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Let H be a complex Hubert space, and let A be a linear, un-
bounded operator defined on a domain D in H. We show that the
Cauchy problem for differential equations and inequalities involving
the operator dnu/dtn - Au as the principal part have at most one
solution. No symmetry conditions are placed on the operator A .

1. Introduction. Let H be a complex Hubert space and let A be
a linear (in general, unbounded) operator defined on a domain D in
H. We consider differential inequalities in which the principal part is
given by

(1.1) Lu = dnu/dtn-Au

where n is a fixed positive integer and neither symmetry nor semi-
boundedness conditions are placed on the operator A although there
will be restrictions placed on the symmetric and antisymmetric parts
of A. Our purpose, in short, is to extend the uniqueness results of
Hile and Protter [5], where n = 1, 2 in (1.1) and A depends on t, to
operators L in which n is arbitrary and A is independent of t. Fur-
thermore, we obtain the uniqueness results of [10] as a special case.
The method employed, developed originally in the study of elliptic
equations (see e.g., [12]) and later extended to parabolic equations
[8], is essentially the same as that used by Hile and Protter [5]. This
same weighted L2 argument has been employed in other similar con-
texts where A has been a specific partial differential operator. (See
e.g., [6, 7, 8].)

Levine [10], generalizing previous results of Murray [11], proved
that the only solution of Lu = 0 with w(0) = w'(0) = = ^ " ^ ( O ) =
0 is the zero function, provided the operator A is either symmet-
ric or antisymmetric. The only other results for the operator L in
which n > 2 and A is unbounded seem to be those of Fattorini
[2, 3] and Fattorini and Radnitz [4] who study the equation Lu = 0
under complete and incomplete Cauchy data. As Levine [10] points
out, equations involving L in which A is bounded, or n < 2 and
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A is a semibounded (especially from above) symmetric operator have
been and continue to be studied extensively. As for uniqueness results
when n < 2, the most general are those of Hile and Protter [5] who
extended results of Agmon and Nirenberg [1] and some of those of
Levine (see e.g., [9]).

In this article we consider differential inequalities of the form
(c>0)

(1.2) \\L

where

ω(ή = Σ \\uu) (ί) | (w(Λ (ί) = dJu (t) I dtj, um (t) = u (ί))
7=0

and

(1.3) \\Lu(t)\\2 <c[μ(t) + ζμ{s)

where

7=0

and the operator M is the symmetric part of A. For n = 2 con-
ditions (1.2) and (1.3) correspond precisely to those of [5]. Indeed,
the two principal results of this article (Theorems 1 and 2) are those
uniqueness results of [5], when n = 2, restated for arbitrary n . How-
ever, unlike [5], we require the operator A to be independent of t.
Although our results are valid for arbitrary n, stronger results are
known for n = 1. (See Theorem 1 of [5].) It is unknown whether
such a strong result can be extended to n > 1.

2. Main results. Let H be a complex Hubert space with inner
product ( , ) and norm || | |. Let Q([0, T]\ D) be the set of u e
Cm-ι([0, T];H)Π Cm((0, T]\H) such that u^ e L2((0, T)\H)
and u^(t) e D for all t e (0, T] and for all j = 0, 1, ... , (m)
where (m) = [(m—1)/2] = greatest integer in (ra-l)/2. We note that
if υ, we C([0, T];H)nCl((0, T]\ H) with v', w' eLi((0, T))
and (w(0)9 v(0)) = (w(T)9 v(T)) = 0, we have the integration by
parts formula

(2.1) Γ (w (ί) , v1 (0) dt = - [T {wf (ί) , v (0)
Jo Jo
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We now give the requirements on the operator A which will be needed
later.

Condition (*). Let A be a linear, in general unbounded, opera-
tor with domain D contained in H satisfying the following: (Dn =
dn/dtn)

(I) A = M+N where M is a symmetric operator (i.e., (Mx, y) =
(JC , My) for x, y e D) and N is an antisymmetric operator (i.e.,
(Nx,y)

= -(x, Ny) for x,y e Z))

(II) There exist nonnegative constants Co and ci such that

Re(Mw , Nw) > -co\(Mw , w)\ - c\ \\w\\2 , w eD,

(III) For each u e C*([0, T] Z>), the functions Mw and Nu are
in C<Λ>((0, Γ]; H)\ and for each ί e (0, Γ] and 0 < j < (n), we
have DJMu(t) = M(DJu{ή), DJ'Nu(t) = N(DJ'u(ή). Furthermore,
the functions D^Mu and D^Nu are bounded on (0, Γ] ;

(IV) For every υ,w e C|([0, T]\ D) for which the functions
Mυ , Λ/w , Nυ are bounded and continuous on (0, T], the functions
Re(τ/(/), Λfo(0) and Re[(w'(t)9 Mv(t))-(v'(t)9 Mw(t))] are differ-
entiable on (0, T] and satisfy

(a) d/dtRe(υ'(t), Nυ(ή) = Re(v"(t), Nυ(t))9

(b)
d/dtRe[(w'(t), Mυ(ή) - (vf(t), Mw(ή)]

= Re(w"(t), Mv(ή) - Re(v"(t), Mtι (O)
for all ί € ( 0 , Γ ] .

In condition (*), we note that (I) and (II) come from [5] while
(III), for n = 1, 2, agrees with the results of [5] since in those cases
(n) = 0. In addition, (IV) allows for integration by parts in a manner
comparable to inequalities (A) and (B) of [5, p. 70].

We now state our two main results. Theorem 1 is a generalization
of results from both [5] and [10]. In particular, for n = 2 it coincides
with Theorem 3 of [5] (when their operator A is independent of t)
and for c = Co = Ci = 0 (c, CQ and c\ come from (1.2) and (II)) it
gives the uniqueness result of [10]. (See Theorem 3.1 of [10].)

THEOREM 1. Suppose u e Q ( [ 0 , T\\ D) satisfies (1.2). In addition,
suppose the operator A satisfies condition (*) with CQ = 0. If w(0) =

= 0 , then u = 0 on [0, T].

In addition to Theorem 1, we shall also show that solutions of in-
equality (1.3) having homogeneous Cauchy data must be identically
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zero provided, that in addition to the operators M and N satisfying
(II)-(IV), the symmetric part M satisfies an additional constraint. In
particular, we require the operator M to satisfy one of the following
semiboundedness conditions: There exists a nonnegative constant Cι
such that

(2.2) . (Mv,v)<c2\\v\\2 , veD,

or

(2.3) (Mv,v)>-c2\\v\\2 , veD.

We now have the following theorem which, when n = 2, coincides
with Theorem 4 of [5] (when their operator A is independent of t).
Thus the uniqueness results of Hile and Protter [5] for n = 2 gener-
alize nicely to arbitrary n provided the linear operator A is indepen-
dent
of t.

THEOREM 2. Suppose u e C*([0, T]; D) and satisfies (1.3). In
addition, suppose the operator A satisfies condition (*) and either (2.2)
or (2.3). // u{0) = w'(0) = = ̂ - ^ ( O ) = 0, then u = 0 on [0, T}.

As mentioned earlier, our method of proof is quite similar to that
of [5] but must be modified in important ways. Of particular note
is the unwieldiness of the weight functions used in [5] in the case
of arbitrary n. For this reason, we have instead opted for a weight
function used previously (see e.g., [7]) which is simply a variation
on the one introduced by Lees and Protter [8] for backward-in-time
parabolic inequalities.

Prior to proving the above stated theorems, we need to establish a
series of important propositions and lemmas. Indeed, the proof of
the theorems themselves are rather anticlimactic once the preliminary
lemmas have been established.

DEFINITION. Let λ(t) = t + η where η > 1 and define the operators
B and B* on Cπ((0, Γ] ; H) as follows:

Bu(t)=λ-k(t)Dn

B u(t)= (-l)nλk(t)Dn [λ-k(t)u(ή]

where k is an arbitrary positive integer. (Thus B* is the formal
adjoint of B.) Furthermore, we define the operators B+ and B- as
follows:
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Thus B+ and B- are the symmetric and antisymmetric parts, respec-
tively, of the operator B. In the sequel (as in this definition) the
dependence of all these operators on the positive integer k is sup-
pressed for ease of notation.

PROPOSITION 1. Suppose v, w e C([0, T]; D) n ^ ( ( 0 , T]\ H)
such that υf, w' e L\((09 T); H) and the functions Mv, Mw,
Nv are bounded and continuous on (0, T]. Then the functions
Re(Mv(t), w(t)) and Re(Nυ(t), w(ή) are differentiate on (0, T]
and

(2.4) d/dtRe{Mυ(t) , w (ή)

= Re (Mv (t) , w' (ή) + Re (Mw (t) , v' (ή) ,

ί e ( 0 , Γ ] ;

and

(2.5) d/dtRe(Nv(t) , w (t))

= Re (Nv (t) , w' (ή) - Re (Λ^^ (ί) , υ' (ί)) ,

te(0,T].

Furthermore, if υ(0) = v(T) = 0 or w(0) = w(T) = 0, then
PT rT

(2.6) / Re (Mv (t) , w' (ή) dt = - Re (Mw (ί) , ι;; (ί)) rfί,
7o ^o

(2.7) ί Re (iVv (ί) , w' (ή) dt= ί Re (Nw (t) , v ; (ί)) dt.
Jo Jo

Proof. We prove (2.4) and (2.6) and omit the proof of (2.5) and
(2.7) since their proofs are similar. We let r(t) — Re(Mυ(t)9 w(t))
and show that r is differentiable on (0, T]. Notice that for h small
(if t = T, we take h < 0)

[r (t + h) - r (t)] /h = R e (M [ v ( t + h ) - v ( ί ) ] / h , w ( t + h))

+ Re (Afi; (ί) , [iϋ (ί + Λ) - w (t)] jh)

= Re ([v {t + h)-v (t)] /h, Mw (t + A))

+ Re (Afi; (ί) , [^ (/ + h) - w (ί)] /A)

= R e ( M ^ ( / + A) , [υ(t + h)-v(t)]/h)

+ Re (Aft; (ί) ,[w(t + h)-w (t)] /h).

Letting h —• 0, we obtain (2.4) since i; and w are (strongly) diίfer-
entiable and the function Mw is continuous on (0, T]. To prove
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(2.6), note that the left side of (2.4) is continuous on (0, T] since
the right side is also continuous on (0, T] by virtue of the continuity
of v', w', Mυ and Mw on (0, T]. Thus, for ε > 0, we integrate
(2.4) to get

/ d/dtRe(Mv(t) ,w{t))dt
Jε

= / Re (Mυ (t) , w' (t)) dt + / Re (Mw (t) , υ' (/)) dt
Jε Jε

which yields

(2.8) Re (Aft; (T) , w (Γ)) - Re (Mi; (ε) , w (β))

= / Re(Mv(t) ,w'(ή) dt+ ί Rc(Mw (t) , υ'(t)) dt.
Jε Jε

Since Mυ is bounded in (0, T] and w is continuous on [0, T] with
w(0) = w(T) = 0 (or v(0) = v(T) = 0), the left side (2.8) goes to
zero as e | 0. Also since Mv and Mw are bounded on (0, T] while
v', iy; 6 Li ((0, Γ) i/), we know the two terms on the right side of
(2.4) are integrable on (0, T). Thus, letting ε | 0 in (2.8) gives

0 = Re / (Mv (/) , w; (0) dt + Re ί (Mw (ί) , v; (/)) rfί.
Jo Jo

This completes the proof.

PROPOSITION 2. Suppose z e C*([0, Γ]; JD) β«rf z^(0) =
= 0 for 0 < j < n- I. If the operator A satisfies condition (*) except
possibly (II), then

( 2 * 9 )

R e / (B+z(t)9Nz(t))dt = Re [ {B.z (t) , Mz (ί)) dt = 0.
Jo Jo

Proo/. We prove Re/ 0

Γ (£ + z(0, Nz(t))dt = 0 and omit the proof
of the rest of (2.9) because of its similarity to this one. Note firstly that
the function (2?+z(ί), Nz{t)) is integrable on (0, T) since |(5+z(ί),
ΛΓz(ί))| < ||5+z(0||||iVz(0|| and i?+z(ί) is a linear combination (coef-
ficients being C°° functions of t) of z, z ;, . . . , z(w) all of which are
integrable (by definition of C*([0, Γ];D)) on (0, T) while ||Λ^z(/)||
is bounded. Furthermore, using (III) and applying the integration by
parts formula (2.1) (n) times, we obtain (y = n — (n) and all integrals
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are taken over [0, T])

(2.10) Re ί(Bz, Nz)dt = Re ί λ-k(Dn[λkz], Nz)dt

= Re ί{Dn[λkz], N[λ~kz])dt

= (-l)WRe ί(Du[λkz],D^N[λ-kz))dt.

If n is odd, then u = (n) + 1. Using this and (2.7) we get

(2.11) (-l)<">Re / (pv[λkz], D^N[λ~kzή dt

= (-l)<">Re ί f[z><n)μ*z]]' , N [βWμ^zl j j dt

= (-l) ( r t )Re ί Γ[/)<">[A"*z]]' , N [D{n)[λkz]γl dt.

In the last integral in (2.11) we now integrate by parts ((«) times) to
obtain

(2.12) (-l)(n> Re ί ί^n)[λ-kz]^ , N [flWμ^z]]] dt

= Re ί (£><n>+1 [D<Λ>[λ-*2]] , N[λkz]j dt

= Re ίλk [pn[λ-kz], Nz\ dt = -Re ί(B*z,Nz)

where the last equality is valid for n odd. Combining (2.10), (2.11)
and (2.12), we get

dt

Re I (Bz, Nz) dt = - Re ί (B*z, Nz)dt

from which (2.9) follows for n odd. If n is even, then v = (n) + 2,
and we use analysis similar to that of (2.10) and (2.11) to get

(2.13) Re ί (Bz,Nz)dt

= ( - l ) ( n ) R e I QD<">[A*Z]]" , N [z><">[Λ-fcz]]] dt.

To handle (2.13), we note that by applying (IV), part (a), to v + w ,
we obtain

d/dt Re [(w' (0 , Nv (/)) + («' (t) , Nw (t))]

= Re (w" (t) , Nv (0) + Re (v" (t) , Nw (ή).
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Furthermore, if w'(0) = wf(T) = v'{0) = vf(T) = 0, we may integrate
to get

Re / (w" {ή , Nv (0) dt = - Re ί (υ" {ή , Nw (ή) dt.

Application of this to the right side of (2.13) using

w{t) = D^[λk{t)z{ή] and v(t) = D{n)[λ-k{t)z{ή]

yields

Re ί (Bz, Nz) dt

= -(-l)<Λ>Re ί (λDW[λ-kztf , N [D^[λkz^\ dt.

Now integrate the last expression by parts (n) times to get

Re ί{Bz, Nz) dt= -Re ίλk (DU fflWμ^z]] , Nz) dt

= - Re ί λk (Dn[λ-kz], Nz} dt

= -Re ί (B*z,Nz)dt

and hence (2.9) follows for n even. This completes the proof.

LEMMA 1. Let j , n be positive integers such that 1 < j < n. Then

where ( ) denotes the binomial coefficient. ((n

a) is understood to be
zero if a < 0 or a > n. Thus the upper {lower) limit on the summa-
tions may be larger {smaller) without altering the result of the lemma.)

2Λ4)^eteaι = {-\)ii{i-\)(n

i), bi = (n

i) and

notice that the left side of (2.14) is precisely Σ^afaj-i which, by
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the Cauchy product formula, is the coefficient on x2j in the product

ίU */*fΊ[ΣίU biχi] ι t i s e a s y t 0 s h o w

n

UiX1 = n (n - 1) x2 (1 - x)n'2 and ]Π ft/jc1' = (1 + Λ:)Λ .

Hence

= coefficient of x2j in the expression

Since x2(\-x)n~2{\+x)n = {x2+2x3+x4)(l-x2)n~2 , an elementary
calculation produces (2.13).

To prove (2.15), we make the change of variable (/' = j - /) to get
(after replacing /' with /)

(2.16) Sm

Symmetry of the binomial coefficients involved allows us to get

Letting ax- = (-1
that

(2.17)

where

2j-l

= /*//, c f = (-l)ιidi a n d rf/ = ( J ) , w e n o t e

ι=0

j-i-\ = coefficient of x2J~~l in

the product
Γ n Ί
V^ i

.i=0

n

.(=0
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and

2 7 - 1

S2 = Σ, ci^2j-i-ι = coefficient of x2j~ι in
1=0

the product
L/=0

Since

n n

Y^ajX^il-x)" , J^biX^nxiί+x)"-1 ,
ί=0 (=0

Σ**'

(=0 ί=0

we get

S\— Sι= coefficient of Λ2-7'"1 in the expression 2nx{\ — x2)n~ι.

However 2nx(l - x2)n~x = -d/dx[(l -x2)n] and hence

Si -S2 = (-2J) [ coeffof x2J in (1 - x 2 ) " ] = -2j(-iy ( " ) .

Combining this with (2.16) and (2.17) yields (2.15) and the proof is
complete.

LEMMA 2. Suppose υ e Cm+P((0, T]; H) n Cm+p-ι([0, T];H),

υ{m+P) e L l ( ( 0 ; Γ);//) αnύ? t W(O) = vW)(Γ) = 0 for 0 < j <
m+p - 1. Lei s be a positive integer. Then there exist real numbers
Kj(p) depending only on p and j such that ([ ] = greatest integer
function)

(2.18) Re ί λ~s (t) (vW (t) , ί/(m+p) (θ) dt

lP/2]

= ΣKj(p)(s +p -2j - 1)1/(s - l)\
7=0

T 9

x / A-^+^ίOlv^^ίOl dt
in which the constants Kj(p) satisfy the following conditions:

(i)

1/2 ifp>\,
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(iii) Kj(2j+l) = ( - i y ( 2 / + l)/2 if j > 0,
(iv) Kj(p) = 0forp<2j-l if j > 1,
(v) Kj(p) = Kj(p-l)-Kj-l(p-2) if\<j<[(p

(Note: When using this lemma later in this article, only (i)—(iii) will
be needed. However, it is convenient to state and use (iv) and (v) in
the proofs o/(i)-(iii). Also note that (iv) is a redundancy since it is a
statement that the right side o/(2.18), if written as a sum with upper
limit greater than [p/2], has zero coefficients for j greater than [p/2].)

Proof (by induction on p). For p = 0, identity (2.18) is trivially true
with KQ(Q) = 1 and likewise for p = 1 it is true with KQ(\) = 1 / 2 .
Thus suppose the conclusion of the lemma is true for 0, 1 , . . . , p
and for all s > 1 and m > 0. For p + I the left side of (2.18) may
be integrated by parts to get (all integrals are taken over [0, T])

ίλ-s(v^m\υ^m+p+x))dt

= Re ίsλ-s-ι(v^m), v^m+rt)dt - Re ί

Re

We now apply the induction hypothesis to both integrals on the right
side, letting F(s,p, j) = Kj(p)(s + p-2j- l)!/(s - 1)!, to get

\PIΆ

7=0

(2.19) Re ίλ-s(v^m),v^m+p+^)dt

1 Ό i) I λ~s~p+2JJ

F(s,p-\,j-\) j

7=0

[p/2]

Note that we have changed the summation index in the last expression.
Observe that the right side of (2.19) is exactly

7=0

F(s,p + l,j) λ - s

J
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provided

' sF (s + 1, p, 0) if j = 0,

sF(s+l,p,j)-F(s,p-l,j-l) if 1 < j < [p/2] ,

-F(s,p-l,[(P-l) IΆ) if j = [(P + 1) /2]

> [P/2] ,

0 if / > \{p -

Hence F(s,p+l,j)= Kj{p +l)(s+p- 2j)\/(s - 1)! where

(2.20) Kj(p+l)

= <

' 1/2
Kj (p)

Kj(p)-1

0

Γ, - 1 ( P -

7-1)

if

if

1) if

if

if
IP/2],
1.

The proofs of (i), (iv) and (v) now follow directly from (2.20). Like-
wise (ii), using (iv) and (v), and (iii), using (v) and (ii), are easily done
using induction. This completes the proof.

LEMMA 3. Suppose v e Cm((0, Γ]; H)nCm'l([09 T]; H), v^ e
L2((0, T)\H) and υ^(0) = v^\T) = 0 for 0 < j < m - 1. Let
z(ή = λ~k(t)υ(t) where λ(t) — t + η, η > 1. Then there exist con-
stants Pj{k), having polynomial dependence on k with the polynomial
coefficients dependent only on j and m, such that

/* 7̂

(2.21) A:/ A" 2 ( 0 U ( m ) ( 0
Jo 'I

/•r
> Λ / A-2^-2 (ί

(*) /

ί/ί

dt.

Furthermore, the degree of Pj(k) (in k) is no larger than 2j + 1.
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Proof. It is easy to see that (all integrals are taken over [0, T])
.2

k ίλ-2\\z^m)\\2dt = k ίλ~2\\(λ

r
= k λ~

dt

i(fn-j) dt

λ-2k-2nv(m)n2

2A:Re
m / \ r

Σ(7)/
Denoting the last summation by W, we now do the differentiation of
λ~k indicated in the integrand and apply (2.18) to get

(2.22)

ί
m [7/2]

7=1 α=0

j,k,a) dt

where

m (k+j-1)1

x {Ik + 27 - 2α + 1)!/ (2A: +j+ 1)!.

Letting a = j - s and changing the summation in (2.22) so that we
sum over s and j instead of a and j , we get

m 2s

s=\ j=s

2s ~

ΣD{j,k,j-s) I
=s J

dt.

Thus (2.21) holds with ps(k) = 2k Σ%s

 DU ,k,j-s). It is also clear

that Pj{k) is a polynomial in the integer k and in fact

m

υ xj-sU) { k _ ι ) ι (2XT7TT)!

= (™}(-l)jKj-sU)(kJ+ Ld.t.)(k2s-j+ l.d.t.) oc k2s + l.d.t.
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Hence ps(k) has degree not exceeding 2s + \. This completes the
proof.

LEMMA 4. Suppose v e C*([0, Γ] ; D), v<Λ(0) = v^(T) = 0 for
0 < 7 < n - 1 am/ £/ze operator A satisfies condition (*). ΓλeΛ,
yor A(ί) = t + η, η > 1, /̂zere exϋϋ α positive number e(n, η, T),
independent of k, such that for all k sufficiently large

(2.23) 2 [Tλ-2k(t)\\Lv(t)\\2dt
Jo

n pT 2

^> P (vt n 7 Λ \ Ϊr2j~l I 2~~2k—2j /f\ \\n*(n—j) (f\\\ Λ +

+ 4 Re / λ~2k (ί) (Afv (/) , Λfo (0) rf/.
70

Proof. Let z(ί) = A-^(i)v(0 where λ(t) = t + η, η > 1, and note
ZΛ; G L 2((0, 3");//) by (II) and the definition of C*([0? Γ ] ; D ) .
Then elementary calculations along with (2.9) yields (all integrals are
taken over the interval [0, T])

2 ίλ~2k \\Lv\\2 dt = 2 ί \\Bz - Az\\2 dt

= ί \\{B+z-Mz) + {B-Z-Nz)\\2 dt

> 4Re / ((5+z - Mz) , (5-z - iVz)) rfί

= 4Re / (B+z,B-z) dt + 4Re ί (Mz,Nz) dt

= ί [| |£z| |2-| |5*z||2] Λ + 4Re f λ~2k (t)(Mv (t) , Nv (ή) dt.

Thus it suffices to show, for A: sufficiently large,

(2.24) / [ll^zll2 - ||5*2||2] rfί > Σk2j~ι / A-2^||z ("-^| |2^

and the existence of a positive number ε(n, η, T), independent of
k, such that

(2.25) Σk2J~l I'λ~2J\\z{n~J)\\2dt

>ε(n, η, T^k2^1 ί
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To prove (2.24), notice that straightforward calculation produces

2

Q = f [||Z?z||2 - H^zll2] dt = dt

7=C

dt.

Doing the indicated multiplication in the integrands and noticing that
the square of the 7 = 0 term adds out, we get

7=1 *=0

xRe

« 7 - 1

fλ-i

xRe fλ-i

Since we are interested in what happens for large k, we use the iden-
tities

k\j (k - i)\ = k* - {i (i - 1) /2} kl~l + l.d.t. (lower degree terms in k)

and

(k + i- 1)!/ (k-l)\ = kj + {i (i - 1) /2} fe'""1 + l.d.t.

in (2.26). Letting

)0
JU ~ 1)1/2}
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we get

(2.27)

Now apply

C

to get (/ ΞΞ

Q =

(2.18)

V,J,

[U -

Qi =

n / \

/ J I j

1 i — 2/11

n 7 - 1

+ 2 Σ D
7=1 /=0

Ql+Q2

to ζ?2 ^ n < i

a) = [(2j-

0/2])

/ J ^ ^ ^ / V

j=\ /=0 a=0

A. V. LAIR

let

2 α - l)!/(

l ) ^ 2 ^ 1 + l.d.t.}

i,jki+J~ι + l.d.t.)

i + j - l)\]Ka(j - i

buk
i+j-1 + l.d.t.)

xC{i,j,a)Jλ-2J+2a\\zl"-'+*ψdt

Interchanging the second and third summations yields

n 7 - 1

(2.28) Q2 = 2ΣΣ(auk^J ~ bijki+j~ι + l.d.t.)
7=1 /=o

X i,j,0) f

7=2 α=l /=0

x C ( / , j , α ) ίλ-lj+2a\\z{n-^a)\\2dt

= Qi + β4-

Making the summation variable change a = j-s in (2.28) and chang-
ing the summations over j and a into summations over s and j
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gives (N = min{n, 2s})

n N 2s-j

ί2 29Ί n , - ? V V W / 7 ki+J' — h ki+J~ι 4- 1 d t "1
5=1 7=5+1 /=0

Using (2.29) in (2.28) and in turn using (2.28) in (2.27), we get

(2.30) j \[\Bz\\2 - \\B*z\\2] dt =

where

Q(k)= - 2 ^ ) {s(s - I)k*-1 + 1-d.t.}

121

5=1

5-1

aisk
i+s - bisk

i+si+s~ι

ί=0

. t ) C ( i , s, 0)

~ι l.d.t.)C (i ,j,j-s).
,/=5+1 (=0

Rearranging these terms we get

(2.31) Q(k) =
N

j=s+l

C(s)k2s-ι+ Ld.t.

where

C(s) —cy - 1) + 2α s_! , 5 C (J - 1, J , 0)

2 Σ a2s-j-ιjC(2s - j - \ , j , j -
7=5+1

ΛT

-2 J^ bls-jjC{2s-j,j,j-s).
7=5+1

Since

(2.32)

7=5 7=ί+l
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it is necessary for us to evaluate C(s). Using the definitions of α ; y ,
bjj and C(i, j , a) and the properties of Kj(p) given in Lemma 2, it
is easy to see that

C(s)= -

Σ

•ZR1+R2 + R3.

The expressions i?i and R3 can be combined to get (remembering

( 3 ) = 0 i f 7 > « )

2s

J=0

and hence (2.14) produces i?i + i?3 = 25(AZ - 2s + 1 ) ( " ) . Changing

the summation variable in i?2 (/ = j - s + 1) yields

and thus (2.15) gives R2 = 2s(2s - 1 ) ( " ) . Hence

ίn\>= 2nsίn\>2 for 1 < s < n

which, along with (2.30), (2.31), and (2.32), yields (2.24) for k suffi-
ciently large.

To prove (2.25), we use induction. If n = 1, then ε( l , η, T) = 1
and equality holds in (2.25). Thus suppose (2.25) holds for n = m.
For n = m + 1, the left side of inequality (2.25) may be rewritten
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using a change in the summation index as

Σ
7=1

/ II ̂  II

/

tn r

/

m+\

λ-2\\z(m)fdt+J2
7=2
m

,/dt
7=1

= y, + y2-

Using the induction hypothesis along with the estimates λ~2 >
(T + η)~2 and λ2 > η2, we get

m »

(2.33) Y2>k2{T + η)-2ε{m)Yjk
2j-χ 1 λ~2k-2j\\v{m-j)\\2 dt

m ~

>η2(T+η)~2ε(m)J2k2j+ι / λ-2k-2j-2\\υ{m-j)\\2dt.
7=i J

Choose δ > 0 (independent of fc) so that, for k sufficiently large
and 1 < j < m,

(2.34) η2 (T + η)~2 ε (m) k2j+ι + δpj (k) > δk2j+ι

where Pj(k) comes from Lemma 3. Now using (2.34) in (2.33) and
applying (2.21) to Yx, we get

Y2 >δk ίλ-2k'2\\υim)\\2dt

m

7 = 1

x

min p
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Changing the last expression so that the summation limits are 1 and
m + 1 produces (2.25) for n = m + 1. This completes the proof.

Proof of Theorem 1. Choose t\ G (0, T) and we shall show that
u = 0 on [0, ίj] which proves the theorem. Thus choose 0 < t\ <
t^<h<T and let ζ be a real-valued infinitely diίferentiable function
such that ζ(t) = 1 for ί G [0, t2], ζ(t) = 0 for t e [ί3, T] and
0 < ζ(t) < 1 for ί G [ί2, ^3]. Let v(ί) = ζ(t)u(t) and notice that υ
satisfies the hypothesis of Lemma 4. It is easy to see that

2(t2 + η)~2k Γ 3 | |Lυ||2 dt > 2 Γ V 2 * \\Lvf dt
Jt2 Jt2

= 2 [ λ~2k \\Lv\\2 dt-2 ί1 λ~2k \\Lu\\2 dt.
Jo Jo

Application of (2.23) and (1.2) yields, for k sufficiently large,

(2.35) 2(t2 + ηΓ2k ίh\\Lv\\2dt
J t 2

>ε{n,η, T)Y^k2j~x ί
7=1 J θ

+ 4 Re / λ~2k (Mv , Nυ) dt
Jo

- 2c Γ2 λ'2k \ω(ή + Γ ω{s) ds\ dt.

Since T + η>ί and thus (T + η)~2j > (T + ^)~ 2 ^ , the first term on
the right side of (2.35) admits the estimate

7 = 1
n

>k(T+ ηY2n ίTλ'2k y \\v(n-Jψ dt
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Using this and (II) (with c0 = 0) in (2.35) gives, for k sufficiently
large,

(2.36) 2(t2 + ηΓ2k h\Lv\\2dt
J
h\Lv\\2

x I λ-2ky\\v{n-j)\\2dt

- 2c Γ2λ~2k \ω{t) + ί ω(s) ds\ dt.

[ε(n,η, T)k(T+ r\Y2n - 4q} / 2λ~2kω{t) dt

- 2c Γ2 λ~2k \ω (ή + Γ ω (s) ds\ dt.

Since

2 λ ~ 2 k (t) ί ω{s)dsdt< f 2 ί λ ~ 2 k (s) ω (s) ds dt
Jo Jo Jo

<h f2λ-2k{s)ω(s)ds,
Jo

for k sufficiently large, inequality (2.36) can be simplified to get
ε(n, η, T)k(T + η)~2n - 4c{ -2c- 2ct2)

(2.37) 2(ί2 + η)~2k f3 \\Lv\\2 dt > βk Γλ~ 2 kω{t) dt
Jt2 Jo

>βkf
xλ-2kω{t)dt.
Jo

Since λ~2k(t) > (t{ + η)~2k for t e [0, t{]9 it is easy to see that
inequality (2.37) may be manipulated to produce

(2.38) 2{βky
x {{tx + η)l{t2 + η)}2k f* \\Lv\\2 dt > Γ ω(t) dt.

Jt2 Jo

Letting k -• oo in (2.38), it is clear that the left side of (2.38) ap-
proaches zero and thus the right side, which is independent of k,
must be identically zero. This completes the proof.
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LEMMA 5. Suppose the hypothesis of Lemma 4 holds and the op-
erator M satisfies either (2.2) or (2.3). Then there exists a positive
number e(n, η, T), independent of k, such that

(2.39)3 Γ λ~lk {t)\\Lv (OH2 dt
Jo

Γτ ιι ιι2

-1 λ~2k-2j (t) \\vίn'J) (/) dt

Jo
-2kλ-2k(t)\(Mv(t) ,υ(t))\dt

τ
+ 4 Re / λ~2k (t) (Mv (t) , Nυ (ή) dt

Jo

for all k sufficiently large.

Proof. For n = l a stronger result holds and is easily proven as in
[5]. (See Lemma 1 of [5].) Thus we omit that part of the proof and
assume n > 2. As in the proof of [5; Theorem 4], we note that if
either (2.2) or (2.3) holds, then (all integrals are taken over [0, T])

(2.40) /X~2k\(Mv, v)\ dt< ίλ-2k(Mv,v) dt

+ 2c2ίλ-2k\\v\\2 dt.

Also note that

(2.41) k1'2 ίλ-2k(Mv,v) dt

= &1 / 2Re ίλ-2k(-Lv + v{n) -Nv,v)dt

= -kι/2 Re / λ ~ 2 k (Lv , v) dt + kχl2 Re ίλ~2k(v{n), υ) dt

= JX+ J2.

An elementary estimate gives

(2.42) \J{\ < ίλ~2k \\Lv\\2 dt + (fc/4) ίλ~2k \\v\\2 dt.
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We use (2.18) and the identity (2k + n-2j-l)\/(2k - 1)! = (2k)n~2J
+ l.d.t. to get

(2.43) |72| =

[n/2]

x
/ •

[n/2]

7=0

j=o

l2 ί

2 ί λ

where the positive constant σ depends only on n. Now substitute
(2.42) and (2.43) into (2.41) to obtain,

(2.44) kx>2 ί λ-2k (Mv , v) dt

< ίλ~2k \\Lv\\2 dt

j=o

ί | 2 dt

for k sufficiently large. (We have absorbed the last term in (2.42) into
the last term in (2.44).) Substitution of (2.44) into (2.40) gives

-2k(2.45) kχl2 J.

< ίλ-2k \\Lυ}\2 dt + 2c2k
1'2 ίλ~2k \\v\\2 dt

Jλ }\\vj\\
7=0
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\ \ \ \ dt

7=1 J

Changing the summation index in the summation in (2.45) and then
adding (2.45) to (2.23) produces

(2.46) 3 ίλ~2k \\Lv\\2 dt

>ε{n,η, T)^k2j~x \ λ-
7=1 J

-2c2k
χl2 ίλ~2k \\v\\2 dt

-σΣk2j~n+lβ ίλ
+ k1'2 f λ~2k \(Mv , v)\ dt + 4Re ίλ~2k (Mυ , Nv) dt.

Since 2j - n + 1/2 < 2j - 1 for n > 2 and λn(t) < (T + η)n for
t G [0, Γ], it is clear that the summations (2.46) may be combined to
get the summation on the right side of (2.39) for k sufficiently large
with έ depending only on n, T, η, c2 and σ in particular, έ is
independent of k . This completes the proof.

Proof of Theorem 2. (Since the proof of Theorem 2 is virtually iden-
tical to that of Theorem 1 (with the only difference being that Lemma
5 is used instead of Lemma 4), we omit its proof.)

Acknowledgment. The author wishes to express his gratitude to a
most diligent, albeit unknown, referee for numerous corrections and
suggestions for improvement of the manuscript.
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