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Let A be a Banach algebra, n a positive integer and Q, =
{lg1,...,aqn) € A": qiqk = Qs q1 + -+ + gn = 1}. The dif-
ferential geometry of Q,, as a discrete union of homogeneous spaces
of the group G of units of A4 is studied, a connection on the principal
bundle G — @, is defined and invariants of the associated connection
on the tangent bundle 70, are determined.

Introduction. The structure of the set Q of all idempotent elements
of a Banach algebra 4 plays a fundamental role in several aspects of
spectral theory. This work deals with the differential structure of the
space

n
On = {(ql, s n) €EA”: Qi =i Y i = 1}

i=1

of systems of n “orthogonal” projections in 4.

The manifold Q, appears as a universal model when certain poly-
nomial equations are considered. More precisely, if ay, ..., ay
are different complex numbers and «(X) denotes the polynomial
(X —ay) (X — ay), then the set 4, = {a € 4: a(a) = 0} is a
closed submanifold which is diffeomorphic to Q,. Thus Q, is the
model for all simple algebraic elements of 4 of degree n. More-
over, Q, plays a role in the study of arbitrary algebraic (in particular,
nilpotent) elements (see [AS]).

Section 1 contains the description of the differential structure of Q,
and A, as closed analytic submanifolds of 4” and A, respectively;
it contains also the proof that Q, and A, are diffeomorphic.

Using Kaplansky’s notion of SBI-rings, we recover a result of Barnes
[Ba] concerning the surjectivity of 4, — B, when B is the quotient
of A4 by its Jacobson radical. In §2 we show that Q, is a discrete
union of homogeneous spaces of G, the group of units of A; this
fact, together with a classical result of Michael [Mi], shows that an
epimorphism f: 4 — B of Banach algebras induces Serre fibrations
Qn(A) — Qn(B) and A, — B,. In §3 we obtain an explicit way of
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lifting differentiable curves in Q, to G by solving a linear differen-
tial equation which we call the transport equation; this fact is due to
Daleckii and S. G. Krein [DK] and T. Kato [Kal] but its geometrical
meaning is new. In fact, in §4 we define a connection in the principal
bundle G — @, and show that the horizontal liftings of differentiable
curves in Q, are precisely the solutions of the transport equation.

Several invariants of the tangent bundle of Q, are calculated in
§5 (covariant derivative, curvature, geodesics, etc.). As observed by
Kato [Kal], [Ka2, I1.4] the lifting theorem has important applications
in quantum mechanics (see [Ga], [GS]). A remark about C*-algebras is
in order: our results extend to the case of some involution algebras, in
particular to all C*-algebras. For instance, the transport equation has
a unitary solution if the curve has selfadjoint values; in a forthcoming
paper the immersion of

Pn:{pGQn:pl*sz, i:l’_‘.’n}

into Q, will be studied, together with associated fibrations Q, — P,.

Concerning the references, the reader may consult Rickart’s book
[Ri] for the literature up to 1960; the topology of the space of idem-
potents Q = @, has been considered in [PR1], [Ra], [Ko], [Ze], [Au],
[Gr] and with special emphasis on the differential struture of Q in
[Ra], [Gr], [Ki], [HK]; for the transport equation the reader may con-
sult [Kal] and [DK2]; in [PR2] the differential geometry of P = P, is
needed for the study of minimality of geodesics; see also [CPR2] for
a related problem; finally, the case of algebraic operators on Hilbert
space, the reader may consult the books [He] and [AFVH]. In particu-
lar, some problems concerning the set P, in this context are discussed
in [CH]. The set Q, appears, implicitly or explicitly, in various works;
we only mention [Ja, p. 54], [Ka2, I1.5] and [DK2, Chapter 1V].

1. Differential structure of systems of projections. Let 4 be a real
or complex algebra with identity 1. Denote by G = G(A4) the group
of units of 4 and by Q = Q(A) the set of all idempotents of A.

Suppose that the polynomial a(X) = T[]\ ,(X — «;) has differ-
ent roots aj, ..., @, in the field. Let g;j(X) = [],,;(X — ;) and
qj(X) = gj(X)/gj(a;). Then g;(X) has degree n—1, g;(o;) = dj;,
for i #j qi(X)q;(X) = h(X)a(X) for some polynomial s(X) and

7 14:i(X) =1 (because 1— 37" ,q;(X) has degree < n—1 and it
vanishes at n values, the «;).

Let A, denote the solution set of «, i.e., the set of all a € 4 with
a(a) =0.
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1.1. PROPOSITION. Let a € A(a). Then
() S aia) =1;
(1) gi(a)g;(@) =0 if i #j;
(ii1) gi(a)eQ, i=1,...,n;
(iv) gi(@)a=agi(a) =ca;q(a), i=1,...,n.

Proof. (i) follows from -7 ¢;(X) = 1 and (ii) follows from the
equality ¢;(X)g;(X) = h(X)a(X). From (i) and (ii),

ai(a) = qi(a) Y_ ar(@) = Y _ gi(@)gi(a) = gi(a)?,
k=1 k=1

which gives (iii). Finally from «o(X) = c(X — a;)g;(X) (with ¢ =
gi(a;) # 0) it follows that 0 = a(a) = c(ag;(a) — a;q;(a)) and this
completes the proof because ¢g;(a) commutes with a.

Let Q, = 0,(4) denote the set of all n-tuples of idempotents g;
of A which satisfy ¢;q; =0 if i #j and )7 ,q;=1.

1.2. PROPOSITION. The mapping a — (gi(a), ..., qu(a)) is a bijec-
tion from A, onto Q, whose inverse is (qy, ..., Gn) — 21y @iq; -

The proof is a straightforward application of Proposition 1.1. Thus,
from a set-theoretical view point, Q, is a universal model for the sets
A, . We shall extend this result to the differential geometry setting.

1.3. ReEMARK. I. Kaplansky introduced the notion of SBI-rings
(SBI = suitable for building idempotents) as those rings A such that
the natural mapping Q(4) — Q(4/R) is onto, where R is the Jacob-
son radical of 4.

It is known that for a SBI-ring A4, the map Q,(4) — @»(4/R) is

also onto foreach n =1, 2, ... (see [Ja, p. 54]).
It is also known that all Banach algebras are SBI [Ri, p. 58]. These
facts and 1.2 imply that, for every a = (ay, ..., a,) (with o, # a;),

A, — (A/R), 1s onto, a result due to Barnes [Ba, Theorem 7].

From now on, we will assume that A is a real or complex Banach
algebra with identity. For n-tuples Z = (Z;, ..., Z,) in A" we use
the norm ||Z|| = max, <<, ||Z:||. The general facts on Banach algebras
and Banach manifolds needed below can be found in [Ri] and [La],
respectively.
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1.4. THEOREM. Let a € A, be a fixed element, q = q(a) =
(q1(a), ..., qn(a)) € Q, the corresponding system of idempotents. Set

T={Xed; ¢Xq=0foralli=1,...,n},
={Yed; Yq =0 forall k #1}.

1.4.(1) A is the Banach space direct sum A=T & S.
1.4.(i1) Foreach Z=X+Y, XeT, Y €S, set

X'=Y"qiXqp/(ox — ;)
i#k

and define
d(Z) = exp(X")(a + Y)exp(—X").

Then ¢ is a diffeomorphism from a neighborhood U of O € A onto
a neighborhood V' of a. Moreover, ¢|ynr is a homeomorphism onto
VNnA,.

Proof. 1t is clear that every Z € A decomposes as X + Y, where

X = ququ eT and
j#k

Y:Zq,Zq,eS, for Zq,—l and
!
= (ZQI) 4 (ZQI) Z%Z(Jk +2611Z(11

It is also clear that the decomposition is topological, for 7 and S
are respectively defined as the images of the projections

Z—»Zq]qu and Z—>Zq,Zq,
J#k

An easy computation shows that the derivative of ¢ at O is the
identity: in fact, for Y € § D¢(0O)Y = Y obviously; for X € T
Dp(O)X =[X', a]l = X'a — aX' = X ; the assertion follows from the
decomposition A =T S.

Then, by the inverse function theorem, there exist open neighbor-
hoods U’ of O and V' of a such that ¢ maps U’ diffeomorphi-
cally onto V’. Consider next Z = X + Y with ¢(Z) € 4,. Since
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#(Z) = M(a+ Y)M~!, then a+ Y is also a root of a. Then
O=T];(a+Y —«;) and using Prop. 1.1.(1v):

0=qu(a+Y—a,~) =qu(aj+Y—al~)
i i
=quL

where L = J];,(Y — (a; — ;)). If Y has small norm (||Y] <
min{|a; — «j|, i # j} suffices) then L is invertible and therefore
q;Y =0 foreach j. Hence ¢(Z) € A, with Y small implies Z € T .
This means that (perhaps for smaller neighborhoods) ¢ is a homeo-
morphism from U'NT onto V'NV,.

Considering the maps ¢ as analytic local coordinates in A4, we
obtain:

1.5. COROLLARY. A, is a closed analytic submanifold of A whose
tangent space at a € A, can be identified to the Banach space T .

1.6. REMARKs. (i) The choice of the chart ¢ may seem rather
artificial; for instance, the derivative at O of ¢ (X + Y) =
exp(X)(a+ Y)exp(-X) is X+Y - Xa—-aX+Y =[X,a]l+7Y
and the equalities ¢;[X, alg; = (a; — a;)g:Xq; (i # j) show that
D¢(O) maps T onto 7T and S onto S. Thus, ¢; also provides
charts for the analytic structure of 4,. However, we have chosen the
map ¢ because it is the exponential map of the natural connection
to be studied later (see §4). This remarks applies also to the charts
chosen below for Q.

(ii) An obvious consequence of 1.3 is that A, is locally arcwise con-
nected for all o as above. For the simpler case of a(X) = X(X - 1)
this is a result of Zemanek [Ze, 3.2] for complex Banach algebras,
which was generalized for real algebras by Aupetit [Au, p. 413]. How-
ever both results have been also proved in [PR1, 4.3] (see also 2.2(iii)
below).

1.7. THEOREM. Q, is a closed submanifold of A" .
Proof. Fix q € Q, and define 7" = {X = (X, ..., X)) € A": ¢, X;q;s

=0 forr#iand s#i or r=s=1i,and ¢;X;q; + ¢ Xrqr =0 for
i#k}.
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The map 6: A" — A", 0(Z;,...,Z,) = (X1,...,X,) defined
by
X\ =Y 01Z1gi+ 4:Z14:

i>1

Xy = (Z 42224; + CIiqui) - (n1Zig2+ @22:1q1),

i>2

X = (aZidi + 6 Zed) — Y_(4iZigr + acZig)) (k<n-1),

i>k i<k
n—1
Xn = — Z Xk
k=1

is a projection onto 7' whose kernel is the set S’ of all Y = (Y7, ...,
Y,) € A" with ¢q,Y;gs =0 for r=i and s>i or s=i and r > i.
Thus 7" S’ = A" . For X € T' put
~ ~ ~ q,-quj lf_] <1,
X = X;; where X;; = . .
Z Y Y { —q,~X,-qj 1fi<].
i#]
Observe that ¢;Xq; =0 for i=1,...,n.
Consider now the map y: A" — A" defined by

~ ~

w(Z)i=y(X +7Y); = exp(X)(q:Y;) exp(—X)
for XeT',YeS'. Then Dy(0O)Y =Y for Y € §' and, calculating,
Dy (0)X);=[X,q]l=X; forXeT, i=1,...,n.

This means that Dy (O) = identity and y is a diffeomorphism from
a neighborhood of O onto a neighborhood of ¢. For Y € §’ such
that ||Y|| < 1 itis easily shown that ¢g+Y € @, ifand only if Y = O.
This completes the proof.

REMARK. According to Proposition 1.2, the bijections connecting
A, and Q, are given by algebraic expressions.

The next result, whose proof follows easily from the theorems above,
shows that Q, is a universal model for the sets 4, of simple algebraic
elements of degree n.

1.8. THEOREM. The map a — (q,(a), ..., qn(a)) is a diffeomor-
phism from A, onto Q, whose inverse is given by (qi, ..., qn) —
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o1y aiq;i. Consequently, for any other B = (B, ..., Bn) with B; #
Bj the map a — Y ;_, Biqi(a) is a diffeomorphism from A, onto Ag.

2. Fibrations. The group G of invertible elements of 4 acts on
Q. by inner automorphisms on each coordinate: if g € G and g =

(41, ... 4n) € P, then gqg™ ' =(gqig™", ..., gan8™ ') € Qn.

2.1. THEOREM. Let q be a fixed element of Q, and define n: G —
On by n(g)=2gqg™". Then

(i) there exist an open neighborhood U of q in Q, and a local
section : U - G of &,

(ii) the orbit V; = {gqg~': g € G} is open (and closed) in Qy;

(iii) m: G — V; is a principal fiber bundle with structure group Gy =
{geeG:g91=q18, i=1,...,n}.

Therefore Q is a discrete union of homogeneous spaces of G .

Proof. Given ¢q' € Q, define
o(d)=(q,9Y=aq1q1 + -+ a,qn.

It is clear that o(q) = 1 and o(q)q; = gjo(q’). Thus, for every ¢’ in
a neighborhood U of ¢, we have a(q') € G and a(q')qo(q¢")"' =¢'.
This proves (i) and (ii) and the rest of the statement follows from
standard arguments (see [St, §7]).

2.2. REMARKS. (i) An invertible element g belongs to Gy if and
only if g, gq; = 0 for all k # [. Thus, the Lie algebra of Gy can be
identified to {X € 4: ¢, Xq, =0 forall k #[}.

(ii) With the notations of 2.1 and 1.6 it is easy to describe trivializa-
tions of the tangent bundle 7Q, and of a suplement NQ, of TQ,
in the trivial bundle ¢: Q, x 4" — Q,. We call NQ, the “normal
bundle” of Q,. Given g € Q,,let U; = {q¢' € Q,: d(¢') € G} . Then
h: Uy x A" — Uy x A", defined by

na',Z)=(d',0(q)2Za(d)™),

is a diffeomorphism which trivializes simultaneously 7: T7Q, — Qu
and a bundle v: NQ, — Q, where (NQ,), =S (asin 1.6).

(iii) Given g € Q,, its connected component (in Q,) can be de-
scribed as the set {gqg~!: g € G}, where GP is the connected com-
ponent of 1 in G: in fact, it suffices to replace G by G? in the proof
of 2.1. Of course, similar statements hold for A4,. This generalizes
[Ze, Theorem 3.3] and [Au].
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2.3. CoroLLARY. Consider a fixed q € Q, and a continuous curve
y: [0, 1] — Q. such that y(0) = q. Then, there exists a continuous
curve I': [0, 11 — G such that T(0) =1 and noy =y, where n(g) =

gqg™!

We consider now the behaviour of the functor Q, under epimor-
phisms.

Let f: A — B be a continuous homomorphism of Banach algebras
which preserves the identity

Clearly f induces maps G(f): G(4) — G(B), and f,: Qn(4) —
Qn(B). We shall prove that f, is a Serre fibration when f is an
epimorphism [Sp].

2.4. THEOREM. Let f: A — B be a (continuous) epimorphism of
Banach algebras. Then f,: Qn(A) — Qn(B) is a Serre fibration. In
particular, f, is onto if and only if its image intersects every connected
component of Qn(B).

Proof. Replacing 4 and B by C(I"™, A) (= algebra of all maps
I™ — 4) and C(I™, B) respectively (where I = [0, 1]), it suffices to
show that if y: I — Q,(B) is such that y(0) = ¢’ = f,(q) for some
q € Qn(A) there exists a curve y: I — Q,(A4) such that f,op =17.

For this, we consider the commutative diagram

On(4) - On(B)
where 7,(g) = gqg~", ny(h) =hqg'h™! (g € G(4), h e G(B)). By
the local triviality of 7, proved in 2.1, there is a curve J: I — G(B)
with 6(0) = 1 and #n,6 = y. Michael [Mi] proved that f: G(4) —
G(B) is a Serre fibration; therefore, there is a curve ¢: I — G(A4) such
that ¢(0) =1 and f o ¢ =4J. To finish the proof it suffices to define
7 =m, o &, which satisfies fr,oy =7y.

The next theorem extends results of Raeburn [Ra] concerning the
set mo(P(A ® B)) of all connected components of the idempotents of
A ® B, where A is supposed to be commutative.

We omit its proof and that of the proposition below because they are
simple combination of Raeburn’s techniques without previous results.
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2.5. ProPOSITION (c¢f. [Ra, p. 383]). Let A be a Banach algebra and
B, ..., B, beopen balls in C with pairwise disjoint closures, centered
at ay, ..., ay, respectively. Let U =B{U---UB, and Ay ={a€ A:
the spectrum of a is contained in U}. Then Ay is open in A and
f=0U1,..., fn): Ay — A" is an analytic retraction onto Q,, where
fi: U — C isdefined by fi(z) =0, for z € B, and f,(a) is obtained
by means of the holomorphic functional calculus.

2.6. THEOREM (cf. [Ra, 4.5,4.7]). Let A and B be complex Banach
algebras. Suppose that A is commutative with spectrum X . Then the
Gelfand map A — C(X) induces bijections

n0(Qn(A®B)) — [X, Qn(B)],
{On(A8B)} — {Qn(C(X, B))}

where [ , | denotes homotopy classes of maps and {Q,(C)} is the set
of orbits of the action of G(C) on Qn(C).

2.7. REMARK. If A is the algebra of complex continuous functions
on the 3-sphere, B is the algebra of all 2 x 2-matrices over C and
n = 2, we reobtain the example of [PR1, 7.13].

3. Lifting C!-curves. The transport equation. In this section we
describe a method which leads to a lifting I" of a curve y: [a, b] —
Q. , as in Corollary 2.3, valid when p is rectifiable and continuous.
For the sake of simplicity we only consider » = 2, the general case
being similar and somewhat more involved. The reader can find the
details (for n = 2) in [PR1]. Our present interest in this construction
lies in that it leads to the transport equation.

Consider a continuous rectifiable curve y: [a, t] — Q and a par-
tition Il: g = a < #; < --- < t, =t such that ||yx — vyl < 1

(k=0,...,n—1), where y, = y(t;); then
ok ="k +(1=n)1=n1)€G (k=0,...,n—1) and
o007 =71,
0’2013’001—102_l =02V1f72_l =92, e, Op 01900, 0y =y

Thus, ¢ can be thought of as a “discrete” curve of units which con-
jugates yo with y,. Putting u(Il) = 0, ---0;, it can be shown [PR1,
§5] that the limit I'(¢) = limu(I1), when the length of the partition
IT tends to zero, exists and defines a unit of the algebra. Moreover
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I': [a, b] — G is continuous and rectifiable. If the original curve y
has a continuous derivative, then the value

(1/h)(I'(t + h) = I'(¢t) is, approximately,

(1/h) (o1 (2) = I(2)),  where

Oen = Y+ R)y(0) + (1= (e + h))(1 = ¥(2)).
Then,

(1/h)(T(t + k) — (1)) = (1/h) (G0 — DI(?)
= (1/R) 2yt + h)y(t) = y(t+ h) — y()T(2)
= (/W) {r@+ (@) =y +h) + (r(t+ 1) — () r()}(2)

and
I(2) = }li_lg(l/h)(l"(t +h) —T(2))

= {=v(®O¥(®) + 7))} ().

Thus, the lifting I" of y constructed by the limiting process described
above satisfies the initial values problem

I'= 0y -79),
)= 1.

In the general case n > 2 the initial value problem is

= (Z )"k)’k) I
1
ro) =1,

where ¥ = (y1, ..., vn): [a, b] — Qy is of class C!. Observe that
S ivk = i1 — 71(1 = p1) = 7171 — 1171 because y = 1 — 7, and
P1="7171+ 77 (differentiate y? = 7;).

As we said before, we shall not justify all the assertions about I'.
Instead we include the proof of the following result due to Daleckii,
Krein and Kato, for the sake of completeness (see [DK2, IV, Theorem

1.1]).

3.1. THEOREM. Let y:[a,b] — Q, be a C' curve. Then, the
unique solution in A of the initial conditions problem

I'=3T,
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where ¥ =37 _| Vi vk » Satisfies
i) I'(t)e G (t€]a, b)),
(i) T(O)y(@T (@)~ = (1) (t€la, b)).

Proof. Existence and uniqueness of I" follow from general facts [La,
p. 71). To prove (i) consider the companion problem

Ala) =1,

and observe that (AI')’ = AT'+ Al = 0. Then AT is constant on

[a, b] and, since A(a) =T1(a) =1, itis AI' = 1. Thus I'(¢) is left

invertible in A4 ; moreover, I'(¢) belongs to the connected component

of the identity in the set of left invertible elements. It is easy to see

that this component is completely contained in G'. This proves (i).
To see (ii) we compute (I'"!» ) (k=1,...,n):

(T ly D) = —T"UT 'y T+ T T+ Ty, I
= =T 9y — e — 7T
observe that 9y, = (30 7:i7:)Vk = Pk Vk, because y;y, = 0 for i # k,
and that %) = y(XC7i7:) = —n(XZvi%) = —7k, because J; =
Pk + vk and 3o = (32 ) =1"=0. Thus
D) = =T ey — 7+ 7T =0
and I'"!y,T is constantly y,(a). This completes the proof of (ii).

3.2. REMARK. The proof of part (i) could have been omitted be-
cause it is a general fact that the solution of I" = ¢TI, I'(a) = 1, where
¢: [a, bl — A is a continuous curve, is a curve of invertible element
of 4.

If A4 is an involutive Banach algebra, i.e. there exists a continuous
antilinear mapping x — x* such that (xy)* = y*x*, 1* = 1 and
x*=x (x,ye€ A), we consider the unitary group of 4

U={ueG:u'=u}
and the selfadjoint part of Q,
Pﬂ:{pz(plz---,pn)EQn3p/:=pk (k=1,,n)}

For these algebras more specific results hold. We omit the details
about the differential structure of P, .
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3.3. CoroLLARY. If y:[a, b] — Py isa C U curve then the solution
of I' =9I, T'(a) = 1, defines a curve T': [a, bl — U which conjugates
the curve y.

Proof. It suffices to show that I'(¢) € U for every ¢ € [a, b]. Ob-
serve first that

I = {(Z }"k?k) I"=TI" (Z J"k?k)*
=I" (Z Vk?k) =-I" (Z J"k)’k) :
because
Yo I =D k= (Zyk)' =1=0.

Thus (I"I') = I’ + I™*I" = 0 and I'*T is constant. But I'(0) =
I'“(0)=1,s0 I'*I"=1. Now, I'(?) is invertible for all ¢, by Theorem
3.1,s0 I'(t)*=T(s)"!.

3.4. REMARK. Of course many liftings of y may exist. But I' is
the unique horizontal lifting of y with respect to the connection we
shall define in the next section. This fact completes Kato’s remark [Ka,
I1.4.2, Remark 4.4]. Moreover, if our o ’s, used to obtain the transport
equation, are multiplied (at left or at right) by (1 — (7 — 7¢—1)%)~1/2,
where (1-r)~1/2=¥"%_(“1/2)(—r)™ for ||r|| < 1, we get a different
“discrete” lifting of y but in the limit it becomes the same continuous
curve I'. In this sense, the local solution [Ka, p. 102, (4.18)]

Ty(2) = (1 = (y(t) = 7(0))) "2 (»(0)7(0) + (1 — y(1)))(1 — 7(0))
is related to the global solution I".

4. The connection. Let g € Q, be fixed and 7#: G — Q, defined

by 7(g) = ggg~! = (gq187 ', ..., gqng™'). It is very easy to show
that the derivative of 7 at g € G(T7r)g: (TG)g: (TG)g — (TQn)r(e)

is given by
(Tr)g(X)=glg7' X, qlg™! (X €(TG)y)

where [Z,q9]1=(Z,q],...,[Z,q,]) forall Z e 4.
We say that X € (T°G), is vertical if (Tn)g(X) =0 or, what is the
same, if [g7! X, g] = 0. Then, if Vy; ={X € (TG),: [g7'X, q] =0},
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it is clear that V, = g -V} and that

Vi={Xe€Ad=(TG)y:[X,q]=0}
={Xe€eAd:qXq,=0foralli+#k}
= {ZininXGA}.

i=1

This shows that

H ={Xe€Ad:9;Xq;=0(=1,...,n)}
= quXqi:XeA
k#i

is a supplement of V; in A (= (TG),) and, in general H, = gH, isa
supplement of V; in 4 (= (T'G)g). Moreover, H,-h = H,), (g€ G,
h € H). Finally, the projections hg: (TG)g — Hg, vg: (TG)g — Vg
given by

he(X)=¢> a8 ' Xq;,
i#k

n
vg(X)=¢g> a8 ' Xqi,

i=1
verify
he(X) = ghi(g7'X),
vg(X) = gui(g7'X).

Clearly the mappings g — hg and g — v, from G into the
bounded linear operators on A are differentiable. All these facts show
that g — H, defines a connection in the principal bundle n: G — @), .

For the theory of connections we refer the reader to [KIN]. However,
we are dealing with Banach manifolds and bundles, which requires a
few notational changes.

From now on by “curve” we mean a C* curve.

Given a curve y: [a, B] — On, a horizontal lifting of y is a curve
I': [a, Bl — G such that al' =y and I'(¢) € H() (£ €]a, B]).

It is a general fact that, for each go € G such that y(a) = gopg, b
there is a unique horizontal lifting I" such that I'(a) = gy. In par-
ticular, if y(a) = g there is a unique horizontal lifting I" such that
I'a)=1.
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4.1. THEOREM. Given a curve y: [a, B] — Qn the horizontal lifting
I" such that T'(a) =1 is the solution of the transport equation

n

(4.2) I'=3T, wherep=> i,
i=1

with initial condition T'(a) = 1.

Proof. We have seen that the solution I of (4.2) is a lifting of 7,
1.e. mol' =y (see 3.1). By the uniqueness of both objects it suffices to
show that the horizontal lifting I" with I'(a) = 1 satisfies (4.2). We
recall that I" satisfies

(4.3) L(gl(0) =y(t)  (t€la, B),
(4.4) I'e H-=TH;, ie. I'¢)eT()H, (t€]a, B
or, what is the same

(4.5) Ir'yr=gq
and
(4.6) I'''I"e H,.

Differentiating (4.5) we get 0 = I'"!(=I'T"!y + y + yI'T-DI' and
cancelling I'"! and T, we get

(4.7) p=[T"1, 9.

Now, (4.6) means that g 'Tg, =0, (i=1,...,n), which can also
be written as

(4.8) gI' 'T'=T"'T(1 - g).

Replacing (4.5) in (4.8) we get I'~!yI' = I'~'I' = " 'IT-!yT" which,
after cancellation, gives

(4.9) pIT 1 =1T"1(1 - y)

and

(4.10) IT-ly = (1 - yITL
Finally,

= (Z 5’:’)’;’) r
n l .
=Y [IT', pInT (by 4.7)
1

n
= Y {IT 'y = 5T 1pL.
1
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This last expression coincides with F because »,IT—! =TT-1(1—y,)
by (4.9) and therefore y,IT~'y; = IT-!(1 — y;)y; = 0. This proves
the theorem.

4.11. REMARK. In general, if y: [a, 8] — Q. is a curve with origin
q' = 248, I then I is the horizontal lifting with origin gy if and
only if it is the solution of the problem I' = jTI", I'la) = go.

We compute next the 1-form, the 2-form and the curvature form of
the connection.

We recall that the 1-form 6 assigns to each X € (T'G), the hor-
izontal component of g~'X € (TG), = .#, the Lie algebra of H.
More explicitly,

n
0. X =v1(87'X) = g7 ' v (X) =D a8 Xq.

i=1
The 2-form d6f of the connection is defined by
do(X,Y)=3{X-0Y-Y 60X -6(X, Y]},

where X,Y € (TG)g, [ , ] denotes the Lie bracket and Z - W
denotes the derivative of W in the direction of Z, i.e. W 1is ex-
tended to a vector field on a neighborhood of g and given a curve
§: (—¢, &) — G such that §(0) = g and 6(0) = Z,
d
dti—o

Although the notation is the same, the Lie bracket should not be
confused with the commutator bracket of the algebra.
From the computations

n
X-0Y =X (Zq,-g-qui)
i=1
n n
=-> qig' Xg7'Yg;+ > qig7' X - Yy,
=1 i=1

n n
Y 0X=-) gg ' Ye ' Xqi+) qg7'Y Xq,,

=1 i=1

Z- W=

w(6(1)).

and .
O(X, YD) => ag '[X, Y,

i=1
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we get

1 n
do(X,Y) =35> alg™'Y, g7 Xy
i=1

= (—%) Y alg™'X, g7 Yg..

i=1

The horizontal differential of 0, also called the curvature form of
the connection is Q(X,Y) = dO0(hgX, hgY) for [X, Y] € (TG),.
Explicitly

X, ¥) = (-3) Lale b X & ks Yo
i=1
1
( E) Z qi

(H

[qug 'Xq,, a:8” ‘qu] gi

k#l r#£s

NI»—‘

)Zq:g HX(1-g)g™'Y - Y(1 —g)g ' X}

)Zq,g YXgig™'Y - Ygg~ ' X},

(where G=1-g =) (Jz')

ik

I\)I'—‘

_ <__)Zq,g (Xg~'Y — Yg~'X — Xgig~'Y + Ygg~ ' X)g;.

The structure equation Q(X,Y)=d0(X, Y)+(3)[0X, 0Y] is thus
trivially satisfied.

5. Calculations on the tangent bundle, geodesics. Consider g € Q,
fixed and let 4y = {X € 4: ¢;Xq; =0, i =1,...,n} (in §4 we
called it Hy). Itisclearthat H={ge G: gq;=¢q;g, i=1,...,n}
operates at left on 4; by h- X := hXh™!.

Thus we define the associated bundle of n: G — Q, with standard
fibre A4;, denoted by G® A; — Oy, where G® 4| := G x A/ ~,
(g, X) ~ (gh,h™'X) for h € H and the map G® 4, — Q, is
determined by (g, X) — =m(g). It is a general fact that this vec-
tor bundle is isomorphic to the tangent bundle 7Q, , by means of
(g, X) = (n(g), gXg™") € (TQn)n(g). Given a curve y: [a, f] —
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Qn the parallel displacement of the fibre (7°Qy),,) along y from
a to t € [a, B] is defined by 7.,: (TQn)ya) = (TQn)yp, TH(Z) =
[(1)ZT(¢t)~', where T is the horizontal lifting of y with origin
INa)=1.

Given X € (TQy), and a vector field Z de~ﬁned near g the covari-
ant derivative DxZ is DxZ :=X -Z +[Z , X], where

d
dt;—o

n
X=> Xg; and X-Z= Z(5(1)

i=1
for a curve d: (—¢, &) — Q, such that §(0) =¢ and 4(0) = X .
5.1. PROPOSITION. For every curve a: [a, B] — A" the element
Da/dt = a+[a, 9] is well defined and has the following properties:
(@) if yiay;=0 forall i=1,...,n then y;(Da/dt)y; =0 for all
i=1,...,n (in other words, Da/dt is tangent if a is tangent).
(b) if yiay, =0 forall i # k then y;(Da/dt)y, =0 forall i # k
(i.e. Da/dt is normal if a is normal).
Proof. (a) Differentiating y;ay; = 0 we get
0 = piayi + yiayi + yiapi.
Multiplying by p; at right and left we have
(5.2) yiviay; + viay; + yiapiyi = 0.
On the other hand
Da , .
Vi Vi =viayi+ vila, P17
= yiayi + ¥ (a St —, i’k?ka) Vi
= yiay; + 7iaivi — Vi Y, Devkari

and y; ), MV = Vi 2ox(1 — vi) 7k because P = Py + v (differ-
entiate y2 = y;); thus

Vi Pk =i D e = i D ke = —vidi,
k k

because Y, 7 =0 and y; =0 if i #k.
This shows that

Da . ) .
J’im?i = y;ay; + yiayiyi + viviayi =0, by (4.2).
The proof of (b) is similar.
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This shows that for every vector field Y of Q, along y, the formula
Da/dt =Y +[Y, 9] defines another vector field of Q,, the covariant
derivative of Y .

The torsion of the connection, defined by T(X, Y) =DyY-DyX -
[X, Y] in general, turns out to be in our case

(5.3) T(X,Y)=[Y, X]-[X, Y],
where X, Y € (TQn)g and X = i1 Xidi Y= Y1 Yigi.

5.4. REMARK. For n = 2 the connection is symmetric, in the
sense that its torsion is zero everywhere: in fact, for » = 2 we have
Xi+X=0,Y1+HL=0,q1+q=1, ¢Xi=X;(1-q), ¢X; =
—-Xiq j -

These equalities, when replaced in (4.3), prove the assertion. How-
ever, for n > 3 this is no longer true.

The curvature of the connection, expressed by R(X,Y)Z =
D)((DyZ) — Dy(DXz) — D[X,Y]Z for X,Y,Z¢e (TQn)q s is given,
in our case, by

(5.5) R(X,Y)Z = [E 1X;, Yilai, Z]
i=1

or, abbreviating
(5.6) R(X,Y)Z =[X, YT, Z).

We study now the geodesic curves of the connection, that is, the
curves y: [a, f]1 — Q, such that Dy/dt = 0. It is a well-known fact

that this condition is equivalent to 7/,(y(a)) = p(t), (¢ € [a, B]). The
equation defining the geodesic curves can be written as

(5.7) P + [0, 71=0, k=1,...,n.
Using the commutation rules obtained from Y y; =1, y? = y; and
vivk =0 for i # k, we get

(i) pavi= =y (i=1,...,n);

(i) 7ive + i =0 (i #k);

(il) Xf 7% =0;

(iv) 797 =9iv (i=1,...,n);

(V) yivivi=0 (i=1,...,n).
These equalities imply that (5.7) is equivalent to

n n
(5.8) ¥ + 7 (Zﬁ)+ (Zﬁ) w—-29=0, (k=1,...,n).
1 1
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It is easy to exhibit all the solutions of (5.8) which satisfy y(¢) € Qn
forall . In fact, for g € Qn, X € (TQn)y, 7(t) = eXge X (t€R),
satisfies (5.8) and all the solutions of (5.8) with the additional condi-
tion y(t) € Qn, have this form. The connection is also complete, in
the sense that its geodesics are defined for all ¢ € R, and the expo-
nential map of the connection is given by

~

Exp,: (TQOn)g — Qn, Exp,(X) =e*qe™*.

Properties of minimality of length of geodesics are studied in a
forthcoming paper ([CPR2)).
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