Vol. 144, No. 2, 1990

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Résolubilité semi-globale des opérateurs différentiels invariants sur les groupes de déplacements

Kahar El-Hussein

Vol. 144 (1990), No. 2, 259–275
Abstract

We study the existence of global fundamental solution of certain invariant linear differential operators on the semi-direct product G = V K where V is a real vector space of finite dimension and K a connected compact Lie group which acts on V as a linear group.

Using the scalar Fourier transform on G and the A. Cerezo and F. Rouviere’s method (“Solution élémentaire d’un operateur différentiel invariant sur un group de Lie compact”, Ann. Sci. Ec. Norm. Sup 4, séri t; 1969, pp. 561-581). We prove that a left invariant differential operator P on G and right invariant by K admits a fundamental solution on G if and only if its partial Fourier coefficients satisfy a condition of slow growth. Hence we deduce an explicit necessary and sufficient condition for the existence of a fundamental solution for a bi-invariant differential operator P on the Cartan’s motion group.

Mathematical Subject Classification 2000
Primary: 22E30
Secondary: 58G35
Milestones
Received: 30 July 1988
Published: 1 August 1990
Authors
Kahar El-Hussein