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We characterize the multipliers from Hι to X , where X is
BMOA, VMOA, 3S or ̂ 0 and from Hp to Hq {p < min(q, 1)).
Also we give short proofs of some results of Hardy and Littlewood and
Fleet.

I. Introduction. For 0 < p < oc, by Hp we denote the space of
functions f(z) analytic in the unit disk U, for which

or
iθ)MO0{r,f)= max \f(re

0 < < 2

remains bounded as r —> 1. Duren's book [4] and Garnett's book
[11] will be frequently cited as a reference to Hp theory and related
subjects.

Let A and B be two vector spaces of sequences. A sequence λ =
{λn} is said to be a multiplier from A to B if {λnan} e B whenever
{an} € A. The set of all multipliers from A to B will be denoted
by (A, B). We regard spaces of analytic functions in the disk as
sequence spaces by identifying a function with its sequence of Taylor
coefficients.

Hardy and Littlewood [14] have proved the following theorem: If
1 < P < 2 < q and p~ι - q~ι = 1 - σ" 1 and if

(1.1) Mσ(r,g')<c(l-rΓι, 0< r < 1,

then g G (Hp, Hq) (c will be used for a general constant, not neces-
sarily the same at each occurrence). Stein and Zygmund [21] (see also
Sledd [20]) have observed that the condition (1.1) is also necessary in
the case p = 1, q > 2. Hence the following theorem holds.

THEOREM HL. Let 2 < q < oo. Then ge(Hι, Hq) if and only if

(1.2) Mq{r9g?)<cl{\-r), 0< r < 1.
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72 M. MATELJEVIC AND M. PAVLOVIC

This result does not hold for q = oo. In fact, it follows from the
Feίferman theorem that (Hι, H°°) = BMOA, the space of analytic
functions of bounded mean oscillation (for this and the other proper-
ties of BMOA see [11], [2] and [7]).

Theorem HL and a duality argument give the following result:

PROPOSITION 1. If 1 < p < 2 then a necessary and sufficient condi-
tion that g e (Hp, BMOA) is that (1.2) be true, where l/p+l/q = I.

We will show that this result holds for p = 1.

THEOREM 1. (Hι, BMOA) = 3&, where 3$ is the class of Bloch
functions: an analytic function g in the unit disc belongs to <% iff

(
zeu

Furthermore, it will be shown in Section IV, that (Hι, X) = 3S,
where X is BMOA, VMOA, 3 or 3β^.

It is interesting that results about multipliers of Hp functions are
more complete in the case 0 < p < 1 than in the case p = 1.

In [12, 13] Hardy and Littlewood stated, without proof, a sufficient
condition for g to be a multiplier from Hp to Hq, where p < 1
and q > 1. A proof was found by Duren and Shields [6]. (Also see
Duren's book [4] for further information on multipliers.) Here we
extend the Duren-Shields proof to the case 0 < p < q < 1, using a
result of Flett and the Lemma MP.

THEOREM 2. Let 0 < p < 1 and p < q < oo, and let m be integer
> l/p. Then ge{Hp,Hη iff

(1.3) Mq{r9 g{m)) < c{\ - rγlp-m-χ, 0 < r < 1.

It is interesting that we can regard this result as an extension of
the well-known theorem of Duren, Romberg and Shields [4, 5] on the
dual of Hp, 0 < p < 1. Namely, if we identify a continuous linear
functional Λ e (Hp)* with the sequence {λn}, where λn = A(zn),
then (HP) = (Hp, H°°) = (Hp, A(U)), 0 < p < +oc, where A(U)
is the disc algebra. For details see [18]. Theorem 2 will be proved in
Section III.
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Our approach is based on results about containments between Hp,
BMOA and generalized mean Lipschitz spaces which are mainly due
to Hardy and Littlewood. New and short proofs of some of these
results will be given in Section II.

II. Background and preliminary result. Let g(z) = Σg(ri)zn be
analytic on the unit disc U. We define the multiplier transformation
Dsg of g, where s is any real number, by

n=0

We shall also use the standard notation \\g\\p = supo<r<i Mp(r, g)
(0<p< +00) and gr{z) = g{rz) (0 < r < 1, z e £/).

To avoid some technical difficulties, we work rather with Dmg in-
stead of gW, where m is a non-negative integer. The following
lemma shows that integral means of Dmg and g^ have the same
behavior. For example, the condition (1.3) can be written in the form

(2.1) Mq{r, Dmg) < c{\ - rγlp-m~λ, 0 < r < 1.

LEMMA 1. Let g be an analytic function on the unit disc U, let m
be a positive integer, let g(j) = 0 for 0 < j < m, and let 0 < p < +oo.
Then

(2.2) c-χrmMp{r, g^) < Mp(r, Dmg)

<crmMp{r,g(m)), 0<r< 1,

where c does not depend on g.

Proof of Lemma 1. It is easily seen that Dmg is a linear combination
of zJgW , 0 < j < m, and zmg^ is a linear combination of DJg,
0<j<m. It follows that

m

\\Dmg\\p<cJ2\\SU%
0

and
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where c depends only on m and p . Let 0 < j < m - 1. Then

Djg(z)= ί Dj+ιg(rz)dr
Jo

and consequently

\DJg(z)\< sup \D^ιg(rz)\.
0<r<\

Hence, by the Hardy-Littlewood maximal theorem,

\\DJg\\p<c\\DJ+ιg\\p.

This implies \\gW\\p < c\\Dmg\\p . To prove that \\Dmg\\p < c\\gW\\p

we use the inequality ||£^||/? < cllg^^lh?, 0 < j < m - 1, which is
a special case of the following.

LEMMA 2. Let 0 < p < oo, s = min(/7, 1), / be an analytic
function on the unit disc U and 0 < p < r < 1. Then

(2.3) Ms

p(r, f) - Ms

p{p,f) < c{r-p)sMs

p{r, f),

where c is independent of f, r, p.

Proof. Let p < 1. Then s = p and

i /*2π

Mfl(r,f)-Mf;(p9f) < y~ / \f(reu) - f{peil)\pdt.

Since

fire^-fipe") = Γ f(ueιt)elt du,
Jp

we have

|/(r^ ί ?) — f(peιt)\ < {r — p) s\xχ>{\f (ueιt)\ : p < u < r},

and (2.3) follows from the maximal theorem. If p > 1 we use
Minkowski's inequality to obtain

(2.4) Mp(r,f)-Mp(p,f)< f'Mp(u, f)du.
Jp

This gives (2.3) with c — 1.
The following lemma is due to Flett [9, 10].
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LEMMA F. Let p < 1 and f be an analytic function on the unit disc
U. If

\ (l-r)p-ιMP(r,Dιf)dr<
Jo

oc
Jo x ' ^ ' " '

then f eHp.

Proof. Let rw = 1 - 2~n , n > 0. Then

Hence, by Lemma 2,

0

<\A0)\p + c f\l-rγ-ιMj>(r,f)dr.
Jo

Now the desired result follows from (2.2).
Lemma 2 may be used to prove the following result of Hardy and

Littlewood [4, 12].

LEMMA HL. Let α > — 1, 0 < / ? < o o and 0 < q < oo. If

(i) / {\-r)a+qMξ{r,Dιf)dr<oo
Jo

then

(ϋ) [\l-r)"M*(r,f)dr<oo.
Jo

Proof. We shall consider the case p < 1. Let An = M^(rn, /) and
Bn = M${rn, / ) , where rΛ = 1 - 2~n, Λ > 0. Let β = q/p. Then
(ii) is equivalent to

Λ = l

and (i) is equivalent to

n=l
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If β < 1 then

1
oo

1
oo

1

On the other hand, by Lemma 2, An - An-\ < c2~npBn . This gives

(1 _ 2-^^)Kx < cK2 + 2-^xUβ^ ,

and the result follows. If β > 1 we use the Minkowski inequality to
obtain

I
The rest is similar to the case β < 1.

For the proof of Theorem 1 we need another result of Hardy and
Littlewood [13]:

LEMMA HLl. IfO<p<2 and f e Hp then

(i) ί\\-r)M2

p{r,Dxf)dr <oo.
Jo

// 2 < p < oo then (i) implies f eHp .

Γ. By the Hardy-Stein identity [15]

where

FP{p) = ̂ l
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Let 0 < p < 2, \\f\\p = 1 and, for a fixed p, φ{t) = \f(peu)\P. Since

Tί Jo * fit) dt < 1 and p/2 < 1 we have, by Jensen's inequality,

Fpipf'1 = { / if'ipe^/Λpe^lMt) dt \

Jo

Hence

^m{r,f)>p2r-1 fM2

p{p,f)pdp.
ctr Jo

Now integration yields

\\f\\Pp-\f(W>P2 ί p\o%-M2(p,f')dφ,
Jo P

and this proves the first implication of Lemma HLl. The case p > 2
is treated in a similar way.

III. Proof of Theorem 2 and Lemma MP. For the proof of Theorem
2 we need further lemmas. The first of them is a well-known result of
Hardy and Littlewood [4, 12].

LEMMA HL2. If f e Hp and p < q < oo then

f {\-
Jo

LEMMA MP. Let f,geH«, 0<q<\. Then

Mq{r, f*g)<(l- rγ-χl«\\f\\q\\g\\q forO<r<l.

Proof. We may suppose that / , g are polynomials. Then

/ * £(rV') = J - / π f{reHew)h{rew) dθ 0 < r < 1,
£κ Jo

where

Hence

I/* s(rV')| < i Γ lArei'e^ldθ = Mx(r, h2),
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where h\z) = f(eιtz)h{z). Using the familiar estimate

AfKr, ΛO < (1 - r 2 ) 1

we obtain

Now integration gives

This completes the proof because \\h\\q = \\g\\q.

Proof of Theorem 2. The proof that g e (Hp, Hq) implies (1.3)
(or equivalently, (2.1)), does not depend on the hypothesis q > p.
Namely, if g e (Hp, H«) then

M,(r, Z)«^) = | | ; * /Γ | |β < c\\fr\\p , 0 < r < 1,

where f(z) = Σ^°(fl + \)mzn, and m is an integer > \/p. It is
easily seen that f{z) = Pm(z)(l - z)~m~ι, where P m is a polynomial.
Hence

To prove the converse let h = f * g, where # satisfies (2.1) and
f e Hp . We have to prove that h e Hq (p < min(q, 1)). Consider
first the case q > 1. It follows from (2.4) (with q instead of p) that
it suffices to prove that

-1

MJr,Dιh)dr <oo.
/o

By Lemma HL, this is implied by

s:
L (\-r)m-χMq(rz,Dmh)dr<oo.

o

We have

Mq{r2, Dmh) = \\fr*Dmgr\\q < \\frh\\Dmgr\\q

= Mι(r, f)Mq(r, Dmg) < c{\ - rΫ^'^M^r, f).

Hence

I {\-r)m-χMq{r2,Dmh)dr<c / (1 - rγlp-2Mx{r, f)dr.
Jo Jo

The second integral is finite because of Lemma HL2 (with q = 1).
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Next, let p < q < 1. Combining Lemmas F and HL we see that
/e/f« if

/ (l-r)m4-ιM%(r3,Dmh)dr<oo.
Jo

Using Lemma MP and the condition (2.1) gives

M\(r3, Dmh) = M$(r, fr * Dmgr) < (1 - r)q~
•,f)M%{r,Dmg)

Hence

/ {\-r)qm-χM%{r*,Dmh)dr<c {\ - r)qlp~2M%(r, f)dr
Jo Jo

Now the desired result follows from Lemma HL2.

IV. Multipliers into BMOA Although the following result is inter-
esting in itself, the containment (Hι, SB) c 3S is also very useful in
the proof of Theorem 1.

PROPOSITION 2. (Hι,

Proof. Let f GH1 , g e & and h = f* g. Then we have

(4.1) |rVΆ'(rV')l= 1

Since ^ e ^ implies M^r, g1) < c(l - r ) " 1 , 0 < r < 1, it follows
from (4.1) that Λ e ^ . S o w e have 33 c (Z/1, •#).

To prove the converse we suppose that g is an analytic function
on the unit disc U and that f*ge&, whenever f e Hι. Applying
the closed graph theorem in the standard way, we conclude

\\g*f\y<c\\f\U, feH1.

If we substitute κr{z) = (1 - rz)~ 2 , 0 < r < 1, for / in the last
inequality, we get

\\Dι

gry = \\g * κry < φrh = c{\ - r2rι.

Since
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it follows from Lemma 1,

M^rp, g») < c(l - p2r\\ - r2yx, 0 < p, r < 1.

Hence
M^ip2, g") < c(l - p2)-2.

Now Theorem 5.5 [4] shows g € 38.
Using the estimate (4.1) we have just proved that h = / * g € 38

whenever f e Hι and g e 38 . Theorem 1 below shows that we can
prove more, i.e., h e BMOA.

Our proof is based on the Lemma HL1 (the case p = 1) and the
following result.

LEMMA 3. If h is an analytic function in the unit disc U, the fol-
lowing implication holds:

•1

(1 - r)Af£(r, h')dr<oo^he BMOA .
/o

Proof of Theorem 1. Suppose that f e Hι and g ^38. Although
(4.1) does not work in this setting, a similar estimate for the second
derivative gives the desired result. Indeed,

\D2h{r2eiι)\ =
l- f π Dxf{reiθ)Dιg{re^-θ))dθ
•it Jo2π

KcMiir^tfiil-r)-1, i.e.

<cM2{r, Dιf)(l -r).

Now, by Lemma HL1, we conclude that /Q(1 - r ) 3 M^(r , D2h) dr <
+00.

We can use the Lemma HL to show that h satisfies the condition
of Lemma 3 and we further conclude that h G BMOA. So, we have
& C (Hι, BMOA).

The converse follows from the fact (Hι, BMOA) c (Hι, 38) and
Proposition 2.

Proof of Lemma 3. Let h be an analytic function in the unit disc
and

= sup if \h'{z)\2{\ - \z\2){\ - \λ\2)\\ -λz\-2dxdy.
λeuJJu
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It is implicit in Lemma 3.2 [11], p. 238, that h e BMOA iff \\h\\* <
+oo. If we use polar coordinates and the fact

*
10

we find

||A||* < sup2π(l - \λ\2) ί (1 - \λr\2)~ι(l - r2)A/oo(r, hι)dr.
λeu Jo

Now the desired conclusion follows from the simple estimate 1 -\λ\2 <
1 - \λr\2.

COROLLARY 1. (H1, VMOA) = 3B, where by VMOA we denote
the space of analytic functions of Vanishing Mean Oscillation (see, for
example, [11]).

COROLLARY 2. (Hι, 3SQ) = 3B, where the little Bloch space ^ is
the set of analytic functions f on U for which (1 - |Λ|2)|/'(Λ,)| —• 0 as

Proof. Let / e Hx and g e 38 . By Theorem 1,

(4.2) \\F*g\U<c\\F\\u FeH\

where the constant c does not depend on f . If we substitute F =
fr-f in (4.2), we get \\f*gr-f*g\\* < ^ll/r-/lli Since the term on
the right-hand side of the last inequality approaches 0 when r -> 1
(see Theorem 2.6, [4]), it follows from Theorem 5.1, [11], p. 250, that
/ * gGVMOA.

Let n\, n2 9 be a lacunary sequence of integers in the sense that

nκ+\/nκ >q>\.

Since g(z) = Σ£Li znk e 3B > the following corollary follows from
Theorem 1.

COROLLARY 3. // f(z) = Σanz
n e Hι, then for every lacunary

sequence {nκ},

F(z) = Σanκz
n* e VMOA .

κ : = l
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Since VMOA c BMOA c H2, we get two corollaries from this
result:

(a) Paley's theorem (see for example [4], p. 104).
(b) the interesting fact: If {nκ} is lacunary sequence then a func-

tion F(z) = Σanκz
n« e VMOA iff F e H2, i.e. Σ2°=i \anf < +°o.

If A is a sequence space, Aa (the Abel dual) is defined to be
the set of sequence {λn} such that lim r_i Σ%Loλnanr

n exists for all
{<*n}eA.

Proof of Proposition 1. Suppose that 2 < q < oc and p~ι + q~ι = 1.
Since (Hι)a = BMOA and (H«)a = H*> (see, for example, [4], [11]),
it follows from Lemma 1.1, [1] that

(Hι, Hq) c (Hp, BMOA) c ((BMOA)*, Hq).

Combining this relation with Hι c (BMOA)α, we have (Hι, Hq) =

(Hp, BMOA). Now, Theorem HL completes the proof.

The best known case q = 2 of Theorem HL can be rewritten in the
form:

THEOREM HL*. A sequence {λκ} is a multiplier of Hι into H2

(alias I2) iff

κ=\

As a corollary of this, Duren and Shields [6] (see also [16]) observe,
more generally, {λκ} is a multiplier of Hι into lq (2 < q < +oo) iff

(4.3) Σ\κλκ\
q = O(nq).

k=ι
Using a similar procedure as in the proof of Proposition 1, we can

prove

(4.4) (J/1,/*) = (/*, BMOA)

where 1 < q < +oo, p~ι + q~ι = 1.

PROPOSITION 3. (a) A sequence {λκ} is a multiplier from lp (1 <
p < 2) to BMOA iff it satisfies

(4.5)
k=2n

where p~ι +q~ι = 1.
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(b) (/1

?BMOA) = /°°.
(c) Items (a) and (b) hold if we replace BMOA with VMOA.

Proof. Part (a) follows from (4.4), the above-mentioned Duren-
Shields observation, and the fact that conditions (4.3) and (4.5) are
equivalent. To prove (b) we can combine the Duren-Shields result [6],
(Hι, /°°) = l°°, with (4.4).

A similar procedure as in the proof of Corollary 1 shows that (c) is
true.

After this paper was prepared for publication, Professor B. Koren-
blum found an interesting proof of the main part of Theorem 1, using
duality and Coifman's atomic decomposition.
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