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MORTON BROWN

Suppose / is an orientation preserving homeomorphism of the
plane which interchanges two points p and g . If 4 is an arc from p
to g, then 4 has a fixed point in one of the bounded complementary
domains of 4 U h(A).

1. Introduction. Brouwer’s Lemma [2], one version of which is that
each orientation preserving homeomorphism of the plane with a pe-
riodic point has a fixed point, has had much attention in the last few
years. It has played a central role in some work of Fathi [7], Franks
[8, 9], Pelikan and Slaminka [11], Slaminka [12] and the author [3, 4].

An interesting special case is when the periodic point has period
two. Indeed, this case is at the heart of Fathi’s argument in [7], and
his proof of Brouwer’s lemma requires a separate proof of this case.
The purpose of this note is to show that this result follows from a
particularly simple and elegant application of the notion of index of
a homeomorphism along an arc. Furthermore, we get constructive
information about the location of the fixed point. Our proof both
simplifies and strengthens a result of Galliardo and Kottman [10].

In a final section we illustrate some techniques which can be used
to locate fixed points more precisely.

2. The index. Let f, g be maps of the interval [01] into the
plane such that f(¢) is distinct.from g(¢) for each ¢ in [01]. Then
index (f, g) is defined to be the total winding number of the vector
g(t)—f(¢) as t runs from O to 1. For example, in Figure 1 this vector
makes a total of 1 and 1/2 turns in the clockwise (i.e., negative)
direction, so the index is —(1 + 1/2). The reader who wishes a more
precise definition of index and its properties should consult [5] and
[6].

If f and f’ are two maps of [01] into the plane such that f(1) =
f'(0) then we denote by f x f’ the map of [01] into the plane which
is f(2¢t) on 0<t<1/2,and f'(2t—1) on 1/2 <t < 1. Clearly, if
index(f, g) and index(f’, g’) are defined then index(f * f', g * g')
is well defined and equal to index(f, g)+ index(f", g’).
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f(0)  ¢(0)

FIGURE 1

3. LEMMA. Let h be an orientation preserving homeomorphism of
the plane and let p, q be distinct points such that h(p) = q and
h(q) = p. Let f be a path from p to q whose image contains no
fixed points of h. Then there exists an integer k such that

index(f', hf) =index(hf, hhf)=1/2 + k.

Proof. h interchanges p and g, so the vectors 4 f(0)— f(0) =g—p
and Af(1) — f(1) = p — q point in opposite directions, i.e.,
index(f, hf) = 1/2 + k. Since A is orientation preserving, there
is an isotopy g, 0 < s < 1, connecting the identity to 4. Then
index(gsf, gshf) varies continuously from index(f, hf) to
index(hf, hhf). On the other hand, for each s, the vectors gs4 f(0)—
gs/(0) = g5(q) — &(p) and gshf(1)— g f(1) = &(p) — &(q) point in
opposite directions, so, by continuity, index(g;f, g/ f) is constant
as s varies from O to 1. Hence

index(g1f, g1hf) =index(hf, hhf) =1/2 + k.

4. THEOREM. Let h, p, q, f be as in the Lemma. Then,

index(f*hf, hf+hhf)

is an odd integer, and h has a fixed point in a bounded complementary
domain of the image of the loop f*hf.

Proof. By the additivity of the index, index(f x Af, hf x hhf) =
index(f, hf)+index(hf, hhf) = 2(1/2+k), which is an odd integer.
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Since the image of f x Af is locally connected, the set X consisting
of the image of f *hf and the union of its bounded complementary
domains is a locally connected continuum ([13], p. 112-113). Since
X does not separate the plane it is an absolute retract ([1]), and hence
contractible. If 4 were fixed point free in each of the bounded com-
plementary domains of the image of the loop f * Af, then the loop
could be shrunk to a point within X, and index(f *x hf, hf * hhf)
would be zero, a contradiction.

5. Examples. Let ~, p, g, f be as in the Theorem.

FIGURE 2

In Figure 2 the curve f (more precisely the image of f) is a simple
arc from p to g and intersects 4 f only at the endpoints which 4
interchanges. Then index(f «xhf, hf «hhf) =1, and there is a fixed
point A inside the simple closed curve f*Ahf .

FIGURE 3

In Figure 3, f is again a simple arc and f intersects 4 f in one
other point v. The index (f, Af) is seen by inspection to be —1/2
or +1/2 depending on whether A(u) =v or h(w) = v, respectively.
Hence, by the Lemma, index(f * hf, hf « hhf) = —1 or +1, re-
spectively. Suppose A(u) = v. We wish to calculate the index of 4
“around” each of the domains, E, F ; that is, the index of positively
oriented simple closed curves lying in and surrounding the fixed point
sets of 4 in E, F respectively. Then

index(f *hf, hf = hhf) = (index of h around F)
— (index of 4 around FE) = 1.
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(Note that f*hf goes around E in the negative direction.) It is not
difficult to construct a homeomorphism g of the plane which equals
h when restricted to K = image f, and such that g has index 1
around F, and 0 around E. I claim that this ensures that ~ has the
same indicial values around E, F, respectively. The justification for
the claim lies in the following Theorem.

THEOREM. Let h, g be orientation preserving homeomorphisms of
the plane and let K be an arc that K contains no fixed points of h,
and h=g on K. Let X = KUh(k) =K U g(K). Then the maps

x — h(x) X —g(x)

m—a@l ‘™ =gl

are homotopic maps of X into the unit circle.

Proof. By a variation of Alexanders Isotopy Theorem ([3], page 38)
h is isotopic to g relative to K. Let p, denote the isotopy (pg =4,
P = g, and for each ¢, p, =h on K). Since p; has no fixed points
on K it has no fixed points on p(K), so the required homotopy is

(x = p(X)/llx = p(X)|l.-

A consequence of this result is that g and 4 have the same index
around each complementary domain of K U A(K).

FIGURE 4

In Figure 4, the calculation of the index (f, #f) depends again on
the location of f~!(v). Let us suppose it is u, so that index(f, hf) =
3/2 and index(f*hf, hf*hhf) = 3. Notice that f+hf winds twice
positively around F and once positively around E, so that

(index of /4 around E) + 2(index of /4 around F) = 3.
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With a bit more work than the previous case one can construct a
homeomorphism g which equals # on K = image f and which has
index 1 around each of E and F. Thus, by the Theorem above, the
same is true for A, and 4 has a fixed point in each of the domains
E and F.
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