RADON-NIKODÝM PROBLEM FOR THE VARIATION OF A VECTOR MEASURE

LILIANA JANICKA
We consider the problem of representing the variation $|m|$ of a vector measure m as an integral in the Dinculeanu sense with respect to M.

Throughout this paper (S, Σ) denotes a measurable space. If X is a Banach space, we write X^* for the dual space and K_X for the closed unit ball of X. We use brackets \langle , \rangle for the pairing between a Banach space and its dual. Let $m: \Sigma \to X$ be a vector measure with finite variation $|m|$. Recall that a strongly measurable function $f: S \to X^*$ is said to be integrable in Dinculeanu’s sense if there exists a sequence $\{f_n\}_{n \geq 1}$ of simple functions converging $|m|$-a.e. to f such that

$$\lim_{n, p \to \infty} \int \|f_n - f_p\| \, d|m| = 0,$$

i.e., the function $\|f\|$ is $|m|$-integrable. Further, $D- \int_A f \, dm$ denotes the Dinculeanu integral of the function f with respect to m over the set A.

It was proved in [2] that for every $\varepsilon > 0$ there exists an X^*-valued strongly measurable function f defined on the set S such that $\|f\| \leq 1 + \varepsilon|m|$-a.e. and $|m|(A) = D- \int_A f \, dm$ for each $A \in \Sigma$. We are interested in the following question: For which Banach spaces may we obtain the preceding equality when we insist that $\|f\| = 1$ a.e. $|m|$?

We begin our investigation by introducing the following property of Banach spaces. The Banach space X has property (DV) if for every equivalent norm on X, for every measurable space (S, Σ) for every equivalent norm on X and every vector measure $m: \Sigma \to X$ with finite variation $|m|$ there exists a strongly measurable function $f: S \to X^*$ with $\|f\| = 1$ $|m|$-a.e. such that $|m|(A) = D- \int_A f \, dm$ for each $A \in \Sigma$.

Theorem 1. If both X and X^* have the Radon-Nikodym Property, then X has property (DV).
Proof. Let \((S, \Sigma)\) be a measurable space and \(m: \Sigma \to X\) be a measure with finite variation \(|m|\). Since \(X\) has RNP, there exists a strongly measurable function \(f: S \to X\) such that \(m(A) = \mathcal{B}\int_A f\,dm\) for each \(A \in \Sigma\). (\(\mathcal{B}\int_A f\,dm\) denotes the Bochner integral of \(f\) with respect to \(m\) over the set \(A\).) For every \(x \in X\) let

\[G(x) = \{x^* \in K_{X^*}: \|x^*\| = 1\ \text{and} \ \langle x, x^* \rangle = \|x\|\}. \]

Then \(G\) is a set-valued mapping, and \(G(x)\) is non-empty and \(w^*\)-compact for every \(x \in X\). We now see that \(G\) is upper semi-continuous if \(X\) is endowed with the norm topology and \(K_{X^*}\) is endowed with the \(w^*\)-topology. Indeed, let \(H\) be a \(w^*\)-closed subset of \(K_{X^*}\). It suffices to show that

\[\{x \in X: G(x) \cap H \neq \emptyset\} \]

is norm closed in \(X\). Let \(\|x_n - x\| \to 0\), and suppose that \(G(x_n) \cap H \neq \emptyset\), i.e., for every \(n\) there exists \(x^*_n \in H\) such that \(\|x^*_n\| = 1\) and \(\|x_n\| = \langle x_n, x^*_n \rangle\). Let \(x^*\) be any \(w^*\)-cluster point of \(\{x^*_n\}\). It is not difficult to see that for every \(\varepsilon > 0\) we have \(\|x\| - \langle x, x^* \rangle < \varepsilon\); i.e. the set is norm closed. Following [7, Theorem 8], we see that the set-valued mapping \(G\) has a selector which is of the first Baire class when \(X^*\) is equipped with the norm topology. Then using [1, Lemma 4.11.13] we see that the function \(h: S \to X^*\) defined by \(h = g \circ f\) is strongly measurable. (The preceding lemma and the fact that \(f\) is strongly measurable ensures that \(h\) has essentially separable range; the strong measurability of \(f\) and the fact that \(g\) belongs to the first Baire class ensures that \(h^{-1}(u)\) is an element of the \(|m|\)-completion of \(\Sigma\) for every set \(u\) which is open in the norm topology on \(x^*\).) But for every \(A \in \Sigma\) we have

\[|m|(A) = \int_A \|f\| \,d|m|. \]

Therefore following [4, Theorem 3.4.II], we have

\[|m|(A) = \int_A \|f\| \,d|m| = \int_A \langle f(s), h(s) \rangle \,d|m|(s) \]

\[S = \mathcal{B}\int_A h \,df|m| = \mathcal{B}\int_A h \,dm. \]

Proposition 2. If \(X\) has property (DV), then every subspace \(Y\) of \(X\) has property (DV).
Proof. Let $m : \Sigma \to Y$ be a vector measure with $|m| < \infty$. Since X has property (DV), there exists a strongly measurable function $f : S \to X^*$ with $\|f(x)\| = 1$ $|m|$-a.e. such that $|m|(A) = D- \int_A f dm$ for each $A \in \Sigma$. Define $g : S \to Y^*$ by $g(s) = f(s)|_Y$ (the restriction of $f(s)$ to Y). Of course g is strongly measurable and $\|g(s)\| \leq \|f(s)\| = 1$.

For every $A \in \Sigma$ we have $D- \int_A g dm = D- \int_A f dm$ since m takes its values in Y. But

$$|m|(A) = D- \int_A f dm = D- \int_A g dm \leq \int_A \|g\| d|m| \leq |m|(A);$$

therefore $\|g(s)\| = 1$ $|m|$-a.e.

Proposition 3. Banach spaces l_1 and c_0 do not have property (DV).

Proof. Let (I, \mathcal{B}) be the unit interval with the Borel σ-algebra.

(1) For $A \in \mathcal{B}$ define m by $m(A) = (\int_A (1/2^n)r_n(t) dt)^\infty_{n=1}$, where r_n denotes the nth Rademacher function. Then m is a vector measure with values in l_1 such that $|m| = \lambda$, where λ is Lebesgue measure. (It is enough to verify this last equality on intervals of the form $[1/2^i, 1/2^i - 1].$) Suppose there exists a strongly measurable function $f : I \to l_\infty$, $f(t) = (f_n(t))$, such that $\|f(t)\| = 1$ λ-a.e. and $|m|(A) = D- \int_A f dm$ for each A. Because of the definition of m, we have

$$|m|(A) = \int_A \sum_{n=1}^\infty f_n(t)(1/2^n)r_n(t) dt.$$

In particular, for $A = [0, 1]$ we have $\sum_{n=1}^\infty f_n(t)(1/2^n)r_n(t) = 1$ λ-a.e. Further, it is easy to see that $(f_n(t)) = (r_n(t))$ is the unique element of l_∞ which satisfies the preceding equality. But the function $t \to (r_n(t))$ from I to l_∞ is not weakly measurable [9].

(2) For $A \in \mathcal{B}$ define m by $m(A) = (\int_A (n/n + 1)r_n(t) dt)^\infty_{n=1}$. It is easy to verify that m is a vector measure with values in c_0 and $|m| = \lambda$. (The last statement follows from the equality $\sup_n (n/n + 1)r_n(t) = 1$.) Assume there exists a strongly measurable function $f : I \to l_1$, $f(t) = (f_n(t))$ with $\|f(t)\| = \sum_{n=1}^\infty |f_n(t)| = 1$ λ-a.e. such that $|m|(A) = D- \int_A f dm$ for every $A \in \mathcal{B}$. Then for $A = [0, 1]$ we have

$$1 = \int_0^1 \sum_{n=1}^\infty f_n(t)(n/n + 1)r_n(t) dt,$$
i.e., $\sum_{n=1}^{\infty} f_n(t)(n/n + 1)r_n(t) = 1$ λ-a.e. But this is impossible since for every n we have

$$f_n(t)(n/n + 1)r_n(t) \leq |f_n(t)(n/n + 1)r_n(t)| < |f_n(t)|.$$
REFERENCES

Received September 19, 1988.
George E. Andrews and David M. Jackson, An algebraically derived q-analogue of a character sum associated with a class of semiregular permutations ... 207
Fabio Bardelli and Andrea Del Centina, The moduli space of genus four double covers of elliptic curves is rational ... 219
Young Do Chai, An estimate of the volume of a compact set in terms of its integral of mean curvature ... 229
Salvador Comalada, Elliptic curves with trivial conductor over quadratic fields ... 237
Kahar El-Hussein, Résolubilité semi-globale des opérateurs différentiels invariants sur les groupes de déplacements ... 259
David M. Goldschmidt, Classical link invariants and the Burau representation ... 277
Liliana Janicka, Radon-Nikodým problem for the variation of a vector measure ... 293
Wacław Marzantowicz, An almost classification of compact Lie groups with Borsuk-Ulam properties ... 299
Akira Ohbuchi, On the projective normality of some varieties of degree 5 ... 313
Ken’ichi Ohshika, Minimal measured laminations in geometric 3-manifolds ... 327
Hal Leslie Smith, A discrete Lyapunov function for a class of linear differential equations ... 345
John Samuel Spielberg, Diagonal states on O_2 ... 361
Thomas Vogel, A note on the sessile drop ... 383
Gerold Wagner, On means of distances on the surface of a sphere (lower bounds) ... 389