shift (G, s, p) with G = @ 1(Z,)), s the canonical shift
s:ep — ex,1 on G, and p(e; Aey) = y*k=J) for j,k =0,1,2,.... From
Lemma 1.6 we know that o, is a group shift, namely 6(D, §, §) where
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§ and p are the restrictions of s and p to D, and Dy, = {Jy—o Dk. As
in Lemma 1.6,

Dy = {g € Glp(g As¥(G)) = 1}.

O 1s not always an m-shift (see Example 7 at the end of §2). If,
however, n is a prime, then g, is an n-shift. Theorem 2.1 summarizes
the calculation of ¢, in this case.

THEOREM 2.1. Let n be a prime and let o be an n-shift on the hy-
perfinite 11,-factor R with determining sequence (a(k)). Let 05 on Ru
be the derived shift of .

Part A. (i) R = R if and only if a(k) = 0 for all but finitely
many k.

(1)) R # C if and only if (a(k)) is ultimately periodic; i.e. there
exist 7 > 0 and K such that a(k + T) = a(k) for all k > K.

(iii) In all cases Ry is a factor. If R, # C then g, is an n-shift
and R, is isomorphic to R.

Part B. Suppose now that (a(k)) is ultimately periodic so that R, #
C. Let gp be the smallest integer such that R, # C. Define the length
of a nonzero v in G to be L when v = 37 v;e; with v # 0. Then
we have:

(iv) Let v # 0 be in D,,. Then v spans Dy, and v,s(v),s*(v),...,
s¥(v) is a basis for D, . Hence Dy is isomorphic to G = @2 ((Z,)*
by the mapping s*(v) — ey.

(v) g has minimal length in D, — {0} if and only if g spans Dy,.

Part C. Let v be a vector of minimal length L in D, —{0}. Suppose
that a(k) commences its ultimate periodicity at k; so that

alk+T)=a(k) forallk >ky and alko—1+T)#aky—1).
Then

(vi) qo = ko + L.

(vii) kg is the smallest integer such that ¢ L A* for all k > k;, where
¥ = [v,Vi—1,...,v0)} and 4% = [a(k),a(k + 1),...,a(k + L)] are in
(Z,)*+! with the usual inner product.

(viii) L is the rank of the T x T matrix 4 with jth row 4; =
latko +Jj — 1), alko + Jj),...,alko + j + T = 2)].
(iX) 0 has determining sequence (b(k)) given by pbk) =
p(v Askv). Then b(gy— 1) # 0 and b(k) = 0 for all k > .
(x) The Jones index [R: Ry ] is nt.
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Proof. (i) Rx = R if and only if Dy, = G if and only if ey € Dq,.
That happens if and only if, for some m, p(egAe,) = 1 for all k > m,
i.e. a(k) =0 for k > m.

(ii) Suppose that a(k + T) = a(k) for all k > ky. Then g = ey — er
is in Dy, C Dy and R, # C.

Conversely, suppose that R, # C. Then D, # 0 for some k.
Taking g = ) gje; # 0 in Dy, we get (Lemma 3.2 of [1])

> gjatk—j)=0 forall k > k.
j=0

From here, as in the proof of Lemma 3.4 of [1], we easily see that
a(k) is ultimately periodic.
(iii) See the proof of (ix).

(iv) L:MMA. If g =327208j¢ejisin Dy and if go =g =
8« =0then g=0.

Proof of the Lemma. Assume that gg = g = - = g = 0
and g € D, . Then g = sk*1g’ for some g’ € G, so p(g' Nej) =
p(gNejiks1) =0fForall j with j+k+12>go+k or forall j with j >
go— 1. Hence g’ isin D, _; =0so g’ =0and g =0.

Proof of (iv). Suppose v, w € D, with v # 0. Then vy # 0 and there
exists A € Z, such that (w — Av)y = 0. Then w = Av by the lemma.
We have shown that v spans D,.

Evidently v,s(v),...,sX(v) are linearly independent (they are in
row echelon form) in D, .. For w € D, ., we can successively find
A9, A1,...,A; such that w' = w —Efz_oljsjv has wy = w] = --- =
w; = 0. Then the lemma shows that w’ = 0, and we have shown that
v,s0,...,5%v span Dy 4.

(v) By (iv), every non-zero g in Dy can be written in the form

k
g=) A;s/v with A #0.
j=0
Evidently the length of g is equal to £ + L where L is the length of v.
Hence g is of minimal length in D, — {0} if and only if g = Av for
A#0.
(vi) Write v = Eﬁ:o viex With vy, v # 0. Then because v is in Dy,

L
Zvja(k —j)=0 forall k > g.
j=0
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As in the proof of Lemma 3.4 of [1], that implies periodicity of a(k)
commencing at gy — L. Hence kg < g9 — L or kg + L < qo.

To prove the opposite inequality use a(k + T) = a(k) for all k > k.
Combining that with Zf:o v;a(k—j) = 0 for k large enough we obtain
Ef:o v;ja(k — j) = 0 for all k such that k — L > ky or k > ko + L. That
shows v is in Dy . ; and therefore that ko + L > qp.

(vii) go is the smallest integer such that, for all kK > gqg, p(vAer) = 1.
This is equivalent to

~

0= Zv] (k—Jj)=>Y_talk — L+ j) = (8]4*7F).

Jj=0

Hence ¢ is the smallest integer such that # 1 A¥—L for all k > ¢y, and
ko = qo — L is the smallest integer such that ¢ L 4% for all k > k.

(viii) From a(k + T) = a(k) for all k > kg it follows that
eo—erisin Dy, so L < T. If r = rank A < T choose T — r linearly
independent vectors ¥(1), 5(2),...,5(T —r) in (Z,)T perpendicular to
Ay, Ay, ..., A7. Taking a suitable linear combination of the 7(k) we
can find a vector ¢ of the form [g,, g—1,...,&1,80,0,...,0]. Then
8 = Y ko0 8k is in Dy, so L < r. In all cases, then, we have proved
L<r. If L=Tthen L=r=T, sotocomplete the proof we need
only show that » < L provided L < T.

Suppose then that L < 7. let ¥ = [vr,v7_1,...,00,0,...,0] in
(Z,)T where v has minimal length in Dy. Then ﬁ,sv, . ..,sT L)
are T — L linearly independent vectors perpendicular to Ay, A,,..., Ar.

Hence r =rank A< T - (T - L) =

(ix) Do is isomorphic to G by skv — ;. Under this isomorphism
the restriction of s to D, corresponds to s and the restriction of p to
Do, corresponds to p(eg A e;) = p(v A skv). Hence oo has defining
sequence (b(k)) given by:

y2®) = p(v A sFv).

Because v € Dy, and Dy_; = 0, p(v Aeg) = 1 for all k > gy and
p(v Aeg-1) # 1. That implies p(v A skv) = 1 for all k > g and
p(v A sk~ 1v) # 1, where we use the fact that vy # 0. Thus b(k) =0
for k > g9 and b(gy— 1) # 0.

Then (b(k)) is not periodic; therefore R, is a factor and is in fact
isomorphic to R by [1]. This also proves (iii).

(x) The span of ey, ey,...,er_; is a complement for Dy, in G. Hence
G /Gy is isomorphic to (Z,)L, and, by Proposition 1.4 of [1], [R: R]
=ntl.
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ExAaMPLES. In each case we specify o by giving the determining
sequence (a(k))rez: we write a = a(0),a(1),a(2).... Similarly we
specify o, by giving its determining sequence (b(k)). n can be taken
to be an arbitrary prime with the noted exceptions: it is understood
that integers are to be reduced mod n. The first repeating period is
underlined.

l.a=0,1,1,1,1,....

k0= 1,L=T= 1,q0=2,'v=e0—el,
b=0,1,0,0,.
2.4=0,0,1,2,1,2,. n;é2,3.
ko=2,T=2, A——[2 21 has rank 2,
L=r=2q9=4.
Then v = ¢y — e;, b(k) = 2a(k) — [a(k + 2) + a(k — 2)].
b=0,-2,1,2,0,0,...
3.a=0,0,1,2,1,2,... withn =3.
As in Example 2, ky = 2 and T = 2 but now A has rank 1, so
L_r—landq0=3. v =¢ey— 2e,
bk)=2a(k)+alk-1)+a(k +1),
b=0,1,1,0,0,.
4.a4=0,0,1,-1 1,1,—1,...
ko=2,v=ey+eq, q =3,
b(k) =2a(k)+ (a(k +1)+a(k — 1))
b=0,1,1,0,0,...

5.4=0,0,1,2,3,4,...

T=nky=1,v=ey— 2e; + e, is of minimal length in D,

because
[} 3] has rank 2.
L= 2, qo = 3)

b(k) = 6a(k) —4la(k + 1)+ a(k — 1)] + [a(k + 2) + a(k — 2)]
b=0,-2,1,0,0,...

6. a4, =0,0,1,0,0,1,...
a;=0,1,0,0,1,0,... for n # 2
a3 =0,2,2,0,2,2,... for n # 2
allhave L=T=3,ky=0,q0=3, v =¢y —e3.
b=0,1,1,0,0,...

In the calculation of b; we use the fact that multiplying a deter-

mining sequence by a square does not change its conjugacy class (see

(1]).



254 DONALD BURES AND HONG-SHENG YIN

7.a4=0,3,0,0,...,0,6,18,... for n # 3, N arbitrary > 3 where
a(0)=0,a(l)=3,ak)=0for2<k<N-1,
and for k > N:
k—
(2.1) alk) =2 a(i).
i=k—N

Then (2.1) holds for all £ > 2 but not for k = 1 since 22?:1_]\, a(i) =
2a(—1) = —6 and n # 3. Hence a(k) is not periodic, but is ultimately
periodic commencing with kg = —N + 2. A minimal v in Dy is given
byv=e -2V e.

Therefore L = N and g9 = 2. A direct calculation of b(1) gives
9=13%5s0

—

b=0,1,0,0,0,....
8. A 4-shift o on R such that g, is not an m-shift for any m:
a=0,1,2,2,..., n=4.

Since (a(k)) fails to be periodic mod 2 the factor condition is satisfied
and ¢ is a shift on R by [1]. In G = @2,(Zy)*) take vy = 2ey,
Vi = ex_; + e, for k > 1. Then s(vp) = vy + 2vy, s(vx) = V4 for
k > 1. We see easily (as in the proof of Theorem 2.1) that D, = Z, vy,
D3 = Zrvyg ® Z4v, and finally that

Dy =200 D240, D 2407 B ... .

Hence o, is the group shift o(Dy,, 5, p) where § and p are the restric-
tions to Dy, of s and p on G. If o, were an m-shift, there would exist
a g € Dy, such that g,s(g),s2(g),... generate Dy, (see Proposition
5.2 of [1]). It is easy to check that this is impossible. It is also easy to
check that p is non-degenerate on D, so that R, is a factor.

3. Outer conjugacies. Given an n-shift o with determining sequence
(a(k)) we give one method for calculating determining sequences of
n-shifts outer conjugate to g. Although this method produces some in-
teresting examples we are unable to exploit it to the extent of showing
when ¢ and o,, are outer conjugate in general.

A basic lemma from operator theory follows.

LEMMA 3.1. Suppose that n is an integer > 2 and that u is a unitary
operator with u" = 1. Then there exists a unitary y in the x-algebra
generated by u with the following properties:

1. y" =1 in case n is odd; y*" = 1 in case n is even.
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2. Let y = exp(2mi/n). For all unitaries v such that uvu*v* = y*
where a € Z,,
yoy* =uv for n odd,

yvy*(u®v)* € C for n even.

Proof. Suppose first that n is odd. Let 7,, = {A € C|A" = 1}. It
suffices to produce a function f: 7, — T, such that

(3.1) flyz)=zf(z) forall zeT,.

For given such a function, let y = f(u). Then y is unitary and y”" = 1.
If uvu*v* = p? then vuv* = y~%u so vf(u)v* = f(y~%u) = F(u)
where F(z) = f(y~%z) = Z%f(z) by (3.1). Then F(u) = (u*)?f(u) so
vyv* = u"% or yvy* = uv.

To show that a function f satisfying (3.1) exists, let

(3.2) f(%) =yB6=b/2A fors=0,1,...,n— 1.

We confirm that (3.2) holds for s = » also, since (n—1)/2 is an integer,
and then easily check that f satisfies (3.1).

Suppose now that 7 is even. (Then of course a function f satisfying
(3.1) cannot exist.) Let 6 = exp(ni/n) and define f(y) = §5ylsts—1/2]
fors=0,1,...,n—1. Then f(yz) =dzf(z) for all z € T, and, as in
the case when 7 is odd, y = f(u) has the required properties.

COROLLARY 3.2. Suppose that o is an n-shift on M, o = o(G,s, p)
where G = @2o(Zn)*). Let g — ug be the canonical twisted repre-
sentation of G in M, and define a bilinear map [ , | from G x G to Z,
by:

Y& = p(g A h) = ugupuhuy, for g,h € G.
Fix g € G and define ¢5: G — G by: ¢g(h) =h+[g,hlg forallh € G.
Then there exists a unitary yg in M such that

YeUpye = Mg, Mug gy forall he G
where A(g,h) € C.

ProrosITION 3.3. Suppose that n is a prime and that the n-shift
o on the hyperfinite factor R has determining sequence (a(k)). Let
G = @2 o(Zn)), let s be the shift e, — ex., on G, let p on G be
defined by (a(k)), and let [ , ] and ¢, be defined as in Corollary 3.2,
so that

lei,ej;l=a(j—i) foralli,j=0,1,2,....
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Suppose that g(1),8(2),...,8(m) are in G and let ¢ be ¢g(1)0 dgr2) 0
Bg(3)0 -0 Pgim). Suppose that v(0) in G is such that G is generated
by v(0),v(1),v(2),... where v(k) = ¢(s(v(k — 1))). Then b(k) =
[v(0),v(k)] defines a determining sequence (b(k)) of an n-shift ¢’ on
R which is outer conjugate to o.

Proof. We may assume that o = (G, s, p) and that R = W*(G, p).
Lety = Ye(1)Vg(2)  * * Ve(n) WheTe Y41y is given by Corollary 3.2. Then
yupy* = A(h)uyy for all h € G, where A(h) € C. Hence

[(Ady) o o] (uyk)) = kMot

for A4, € C. Now let ¢’ = (Ady) o 0 and let wy = u,(g). Then

L wl=landwl#1fork=1,....,n—1;

2. the w; = (¢')¥wy generate R;

3. wowgwwy = yleOwE],
Therefore (Proposition 4.1 of [1]), ¢’ is an n-shift on R with deter-
mining sequence b(k) = [v(0),v(k)].

ExaMmpLEs. 1. Take gy given by the sequence 0,1,0,0,--- (i.e.
a(0) =0, a(l) =1a(2)=0...). Then the shifts given by each of the
following sequences are outer conjugate to gy, and hence, for each,
the derived shift is oy and g = 2.

(a) 0,1,1,1,...

(b) 0,2,0,2,0,..., for n # 2,

(c) 0,1,a,a%,...,

(d) 0,4+ 1,A2— LA3+1,... . forA#—L,n#A+1,

(€) 0,1 —Au, (1 —Au)(A* = ) /A —p,..., (1 = AW (A" — p")/A—
Uy...,for A # u,Au# 1.

The g(i)’s in Proposition 3.3 which demonstrate the above outer con-
jugacies are

(a) &1 = eo,

(b) &1 = —e1, & = e,

(c) &1 = (1+a)eo, & = —ey,

(d) u=—11n (e),

(e) &1 = uey, & = Ae.
In each case we can take v(0) = e.

REMARKS. Given a shift o of forms (c), (d) or (e) for example, the
calculation of o, or gy by the methods of §2 might be very difficult
even for one prime n. There are, however, shifts which have derived
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shift gy which are not obviously outer conjugate to ¢ (see Example 7
of §2).

2. Take og given by b = 0,0,1,0,0,.... Then the shifts given by
the following defining sequences are outer conjugate to gy:

(a) 0,0,1,0,1,...,

(b) 0,0,2,0,0,0,2,0,..., for n # 2 (note kg = —1),

(c) 0,0,1,0,4,0,A2,0,....
The g(i)’s in Proposition 3.3 which demonstrate the above outer con-
jugacies are as follows: (a) g(0) = ep; (b) g(0) = —e,, g(1) = eg; (¢)
8(0) = Aeo.
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