SIMPLE PERIODIC MODULES OF TWISTED CHEVALLEY GROUPS

PETER FLEISCHMANN AND JENS CARSTEN JANTZEN
SIMPLE PERIODIC MODULES
OF TWISTED CHEVALLEY GROUPS

PETER FLEISCHMANN AND JENS CARSTEN JANTZEN

Consider a finite twisted Chevalley group constructed over a field of prime characteristic and its representations over an algebraically closed field of the same characteristic. In this paper we classify all those irreducible representations that are periodic, i.e., that have a periodic projective resolution. There is always the Steinberg module that is both simple and projective. We show that there are further periodic simple modules only for groups of types $^{2}A_{2}$ and $^{2}B_{2}$.

0. Introduction. Let K be an algebraically closed field of characteristic $p > 0$ and Γ a finite group with $p \mid |\Gamma|$. A finite dimensional $K\Gamma$-module M is called periodic, if it has a periodic minimal projective resolution. Of course projective modules are also periodic, but the non-projective ones are characterized by their complexity $c_{\Gamma}(M)$ being one. Here we understand complexity in the sense of Alperin [1].

In this article we look at the case where Γ is an "almost simple" twisted group of Lie type, defined over a finite field of the same characteristic p. We will give a classification of all periodic simple modules for these groups and the finite simple groups related to them.

It is a well-known fact that all finite groups of Lie type have a unique simple projective module, the Steinberg module St. We will prove in this paper that, if Γ is not of type $^{2}A_{2}$ or $^{2}B_{2}$, then the only periodic simple $K\Gamma$-module is St. With the classification for $^{2}A_{2}$ in [6], [7], and for $^{2}B_{2}$ in part 3 of this paper, we will achieve a full classification of simple periodic modules for twisted groups.

The corresponding classification for non-twisted Chevalley groups was recently accomplished in [9], [10]. Together with the initial classification for the type A_{1} in [15], the final result is that for finite groups of Lie type there are simple periodic modules, other than St, only for groups of type A_{1}, $^{2}A_{2}$ and $^{2}B_{2}$.

To state our results more precisely, we have to introduce some notations which we take over from [5]. For conceptual reasons we prefer working with universal groups:

So let K be an algebraic closure of the prime field \mathbb{F}_{p}, let G be an almost simple, simply connected and connected affine algebraic
group over K, defined and split over \mathbb{F}_p. Let F be a Frobenius endomorphism of G, as in [5], T an F-stable maximal torus of G with character group $X(T)$ and $R \subset X(T)$ be the (indecomposable) root system of G. We choose a basis $\Pi = \{\alpha_1, \alpha_2, \ldots, \alpha_l\}$ of R and assume F to induce a non-trivial automorphism τ of the Dynkin diagram of G. So either τ is of order 3 and R of type D_4 or τ is of order 2 and R of type A_l ($l > 1$), D_l ($l > 3$), E_6, or B_2, G_2, F_4 (in which cases p must be 2, 3, 2 respectively).

Attached to τ are natural numbers i, $e \in \mathbb{N}$ such that $F^i(t) = t^{e_i}$ for all $t \in T$ and the number $q := p^{e/i}$ is uniquely determined by G and τ. The group G^F of F-fixed points is either a finite (universal) Steinberg group (usually denoted by $\text{^3D}_4(q^3)_{\text{s.c.}}$, $\text{^2A}_l(q^2)_{\text{s.c.}}$, $\text{^2D}_l(q^2)_{\text{s.c.}}$ or $\text{^2E}_6(q^2)_{\text{s.c.}}$) or a Ree or Suzuki group (usually denoted by $\text{^2B}_2(q^2)$, $\text{^2F}_4(q^2)$, $\text{^2G}_2(q^2)$ where $q^2 = 2^{2m+1}$ resp. $q^2 = 3^{2m+1}$ for some m).

Excluding the cases (a) $\text{^2A}_2(4)_{\text{s.c.}}$, (b) $\text{^2B}_2(2)_{\text{s.c.}}$, (c) $\text{^2G}_2(3)_{\text{s.c.}}$ and (d) $\text{^2F}_4(2)_{\text{s.c.}}$, their quotient by the center is simple (see [19], Theorem 34, pg. 188) and is usually denoted by $\text{^3D}_4(q^3)$, $\text{^2A}_l(q^2)$ etc. (or by $\text{^3D}_4(q)$, $\text{^2A}_l(q)$, according to the taste of the author.)

The groups in (a) and (b) are solvable, whereas in (c) and (d) their commutator subgroups have index 3 and 2 and are simple non-abelian finite groups ($\cong \text{PSL}_2(8)$ in (c), $\cong \text{Tits' simple group}$ in (d)) ([19], pg. 188).

In this framework the main theorem of this article reads as follows:

0.1. **Theorem.** Let Γ be G^F, $G^F/Z(G^F)$ or $(G^F)'$, then all periodic simple $K\Gamma$-modules are projective if and only if R is not of type A_2 or B_2, in which case they are isomorphic to $\text{St}|_{G^F}$ or to a Clifford component of it, if $(G^F)' < G^F$.

In §1 we will reduce the problem for the Steinberg groups to the case $G^F \cong \text{^2A}_3(q^2)_{\text{s.c.}} \cong \text{SU}_4(q^2)$, which will be dealt with in §2. Factoring out the center, which does not affect the Sylow-p-structure, leads to the result for the simple groups. Section 3 is devoted to the Ree and Suzuki groups.

1. **The reduction to SU$_4$.** In this section we exclude the cases B_2, G_2 and F_4 but keep the previous notations. So all roots in R have the same length. We assume moreover T to be defined and split over \mathbb{F}_p. So the usual Frobenius endomorphism $x \mapsto x^p$ on K gives rise to an endomorphism F_0 of G, acting on T via $F_0(t) = t^p$ for
all \(t \in T \). There is an automorphism of \(G \) that has the same order as \(\tau \), commutes with \(F \), stabilizes \(T \) and induces on \(\Pi \subseteq X(T) \) the same map as \(\tau \). If this automorphism is also denoted by \(\tau \), then we can write \(F = \tau \circ F_0^n = F_0^n \circ \tau \) for some integer \(n > 0 \); in this case \(q = p^n \). We denote the fundamental dominant weights of \(R \) by \(\lambda_\alpha \) and set \(\rho := \sum \lambda_\alpha \) where the sum is over all simple roots. Let \(X(T)^+ \) be the set of dominant weights and set for all \(n > 0 \):

\[
X_n(T) := \left\{ \lambda = \sum r_\alpha \lambda_\alpha \in X(T) | 0 \leq r_\alpha < p^n \text{ for all } \alpha \in \Pi \right\}.
\]

For any \(\lambda \in X(T)^+ \) let \(V(\lambda) \) be the Weyl module for \(G \) with highest weight \(\lambda \) and \(L(\lambda) \) its unique simple quotient. One has \(V((p^n - 1)\rho) = L((p^n - 1)\rho) \) for all \(n \); this module is often called the \(n \)th Steinberg module and denoted by \(\text{St}_n \).

For any \(G \)-module \(M \) and any \(r \in \mathbb{N} \) let \(M^{(r)} \) denote the \(G \)-module got from \(M \) by twisting the \(G \)-action with \(F_0^r \). If \(\mu = \sum p^i \mu_i \) where \(i \) ranges from 0 to \(n - 1 \) and \(\mu_i \in X_1(T) \), then

\[
L(\mu) \cong L(\mu_0) \otimes L(\mu_1)^{(1)} \otimes \cdots \otimes L(\mu_{n-1})^{(n-1)}
\]

by Steinberg’s tensor product theorem [18].

According to another theorem of Steinberg [18] the \(L(\lambda) \) with \(\lambda \in X_n(T) \) remain irreducible when regarded as a representation of \(G^F \), and each simple \(KG^F \)-module is isomorphic to exactly one \(L(\lambda) \) with \(\lambda \in X_n(T) \).

The \(n \)th Steinberg module \(\text{St}_n = L((p^n - 1)\rho) \) is known to be projective as a \(KG^F \)-module. So in the case of the Steinberg groups our main theorem amounts to:

\[
(1.3) \text{Theorem. Suppose that } G \text{ is a Steinberg group not of type } A_2. \text{ Then } L(\lambda) \text{ is not a periodic } KG^F \text{-module for any } \lambda \in X_n(T), \lambda \neq (p^n - 1)\rho.
\]

Using the corresponding results for non-twisted groups of type \(A_l \), \(l > 1 \) (proved in [9]) we reduce the proof of this theorem to the case of \(2A_3 \) (i.e. to the groups \(\text{SU}_4(q^2) \)) that will be dealt with in §2.

\[
(1.4) \text{Proposition. If Theorem 1.3 holds in the case } 2A_3, \text{ then it holds in all cases.}
\]

\[
\text{Proof. Suppose that } L(\lambda) \text{ is periodic. Then for any subgroup } H \text{ of } G^F \text{ any direct summand } M \text{ of } L(\lambda) \text{ as a } KH \text{-module is periodic. So we prove the proposition by constructing in each case some } H \text{ and } M \text{ such that } M \text{ is not periodic for } KH.
\]
Here and in the following we will abbreviate a weight \(\lambda = \sum r_i \lambda_{\alpha_i} \) by \((r_1, r_2, \ldots, r_l)\), where \(\Pi = \{\alpha_1, \ldots, \alpha_l\}\).

Case 1. Type \(A_l, l > 3 \). Here the Dynkin diagram is:

\[
\begin{array}{cccccc}
\alpha_1 & \circ & \circ & \circ & \cdots & \circ \\
\end{array}
\]

We consider \(G^F \cong \text{SU}_{l+1}(q^2) \) with respect to the hermitian form given by the unit matrix.

Then \(c_1: g \mapsto (\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}) \) and \(c_2: g \mapsto (\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}) \) define two canonical embeddings of \(\text{SU}_l(q^2) \to \text{SU}_{l+1}(q^2) \). If \(L_J \) denotes the Levi subgroup for \(J \subseteq \Pi \) in \(G \), then the image \(\text{Im} c_1 \) is contained in the derived group \(L'_{\Pi \setminus \{\alpha_i\}} := L_1 \) and \(\text{Im} c_2 \subseteq L'_{\Pi \setminus \{\alpha_i\}} := L_2 \); hence we can apply a theorem of Smith [17]:

If \(\lambda = (r_1, \ldots, r_l) \in X_n(T) \) then \(L(\lambda)|_{L_i} = L(\lambda_i) \oplus M_i \) where \(L(\lambda_i) \) is an irreducible module for \(L_i \) with highest weight \(\lambda_i \) and \(M_i \) is some other \(L_i \) module. We get \(\lambda_1 = (r_1, r_2, \ldots, r_{l-1}) \) and \(\lambda_2 = (r_2, r_3, \ldots, r_l) \). See also [16] for a proof of these facts.

Furthermore \(L_i \) is simply connected of type \(A_{l-1} \). If \(\lambda \neq (p^n - 1)\rho \), then we may assume without loss of generality that \(\lambda_1 \neq (p^n - 1)\rho - \alpha_{\lambda_1} \). Then \(L(\lambda_1) \) is a simple periodic and non-projective \(\text{SU}_{l}(q^2) \) module in contradiction to the induction hypothesis.

Case 2. Type \(^2D_l(q^2) \).

\[
\begin{array}{cccc}
\alpha_1 & \circ & \circ & \cdots \\
\alpha_2 & & \\
\end{array}
\]

Let \(L_i \) be the derived group of the Levi subgroup corresponding to \(J_i \), where \(J_i = \{\alpha_i, \alpha_{i+1}\} \) for \(i < l - 2 \) and \(J_{l-2} = \{\alpha_{l-2}, \alpha_{l-1}, \alpha_l\} \). Each \(L_i \) is \(F \)-stable and simply connected; one has \(L_i^F \cong A_2(q) \) for \(i < l - 2 \) and \((L_{l-2})^F \cong ^2A_3(q^2) \). If again \(\lambda = (r_1, r_2, \ldots, r_l) \), then by Smith’s theorem \(L(\lambda)|_{L_i^F} = L(\lambda_i) \oplus M_i \) as above with \(\lambda_i = (r_i, r_{i+1}) \) for \(1 \leq i \leq l - 3 \), and \(\lambda_{l-2} = (r_{l-2}, r_{l-1}, r_l) \). Again, since \(L(\lambda) \neq \text{St}_n \), one of these \(L(\lambda_i) \)’s must be non-projective and hence non-periodic for \(L_i^F \), by the corresponding result for \(A_2(q) \) in [9] and the hypothesis.

Case 3. Type \(^2E_6(q^2) \):

\[
\begin{array}{cccc}
\alpha_1 & \circ & \circ & \circ \\
\alpha_2 & & \\
\alpha_3 & \circ & \circ & \circ \\
\alpha_4 & \circ & \\
\alpha_5 & & \\
\alpha_6 & & \\
\end{array}
\]
The same kind of argument applies here with $J_1 = \Pi \{\alpha_6\}$, $J_2 = \{\alpha_3, \alpha_6\}$ and $(L_{J_1})^F \cong 2A_5(q^2)$, $(L_{J_2})^F \cong A_2(q)$, using Case 1 and the result in [9].

Case 4. Type $^3D_4(q^3)_{s.c.}$:

The Weyl group $W(G, T)$ acts on \mathbb{Z}^4 as permutations of the $\pm \varepsilon_i$'s with an even number of sign changes.

If $\alpha_1 := \varepsilon_1 - \varepsilon_2$, $\alpha_2 := \varepsilon_2 - \varepsilon_3$, $\alpha_3 := \varepsilon_3 - \varepsilon_4$, $\alpha_4 := \varepsilon_3 + \varepsilon_4$, then the τ-fixed points α_2, $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = \varepsilon_1 + \varepsilon_3 =: \beta$, $\alpha_1 + 2\alpha_2 + \alpha_3 + \alpha_4 = \varepsilon_1 + \varepsilon_2$, form an A_2-subsystem of R. Moreover W maps

$$(\alpha_2, \beta) \mapsto (\alpha_2, \alpha_1) \quad \text{under} \quad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & -3 & -2 & 4 \end{pmatrix}$$

$$(\alpha_1, \alpha_2) \mapsto (\alpha_2, \alpha_3) \quad \text{under} \quad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$$

$$(\alpha_1, \alpha_2) \mapsto (\alpha_2, \alpha_4) \quad \text{under} \quad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & -4 & -1 \end{pmatrix}$$

If U_α denotes the root subgroup of G, then U_α, U_β are F-stable and $U_{\alpha_2}^F$, $U_\beta^F \cong \mathbb{F}_q^+$. Let H be the subgroup $\langle U_{\pm \alpha}, U_{\pm \beta} \rangle \leq G$; then H is of type A_2 and H^F of type $A_2(q)$. For $i = 1, 3, 4$ let $J_i = \{\alpha_i, \alpha_2\}$; hence $L_{J_i}^F = : L_i$ is of type A_2 but not F-stable. Let now $L(\lambda) \neq \text{St}_n$, with $\lambda = (r_1, r_2, r_3, r_4)$.

Then $L(\lambda)|_{L_i} = L(\lambda_i) \oplus M_i$, where $\lambda_i = (r_2, r_1)$ resp. (r_1, r_2).

For each i there is some $w_i \in W$ such that $w_i(H) = w_iHw_i^{-1}$ is contained in L_i. Since $L(\lambda)|_{H^F}$ is periodic, also the restrictions $L(\lambda)|_{w_i(H^F)}$ must be periodic. This can be seen for instance looking at the rank variety in the sense of [3], [4] and the fact that rank varieties of conjugate groups are isomorphic. Since $w_i(H)$ is contained in L_i, also $L(\lambda_i)|_{w_i(H^F)}$ is periodic. But $w_i(H^F) \cong A_2(q)$ and $r_i < q$, so $L(\lambda_i)$ is also irreducible for $w_i(H^F)$, which forces r_1 and r_2 to be $q - 1$ by the result in [9]. This gives a contradiction. □

2. **The Case SU$_4$.** Keep all assumptions and notations from §1 and assume that R is of type A_3.
(2.1) Lemma. Let $\mu = \sum_{l=0}^{n-1} p^l \mu_l \in X_n(T)$ with all $\mu_l \in X_1(T)$. If $L(\mu)$ is a periodic KG^F-module, then each μ_l has one of the following forms:

(a) $(p-1, p-1, p-1) = (p-1)p$,

(b) $(p-1, p-1, i)$ with $0 \leq i < p-1$,

(b') $(i, p-1, p-1)$ with $0 \leq i < p-1$,

(c) $(p-1, i, j)$ with $0 \leq i, j, i+j = p-2$,

(c') $(i, j, p-1)$ with $0 \leq i, j, i+j = p-2$,

(d) $(p-1, i, p-1)$ with $0 \leq i < p-1$,

(e) $(i, p-1, j)$ with $0 \leq i, j < p-1$,

(f) $(p-2-i, i, p-2-i)$ with $0 \leq i < p-1$.

Proof. Suppose $\mu = (m_1, m_2, m_3)$. The same argument as in the proof of (1.4), Case 1 shows that $L((m_1, m_2))$ and $L((m_2, m_3))$ are periodic as $KSU_3(q^2)$-modules. The classification of these modules in [7] yields now the claim. \square

(2.2) Lemma. Let $\lambda \in X_1(T)$ be of type (d), (e), (f) in Lemma (2.1). Then $\dim L(\lambda)$ is not divisible by p^3.

Proof. The formulae for the characters of the $L(\lambda)$ in [12] §7 imply:

$$\dim L(p-1, i, p-1) = \dim V(p-1, i, p-1) - \dim V(p-(i+2), i, p-(i+2))$$

for $0 \leq i < p-1$;

$$\dim L(i, p-1, j) = \dim V(i, p-1, j) - \dim V(p-(j+2), p-1, p-(i+2)) + \dim V(p-(i+2), i+j+1-p, p-(j+2))$$

for $0 \leq i, j < p-1, i+j > p-2$;

$$\dim L(i, p-1, j) = \dim V(i, p-1, j) \text{ for } 0 \leq i, j, i+j = p-2;$$

$$\dim L(i, p-1, j) = \dim V(i, p-1, j)$$

$$- \dim V(j, p-(i+j+3), i)$$

for $0 \leq i, j, i+j < p-2$;

$$\dim L(p-2-i, i, p-2-i) = \dim V(p-2-i, i, p-2-i)$$

for $0 \leq i < p-1$.
By Weyl's dimension formula
\[\dim V(r, s, t) = \frac{(r+1)(s+1)(t+1)(r+s+2)(s+t+2)(r+s+t+3)}{12}. \]

In each case one sees immediately that \(p^3 \) does not divide \(\dim V(\mu) \) for any \(\mu \). In the case \(\lambda = (p-1, i, p-1) \) one gets
\[
\begin{align*}
\dim L(\lambda) &\equiv 2 \dim V(\lambda) \not\equiv 0 \pmod{p^3} \quad \text{for} \ p \geq 5, \\
\dim L(\lambda) &\equiv 2 \dim V(\lambda) \not\equiv 0 \pmod{p^2} \quad \text{for} \ p = 3, \\
\dim L(\lambda) &\equiv 14 \not\equiv 0 \pmod{8} \quad \text{for} \ p = 2.
\end{align*}
\]
The other cases are similar and are left to the reader. \(\square \)

Recall the definition of the rank variety \(V_E M \) of a \(K E \)-module \(M \) for any elementary abelian \(p \)-group \(E \) as in [3] or [4]. So it is a homogeneous subvariety of the vector space \(K^m \) where \(m \) is the rank of \(E \). It is called linear, if it is a linear subspace of \(K^m \).

\textbf{(2.3) Lemma.} Let \(E \) be an elementary abelian \(p \)-subgroup of \(G^F = SU_4(q^2) \) and let \(\mu \in X_1(T) \) be of type (b) or (c) in Lemma (2.1). Then
\[V_E L(\mu) = V_E L((p-1, 0, p-2)). \]

\textbf{Proof.} Set \(C^* = \{(r_1, r_2, r_3) \in X(T)| -1 \leq r_1, r_2, r_3, r_1 + r_2 + r_3 \leq p - 3\} \). Then \(C^* \) is a fundamental domain for the “dot” operation (i.e., \(w \cdot \mu = w(\mu + \rho) - \rho \)) of \(W_\rho \) on \(X \), where \(W_\rho \) is the affine Weyl group (as in [14], II, 6.1). So there is a unique \(\mu' \in W_\rho \cdot \mu \cap C^* \) and a unique \(\lambda' \in W_\rho \cdot \lambda \cap C^* \) where \(\lambda = (p-1, 0, p-2) \); in fact \(\lambda' = (0, -1, 0) \).

We want to use the translation functors \(T^{\mu'}_{\lambda'} \) and \(T^{\lambda'}_{\mu'} \), cf. [14], II, 7.6. More precisely, we shall show that \(T^{\mu'}_{\lambda'} L(\lambda) \cong L(\mu) \) and \(T^{\lambda'}_{\mu'} L(\mu) \cong L(\lambda) \). As \(T^{\mu'}_{\lambda'} L(\lambda) \) is a direct summand of \(L(\lambda) \otimes M \) for a suitable finite dimensional \(G \)-module \(M \), and \(T^{\lambda'}_{\mu'} L(\mu) \) a direct summand of \(L(\mu) \otimes M^* \), elementary properties of the rank variety (cf. [3]) yield \(V_E L(\lambda) = V_E L(\mu) \).

If \(\mu \) is of type (c) in Lemma (2.1), then \(\lambda \) and \(\mu \) belong to the same facet for \(W_\rho \). In this case \(T^{\mu'}_{\lambda'} L(\lambda) \cong L(\mu) \) and \(T^{\lambda'}_{\mu'} L(\mu) \cong L(\lambda) \) are special cases of [14], II, 7.15.

Suppose now that \(\mu \) is of type b) in Lemma (2.1), i.e. \(\mu = (p-1, p-1, i) \) for some \(i, 0 \leq i < p-1 \). Then \(\mu' = (-1, i, p-(i+2)) \). One has \(V(\lambda) = L(\lambda) \) and \(V(\mu) = L(\mu) \) by [11], p. 120 or by [12].
We can compute the formal characters of $T^\mu_\lambda L(\lambda)$ and $T^\lambda_\mu L(\mu)$ using \([14], II, 7.8\). Let $s_i = s_{\alpha_i}$ be the reflection with respect to α_i (for $i = 1, 2, 3$) and let $s \in W_p$ be the affine reflection with $s(r, s, t) = (r + s + t - p, p - t, p - s)$ for all $(r, s, t) \in X(T)$. Then the stabilizer of μ' (under the dot action) in W_p consists of $\{1, s_1, s, s_1 s, s s_1, s_1 s s_1\}$, that of λ' of $\{1, s_1, s_2, s_1 s_2, s_2 s_1, s_1 s_2 s_1\}$. The intersection of these groups is $\{1, s_1\}$, a system of representatives modulo this intersection is $\{1, s_2, s_1 s_2\}$ in $\text{Stab}(\lambda')$ and $\{1, s, s_1 s\}$ in $\text{Stab}(\mu')$.

The element $w \in W_p$ with $w(r, s, t) = (p - r, r + s + t, p - t)$ has the property that $\mu = w \cdot \mu'$ and $\lambda = w \cdot \lambda'$. One has

$$ws_2 \cdot \mu' = (p - (i + 2), p - 1, -1),$$
$$ws_1 s_2 \cdot \mu' = (p + i, p - (i + 2), -1).$$

These weights are not dominant, but become dominant after adding $\rho = (1, 1, 1)$. Therefore they contribute 0 to the sum in \([14], II, 7.12\), and we get $T^\mu_\lambda L(\lambda) = T^\mu_\lambda V(\lambda) \cong V(\mu) \cong L(\mu)$. Furthermore

$$ws \cdot \lambda' = (2p - 2, p - 1, -1),$$
$$ws_1 s \cdot \lambda' = (0, 2p - 2, -1).$$

The same argument as above implies

$$T^\lambda_\mu L(\mu) = T^\lambda_\mu V(\mu) \cong V(\lambda) = L(\lambda).$$

For $\alpha \in R$, let $U_\alpha = \{x_\alpha(t) | t \in K\}$ be the root subgroup of G with root homomorphism $x_\alpha : K \rightarrow G$. We set:

$$H := U_{\alpha_1} \circ U_{\alpha_1 + \alpha_2} \circ U_{\alpha_2 + \alpha_3} \circ U_{\alpha_1 + \alpha_2 + \alpha_3} \cong (K^+)^4.$$

If $\{u_1, u_2, \ldots, u_n\}$, $\{v_1, v_2, \ldots, v_{2n}\}$ denote bases of \mathbb{F}_q and \mathbb{F}_{q^2} over \mathbb{F}_p respectively, then let $x_1(u_i) := x_{\alpha_2}(u_i)$,

$$x_2(v_j) := x_{\alpha_1 + \alpha_2}(v_j) x_{\alpha_2 + \alpha_3}(v_j^q), \quad x_3(u_k) := x_{\alpha_1 + \alpha_2 + \alpha_3}(u_k).$$

The group

$$E := H^F = \langle x_1(u_i) x_2(v_j) x_3(u_k) | 1 \leq i, k \leq n; 1 \leq j \leq 2n \rangle$$

is then an elementary abelian p-subgroup of rank $4n$ of $G^F = SU_4(q^2)$.
(2.4) **Lemma.** Let \(\lambda \in X_1(T) \) be one of the weights in Lemma (2.1). Then

\[
\dim V_E L(\lambda) \geq 4n - 2 \quad \text{for } \lambda \neq (p - 1)\rho,
\]

\[
\dim V_E L((p - 1)\rho) \geq 4n - 4.
\]

Proof. Let \(d := \dim V_E L(\lambda) \); then by [3], Proposition 5.1, there exists a “shifted subgroup” \(E^\sim \leq KE^* \), which is elementary abelian of order \(p^{4n-d} \) such that \(L(\lambda)|_{E^\sim} \) is free. In particular \(p^{4n-d} \) divides \(\dim L(\lambda) \), which proves the claim for the weights of type (d), (e) and (f) by (2.2).

By (2.3) we are left with the weights \((p - 1, 0, p - 2)\) and \((p - 1)p\) in both cases \(L(\lambda) = V(\lambda) \). Now let \(J := \{\alpha_1, \alpha_2\} \subseteq \Pi \); then \(H \) can also be described as the unipotent radical \(U_J \) of the standard parabolic subgroup \(P_J = U_J \times L_J \leq G \). If \(\lambda = (r, s, t) \), then by Smith’s theorem \(L(\lambda)|_{L_j} = L(\lambda)^U_j \oplus X \), where \(L(\lambda)^U_j \) is the space of \(U_J \)-fixed points, which is also an irreducible module for \(L_J \cong A_1(K)_{s.c.} \times A_1(K)_{s.c.} \), with highest weight \((r, t)\), hence has dimension \((r + 1)(t + 1)\).

Since \(E \subseteq U_J \) and \(E^\sim \) is generated by elements of the form \(1 + \sum a_i(x_i - 1) \) with \(a_i \in K \), \(x_i \in E \), it is clear that \(L(\lambda)^U_j \subseteq L(\lambda)^{E^\sim} \), which has dimension \(\dim L(\lambda)/p^{4n-d} \) because \(L(\lambda) \) is \(E^\sim \)-free. So we get \(p^{4n-d} \leq \dim L(\lambda)/(r + 1)(t + 1) \). Now we apply Weyl’s dimension formula and obtain \(p^{4n-d} \leq p^2(p + 1)/6 \) for \(\lambda = (p - 1, 0, p - 2) \) and \(p^{4n-d} \leq p^4 \) for \(\lambda = (p - 1)\rho \). \(\square \)

(2.5) **Proposition.** If \(M \) is a periodic simple \(K\text{SU}_4(q^2) \)-module, then

\[
M \cong \text{St}_n.
\]

Proof. By [3] 5.6, \(V_E(X \otimes Y) = V_E(X) \cap V_E(Y) \) for \(KE \)-modules \(X \) and \(Y \). It is easy to see that \(\dim V_E(L(\mu)^{(r)}) = \dim V_E(L(\mu)) \), so if \(M \neq \text{St}_n \) is written in the form of (1.2), then at least for one \(\mu_i \) we must have \(\dim V_E(L(\mu_i)^{(i)}) \geq 4n - 2 \) by (2.4). Since all rank varieties \(V_E \) are homogeneous affine subvarieties of \(K^{4n} \) the intersection formula for homogeneous varieties implies

\[
\dim V_E M = \dim \bigcap_{i=0}^{n-1} V_E(L(\mu_i)^{(i)}) \geq (n - 1)(4n - 4) + 4n - 2 - (n - 1)4n \geq 2,
\]

which contradicts periodicity by [3], 7.6 and 8.1. \(\square \)
REMARK. This proposition together with (1.4) implies Theorem (1.3), and it is clear, since $G^F = (G^F)'$ if type (a) of the exceptions is excluded, how to get (0.1).

3. The Ree and Suzuki groups. In this section we deal with the cases, where R is of type G_2, F_4 and B_2, which were excluded earlier. Here twisted groups of Lie type can exist only if the characteristic of K is 3, 2 and 2 respectively, and τ always has order 2, interchanging the long and short roots.

PROPOSITION (3.1). Let R be G_2 or F_4, char $K = 3$ or 2 respectively and $\Gamma = G^F$, $G^F/Z(G^F)$, or $(G^F)'$; then every periodic simple $K\Gamma$-module is projective, and either isomorphic to St_{G^F} or to a Clifford component of $St_{G^F}|\Gamma$ if $\Gamma = (G^F)' \leq G^F$ and $\Gamma \neq G^F$.

Proof. We first prove this for $\Gamma = G^F$. By a result of Steinberg [18], §12, an analogue of (1.2) applies here, with $X_1(T)' =: X_1' = \{\mu = \sum r_{\alpha}\lambda_{\alpha} \in X_1(T) | \alpha \in \Pi$ and $r_{\alpha} = 0$ if α is a long root $\}$.

Case 1. $G^F = 2G_2(q^2)$ s.c. with $q^2 = 3^n$, $n = 2m+1$ and char $K = 3$, $R = \{\pm \alpha, \pm(2\alpha + 3\beta), \pm(\alpha + 3\beta)$ (long roots), $\pm \beta, \pm(\alpha + \beta)$, $\pm(\alpha + 2\beta)$ (short roots) $\}$, and the Dynkin diagram is:

Here $X_1(T)' = \{(0,0), (0,1), (0,2)\}$ and dim $L(\lambda) = 1, 7, 27$ for $\lambda \in X_1(T)'$ respectively. See [18], §12.

Let $E = \{x(u, v) | u, v \in \mathbb{F}_3^n\}$ with

$$x(u, v) := x_{\alpha+3\beta}(u)x_{\alpha+\beta}(u^{2m})x_{2\alpha+3\beta}(v)x_{\alpha+2\beta}(v^{3m}).$$

Then E is elementary abelian of rank $2n$. With regard to the dimensions it is enough to look at $\lambda = (0, 2)$. Then $L(\lambda)$ has the following "monomial basis" with highest weight vector v_{λ}^+:

$$\{x_{-(\alpha+\beta)}^{n_1}X_{-(\alpha+2\beta)}^{n_2}X_{-\beta}^{n_3} \circ v_{\lambda}^+ | 0 \leq n_i \leq 2\},$$

where $X_{-\gamma}$ are root vectors in Lie(G).

If γ is any positive root, $x_{\gamma} : K \to G$ the corresponding root homomorphism and V_{μ} a weight subspace to the weight μ of some G module V, then one knows:

$$x_{\gamma}(t) \circ v_{\mu} \in \bigoplus_{i \in \mathbb{N}} V_{\mu+iy}.$$
Since λ is the highest weight of $L(\lambda)$ and E consists of unipotent elements, E must fix the three basis vectors $v^+_{\lambda}, X_\beta v^+_{\lambda}, X^2_\beta v^+_{\lambda}$. If $d := \dim V_E(L(0, 2))$, then as in the proof of (2.4), a suitable shifted elementary abelian $E^\sim \leq (KE)^*$ with $|E^\sim| = 3^{2n-d}$ acts freely on $L(0, 2)$ and we get $\dim L(0, 2)/|E^\sim| = 3^{d-2n+3} \geq 3$ and hence $d \geq 2n - 2$. By elementary properties of rank varieties, $V_E(L(\lambda)) \cong K^{2n}$ for $\lambda = (0, 0)$ or $(0, 1)$. The analogue of (1.2) together with the intersection theorem for affine varieties yields $\dim V_E(M) \geq 2$ for all $M \neq St_{Gr}$.

Case 2. $G^F = 2F_4(q^2)$, $q^2 = 2^n$, $n = 2m + 1$ and $\text{char} K = 2$. Here $X_1(T)^* = \{(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1)\}$ with dimensions for $L(\lambda)$: 1, 26, 246, 212 respectively (see [20]). Let $\theta : K \to K, x \mapsto x^{2^n}$; we consider the following elements of R^+ ($\Pi = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$):

\[
\gamma_1 := \alpha_1 + 2\alpha_2 + 3\alpha_3 + 2\alpha_4; \quad \gamma_2 := 2\alpha_1 + 3\alpha_2 + 4\alpha_3 + 2\alpha_4;
\]
\[
\delta_1 := \alpha_1 + 2\alpha_2 + 3\alpha_3 + \alpha_4; \quad \delta_2 := \alpha_1 + 3\alpha_2 + 4\alpha_3 + 2\alpha_4;
\]
\[
\varepsilon_1 := \alpha_1 + 2\alpha_2 + 2\alpha_3 + \alpha_4; \quad \varepsilon_2 := \alpha_1 + 2\alpha_2 + 4\alpha_3 + 2\alpha_4;
\]
\[
\varphi_1 := \alpha_1 + \alpha_2 + 2\alpha_3 + \alpha_4; \quad \varphi_2 := \alpha_1 + 2\alpha_2 + 2\alpha_3 + 2\alpha_4;
\]
\[
\psi_1 := \alpha_1 + \alpha_2 + 2\alpha_3 + \alpha_4; \quad \psi_2 := \alpha_1 + \alpha_2 + 2\alpha_3 + 2\alpha_4.
\]

Notice that $\gamma_1, \delta_1, \ldots$ are short and $\gamma_2, \delta_2, \ldots$ are long. Let

\[
x_1(u_1) := x_{\gamma_1}(u_1) \circ x_{\gamma_2}(u_1^{2\theta}); \quad x_2(u_2) := x_{\delta_1}(u_2) \circ x_{\delta_2}(u_2^{2\theta});
\]
\[
x_3(u_3) := x_{\varepsilon_1}(u_3) \circ x_{\varepsilon_2}(u_3^{2\theta}); \quad x_4(u_4) := x_{\varphi_1}(u_4) \circ x_{\varphi_2}(u_4^{2\theta});
\]
\[
x_5(u_5) := x_{\psi_1}(u_5) \circ x_{\psi_2}(u_5^{2\theta}); \quad \text{with } u_i \in \mathbb{F}_{2^n}.
\]

Notice that these elements commute because of $\text{char} K = 2$, and hence the group $E := \langle x_i(u_i) | i = 1, 2, 3, 4, 5; u_i \in \mathbb{F}_{2^n} \rangle$ is an elementary abelian subgroup of G^F of rank $5n$.

For $L(0, 0, 1, 1)$ there is a monomial basis, consisting of elements of the form: $X^-_{\omega_1} \circ \cdots \circ X^-_{\omega_{12}} v_\lambda^+$ with $n_i \in \{0, 1\}$, where $\{\omega_1, \omega_2, \ldots, \omega_{12}\}$ is the set of short positive roots.

The 7 short roots $\alpha_3, \alpha_2 + \alpha_3, \alpha_1 + \alpha_2 + \alpha_3, \alpha_4, \alpha_3 + \alpha_4, \alpha_2 + \alpha_3 + \alpha_4, \alpha_2 + 2\alpha_3 + \alpha_4$ have not full support in Π. Since the generators of E are products of x_γ's where γ is a positive root with full support, an argument similar to that of Case 1 shows that basis vectors involving only monomials in those 7 roots have to be fixed by E and hence by any shifted subgroup E^\sim of KE^*.
Since there are 2^7 such monomials, $\dim L(0, 0, 1, 1)^\wedge > 2^7$. If $d = \dim V_E(L(0, 0, 1, 1))$ then again we can choose E^\wedge to act freely on $L(0, 0, 1, 1)$ and to be of order 2^{5n-d}. So we get $\dim L(0, 0, 1, 1)/E^\wedge = 2^{12-5+d} > 2^7$; hence $d \geq 5n - 5$. Since all other $V_E(L(\lambda))$ for $\lambda \in X_1(T)'$ have dimension $\geq 5n - 1$ (4 does not divide $\dim L(\lambda)$ for $\lambda \neq (0, 0, 1, 1)$), the analogue of (1.2) yields:

$$\dim V_E(M) \geq 4 \quad \text{for all } M \neq St_{G^F}.$$

Proof for $G^F/Z(G^F)$ and G^F'. As $Z(G^F)$ is a p'-subgroup of G^F the same results hold for $\Gamma = G^F/Z(G^F)$. Now let $G^F' \neq G^F$; then $m = 0$, $n = 1$ and $q^2 = |G^F/G^F'| = p = 3$ in Case 1 and $= 2$ in Case 2.

By Clifford's theorem St_{G^F} is completely reducible. Let V be a simple direct summand of St_{G^F}, with inertia group $I := I_{G^F}(V) = \{g \in G^F|V^g \cong V \text{ as } G^F' \text{ modules}\}$. Then $I = G^F'$. Otherwise by [8] §9, (9.9), $V = W|_{G^F'}$ for a simple G^F module W, which is isomorphic to St_{G^F}, since V is projective; but then W had to be a direct summand of the induced module $V^G_{G^F}$ since W is projective, which contradicts the indecomposability of $V^G_{G^F}$ given by Green's theorem [8] §16. So $St_{G^F} \cong \bigoplus_{g \in G^F/G^F'} V^g$ and we claim that each periodic simple G^F' module is isomorphic to one of these V^g's.

Let S be an irreducible periodic module for G^F. If $I = I_{G^F}(S) = G^F$ then again $S = W_{G^F'}$ for a simple G^F module W. In Case 1, $E \subseteq G^F'$ and in Case 2 $E \cap G^F$ has rank ≥ 4; hence 3 or 2^3 divides $\dim W$ respectively which forces W to be $\cong St_{G^F}$, leading to a contradiction. Hence $I = G^F'$ which implies that S^G is simple periodic for G^F. So $S^G \cong St_{G^F}$ and $S \cong V^g$ for a $g \in G^F$ by Frobenius reciprocity. In particular S is projective. \qed

We conclude the treatment of twisted groups of Lie type, by computing the rank varieties of simple modules for $G^F = 2B_2(q^2)_{s,c}$, which includes a classification of periodic simple modules, i.e. those whose variety has dimension 1.

Let $q^2 = 2^n$, $n = 2m + 1$, char $K = 2$, $\theta := (?)^2$, $\Pi = \{\alpha, \beta\}$. The Dynkin diagram is \cdots. Let $P := \{x(t, u)|t, u \in F_{2m+1}\} \in \text{Syl}_2(G^F)$, with $x(t, u) = x_\alpha(t)x_\beta(t^\theta)x_{\alpha+2\beta}(u)x_{\alpha+\beta}(t^{1+\theta} + u^\theta)$; then $|P| = 2^{4m+2}$ and $Z(P) = \{x(0, u)\}$ is maximal elementary abelian;
let $D := Z(P)$. Notice that there is only one conjugacy class of maximal elementary abelian 2-subgroups in G^F. Here $X_1(T)' = \{(0, 0), (0, 1)\}$ with dimensions 1 and 4 respectively.

(3.2) **Proposition.** Let $G^F = 2B_2(q^2)_{s,c.}$ and M be an irreducible KGF-module; then $V_E(M)$ is linear and $\dim V_E(M) = n - s$, where s is the number of factors $\lambda_i = (0, 1)$ in the tensor product

$$M = \bigotimes_{i=0}^{n-1} L(\lambda_i)^{(i)}, \quad \lambda_i \in X_1(T).$$

Proof. We need only to consider $L(0, 1)$ which has a basis $B = \{v^+, X_\beta v^+, X_{-(\alpha+\beta)} v^+, X_\beta X_{-(\alpha+\beta)} v^+\}$. A straightforward computation shows, that

$$x(0, u)v^+ = v^+; \quad x(0, u)X_\beta v^+ = X_\beta v^+;$$

$$x(0, u)X_{-(\alpha+\beta)} v^+ = u^\theta v^+ + X_{-(\alpha+\beta)} v^+$$

$$x(0, u)X_\beta X_{-(\alpha+\beta)} v^+ = uv^+ + u^\theta X_\beta X_{-(\alpha+\beta)} v^+.$$

Hence $x(0, u)$ is represented with respect to B by

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
u^\theta & 0 & 1 \\
u & u^\theta & 0 & 1
\end{bmatrix}$$

Let now $\{u_i\}$ be an \mathbb{F}_2-basis of \mathbb{F}_{2^n}, then $\{x(0, u_i) =: x_i\}$ is a basis of E. For $a = (a_1, a_2, \ldots , a_n) \in K^n$ we define $u_a := 1 + \sum a_i(x_i - 1)$. Then we get, using Lemma 4.2 of [3]:

$$V_E(L(0, 1)) = \{a \in K^n | \text{rk } u_a - 1 < \frac{1}{2} 4\} = \left\{a \in K^n | \sum a_i u_i^\theta = 0\right\}.$$

The analogue of (1.2) now gives the result. \qed

Remark. It may be interesting to notice that non-projective simple periodic modules only occur in finite groups of Lie type, if the group has a split BN-pair of rank one. But 2G_2 shows, they need not necessarily occur in this case.

References

Received July 25, 1988.

UNIVERSITAET-GHS-ESSEN
D-4300 ESSEN, W. GERMANY

AND

UNIVERSITAET
D-2000 HAMBURG 13, W. GERMANY

Current address for J. C. Jantzen: University of Oregon
Eugene, OR 97403
Gustavo Corach, Horacio Porta and Lázaro Recht, Differential geometry of systems of projections in Banach algebras 209
Peter Fleischmann and Jens Carsten Jantzen, Simple periodic modules of twisted Chevalley groups .. 229
Niels Gronbaek, Amenability of discrete convolution algebras, the commutative case ... 243
Nguyễn H. V. Hung, The mod 2 equivariant cohomology algebras of configuration spaces ... 251
Wojciech Kucharz, Global almost analytic algebraicity of analytic sets 287
John Merrill, A class of consistent anti-Martin’s axioms 301
Takafumi Murai, The power 3/2 appearing in the estimate of analytic capacity ... 313
L. Panaitopol and Doru Stefanescu, On the generalized difference polynomials ... 341
Katsuhiro Shiohama, Takashi Shioya and Minoru Tanaka, Mass of rays on complete open surfaces 349
Gerhard Ströhmer, About compressible viscous fluid flow in a bounded region ... 359
A. Ülger, Arens regularity sometimes implies the RNP 377