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MULTIPLIERS OF H? AND BMOA

M. MATELJEVIC AND M. PavLoviC

We characterize the multipliers from H' to X, where X is
BMOA, VMOA, % or %, and from H? to HY (p < min(g, 1)).
Also we give short proofs of some results of Hardy and Littlewood and
Fleet.

I. Introduction. For 0 < p < oo, by H? we denote the space of
functions f(z) analytic in the unit disk U, for which

2n )
MY, ) =5z [ 1fre P do

or
_ i9
Me(r, f) = o3 |f(re'?)]
remains bounded as » — 1. Duren’s book [4] and Garnett’s book
[11] will be frequently cited as a reference to H? theory and related
subjects.

Let 4 and B be two vector spaces of sequences. A sequence A =
{An} 1is said to be a multiplier from 4 to B if {i,a,} € B whenever
{an} € 4. The set of all multipliers from 4 to B will be denoted
by (4, B). We regard spaces of analytic functions in the disk as
sequence spaces by identifying a function with its sequence of Taylor
coefficients.

Hardy and Littlewood [14] have proved the following theorem: If
l1<p<2<gand p'—g'=1-0"! andif

(1.1) My(r,g)<c(l1-r1, O<r<l1,

then g € (H?, HY) (c will be used for a general constant, not neces-
sarily the same at each occurrence). Stein and Zygmund [21] (see also
Sledd [20]) have observed that the condition (1.1) is also necessary in
the case p =1, g > 2. Hence the following theorem holds.

THEOREM HL. Let 2 < g <oo. Then g€ (H', H?) ifand only if
(1.2) My(r,g)<c/(1-r), O<r<l1.
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This result does not hold for ¢ = oco. In fact, it follows from the
Fefferman theorem that (H!, H*®) = BMOA, the space of analytic
functions of bounded mean oscillation (for this and the other proper-
ties of BMOA see [11], [2] and [7]).

Theorem HL and a duality argument give the following result:

ProrosITION 1. If 1 < p < 2 then a necessary and sufficient condi-
tion that g € (H? , BMOA) is that (1.2) be true, where 1/p+1/q =1.

We will show that this result holds for p=1.

THeorREM 1. (H!, BMOA) = &, where F is the class of Bloch
functions: an analytic function g in the unit disc belongs to & iff

| flle = sup(1 — |z|)|g'(z)| < o0.
zeU

Furthermore, it will be shown in Section IV, that (H!, X) = &,
where X is BMOA, VMOA, & or %,.

It is interesting that results about multipliers of H?” functions are
more complete in the case 0 < p < 1 than in the case p=1.

In [12, 13] Hardy and Littlewood stated, without proof, a sufficient
condition for g to be a multiplier from H? to HY, where p < 1
and ¢ > 1. A proof was found by Duren and Shields [6]. (Also see
Duren’s book [4] for further information on multipliers.) Here we
extend the Duren-Shields proof to the case 0 < p < ¢ < 1, using a
result of Flett and the Lemma MP.

THEOREM 2. Let 0<p <1 and p < q < o0, and let m be integer
>1/p. Then g € (H?, H?) iff

(1.3) My(r, g™y <c(l—p)lip—m=1 0<r<l.

It is interesting that we can regard this result as an extension of
the well-known theorem of Duren, Romberg and Shields [4, 5] on the
dual of H?, 0 < p < 1. Namely, if we identify a continuous linear
functional A € (H?)* with the sequence {4,}, where 4, = A(z"),
then (H?) = (HP, H®) = (H?, A(U)), 0 < p < 400, where A(U)
is the disc algebra. For details see [18]. Theorem 2 will be proved in
Section III.
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Our approach is based on results about containments between H? ,
BMOA and generalized mean Lipschitz spaces which are mainly due
to Hardy and Littlewood. New and short proofs of some of these
results will be given in Section II.

II. Background and preliminary result. Let g(z) = > g(n)z" be
analytic on the unit disc U. We define the multiplier transformation
D’g of g, where s is any real number, by

oo

Dig(z) =) (n+1)&(n)z".

n=0

We shall also use the standard notation || g||, = supo<,<i Mp(r, &)
(0O<p<+o0) and g (z)=g(rz) (0<r<l1,zel).

To avoid some technical difficulties, we work rather with D" g in-
stead of g™, where m is a non-negative integer. The following
lemma shows that integral means of D™g and g™ have the same
behavior. For example, the condition (1.3) can be written in the form

(2.1) My(r,D"g) < c(1 —r)l/p=m=-1, O<r<1.

LEMMA 1. Let g be an analytic function on the unit disc U, let m
be a positive integer, let 2(j) =0 for 0< j<m,andlet 0<p < +00.
Then

(2.2) ¢ 'rmMy(r, g'™) < M,(r, D™g)
<crmM,(r, g™), O<r<l,

where ¢ does not depend on g.

Proof of Lemma 1. It is easily seen that D™ g is a linear combination
of z/g), 0<j<m,and z"g(™ is a linear combination of D/g,
0 < j<m. It follows that

m
ID™gllp < 1gYllp
0

and

m
18"y < eI gllp
0
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where ¢ depends onlyon m and p. Let 0 <j<m—1. Then
Dig / D/tlg(rz)dr

and consequently

|D/g(2)| < sup |D/*'g(rz)|.

O<r<«l

Hence, by the Hardy-Littlewood maximal theorem,
1D/ gllp < c| D'+ gllp -

This implies [[g")||, < c||D™g|),. To prove that |[D"g|l, < c[lg" |,
we use the inequality [|gV)], < ¢||lgU*Y|,, 0 <j < m—1, which is
a special case of the following.

LEMMA 2. Let 0 < p < oo, s = min(p, 1), f be an analytic
function on the unit disc U and 0 < p <r < 1. Then

(2.3) My(r, f) = My(p, ) < clr—p)yMy(r, [),

where ¢ is independent of f, r, p.

Proof. Let p<1. Then s =p and

2n ) ]
MY )= M0 ) < 5z [ (e = flpetyp .
Since )
f(re'y — f(pe') =/ f(uee'' du,
p
we have

|[f(re™) = fpe™)| < (r — p)sup{|f'(ue")|: p <u<r},

and (2.3) follows from the maximal theorem. If p > 1 we use
Minkowski’s inequality to obtain

(2.4) My(r. )= My(p. f) < /prMpw, ) du

This gives (2.3) with c = 1.
The following lemma is due to Flett [9, 10].
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LEMMAF. Let p < 1 and f be an analytic function on the unit disc
. If

1
/(1~r)p—1Mg(r,D1f)dr<oo
0
then f e HP.

Proof. Let r,=1-2"", n>0. Then
[ o]
115 = 1£ O + D [ME(rnirs £) — M (ra, 1]
0
Hence, by Lemma 2,

A1 < 1A +cd 27" ME(ru, f)
0

1

<UOP+e [ (1-rP Mg, far.

0

Now the desired result follows from (2.2).
Lemma 2 may be used to prove the following result of Hardy and
Littlewood [4, 12].

LEMMA HL. Let a > -1, 0<p<oo and 0<g<oo. If

) /1(1 — 1) ME(r, D' f) dr < oo
0
then
1
(i) / (1 - MI(r, f)dr < .
0

Proof. We shall consider the case p < 1. Let 4, = M} (r,, f) and
By, = M} (ry, f'), where r, =1-2"", n>0. Let 8 =gq/p. Then
(i) is equivalent to

oo
00>y 27meth gl = Ky,

n=1

and (1) is equivalent to

o0
00>y 27t gl = K,
n=1



76 M. MATELJEVIC AND M. PAVLOVIC

If <1 then

Kl = 2_n(a+1)(An - An—l + An—l)ﬂ

o0

2—n(a+l)(An _ An—l)ﬂ + 2:2—n(oz+l)Al9_1

n
1

27m@tD (4, — A, ) + 27D (K, + 4F).

e -1 -0

On the other hand, by Lemma 2, 4, — 4,_; < 27"’ B,,. This gives
(1 -2"+*K) < cK,y + 27048

and the result follows. If § > 1 we use the Minkowski inequality to
obtain

) 1/8
Kll/ﬁ < {Z 2—n(a+l)(An _An—l)ﬂ}
1/8
{Zz n(a+1) Aﬂ } )

The rest is similar to the case < 1.
For the proof of Theorem 1 we need another result of Hardy and
Littlewood [13]:

LemMma HLL1. If 0<p <2 and f € HP then

1
@) / (1—r)MZXr, D' f)dr < .

0
If 2 < p < oo then (i) implies f € HP .

Proof. By the Hardy-Stein identity [15]

d r
rg;M},’(r, = p2/0 Fy(p)dp,
where

1 [ IND=21 £1( npil)]2
Fop) = 57 [ 1 tpeP 211 (pei P dr.
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Let 0 <p <2, |fllp =1 and, for a fixed p, ¢(t) = |f(pe')P. Since

2‘— p(t)dt <1 and p/2 <1 we have, by Jensen’s inequality,

2n ) . p/2
Fp(p)y? = { /0 |/ (pe™)/ f(pe™)*p(2) dt}

2 . .
2/0 |f'(pe")/ f(pe)Po()dt
=M (p, [").
Hence

d 4 ,
M. 20 [, oy,

Now integration yields
1
|
11~/ 20* [ plogME(p. 1)dp,

and this proves the first implication of Lemma HL1. The case p > 2
is treated in a similar way.

II1. Proof of Theorem 2 and Lemma MP. For the proof of Theorem
2 we need further lemmas. The first of them is a well-known result of
Hardy and Littlewood [4, 12].

LemMmAa HL2. If f€ HP and p < q < oo then
1
/0 (1= r)4P=2M3(r, f)dr < co.

LEMMA MP. Let f,g€ H?, 0<q<1. Then
My(r, f+g) < (1= fl,lelly foro<r<t.

Proof. We may suppose that f, g are polynomials. Then
. 2n e
f*g(rre') = % f(re'e'®h(re®®)do 0<r<1,
0
where
w ———
h(z) =) 2(n)z
0
Hence

2, < 1 2 it ,i0 do =M h2
e a(Pe) < 52 [ 1ftrete®) do = M, 1),
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where h!(z) = f(e''z)h(z). Using the familiar estimate
Mi(r, k') < (1= rA)!=Va|Rt,,

we obtain
f * g(rRe)|d < (1 r2)a! 2 / e®)9h(e?)]4 6.

Now integration gives

M, f+g) < (L=r) T I A1IgI1A11E -
This completes the proof because ||4||; = ||gllg -

Proof of Theorem 2. The proof that g € (H?, H?) implies (1.3)
(or equivalently, (2.1)), does not depend on the hypothesis ¢ > p.
Namely, if g € (H?, H?) then

My(r, D"g) =g * filly < cllfllp,  O<r<1,

where f(z) = > °(n+ 1)™z", and m is an integer > 1/p. It is
easily seen that f(z) = P, (z)(1-2z)"""!, where P, is a polynomial.
Hence

1115 < e(1 —r)t=tmrbe,

To prove the converse let # = f * g, where g satisfies (2.1) and
f € H? . We have to prove that # € H? (p < min(g, 1)). Consider
first the case g > 1. It follows from (2.4) (with g instead of p) that
1t suffices to prove that

1
/0 My(r, D'h)dr < .
By Lemma HL, this is implied by
1
/ (1 —r)" ' M,(r*, D"h)dr < co.
0

We have

My(r*, D™h) = ||f, * D" g lls < |- 111IP™ &/ ll4
= M\(r, /)My(r, D™g) < c(1 —)'P=" 10 (r, f).
Hence

/1(1 — )" My (r*, D™h)dr < c/l(l —nN'"P2My(r, f)dr.
0 0

The second integral is finite because of Lemma HL2 (with ¢ = 1).
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Next, let p < g < 1. Combining Lemmas F and HL we see that
feHI if

/1(1 — )™~ MI(r}, D™h)dr < co.
Using Lemma MI(; and the condition (2.1) gives
M{(r*, D"h) = M{(r, frx D" g) < (1 =)@ M| £ 151D &/ 1]
=(1=n"'M{(r, f)M{(r, D"g)
<c(l—r)?/P=am=1Ipi(r, f).

Hence

1 1
| a=nmiage prmar <c [ (=g, .

Now the desired result follows from Lemma HL2.

IV. Multipliers into BMOA . Although the following result is inter-
esting in itself, the containment (H'!, &) C & is also very useful in
the proof of Theorem 1.

PRrROPOSITION 2. (H!, %) =% .

Proof.let fe H', g€ % and h = f*g. Then we have
. . 2n . . .
4.1y |rle'n'(rfe')| = ‘2%/ f(re' M g'(re= %\ re~1% 46
0

SMl(ra f)Moo(r, g')

Since g € & implies M(r, g') <c(l1 -r)"', 0 <r < 1, it follows
from (4.1) that A€ & . So we have & C (H!, %).

To prove the converse we suppose that g is an analytic function
on the unit disc U and that f* g € %, whenever f € H!. Applying
the closed graph theorem in the standard way, we conclude

lg* flle <clflli, feH'.

If we substitute «,(z) = (1 —rz)"2, 0 <r < 1, for f in the last
inequality, we get

ID' g llz = llg *xrlle < cllicrlly = (1 =)~

Since
lgrlle = sgp(l — pH)Mu(rp, &"),
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it follows from Lemma 1,
My (rp, ") <c(l1—p*)7 (1 =r)7t, 0<p,r<l.

Hence
Mo(p?, g") < c(1 - p*)~2.
Now Theorem 5.5 [4] shows g € %F .

Using the estimate (4.1) we have just proved that h = fx g € &
whenever f € H' and g € % . Theorem 1 below shows that we can
prove more, i.e., 4 € BMOA..

Our proof is based on the Lemma HL1 (the case p = 1) and the
following result.

LEMMA 3. If h is an analytic function in the unit disc U, the fol-
lowing implication holds:

1
/ (1 = )MZ(r, K')dr < 0o = h € BMOA .
0

Proof of Theorem 1. Suppose that f € H! and g € & . Although
(4.1) does not work in this setting, a similar estimate for the second
derivative gives the desired result. Indeed,

‘ 1 [2= . .
(D2h(r%e) = |5 / D' f(rei®)D' g(re=") dg
0
<cMy(r, D' f)(1 =)t ie.
(1 - r)*MZ(r?, D*h) < cME(r, D'f)(1 7).

Now, by Lemma HLI1, we conclude that fol(l —rP¥3M2(r, D*h)dr <
+00.

We can use the Lemma HL to show that 4 satisfies the condition
of Lemma 3 and we further conclude that # € BMOA . So, we have
%# C (H', BMOA).

The converse follows from the fact (H', BMOA) c (H!, %) and
Proposition 2.

Proof of Lemma 3. Let h be an analytic function in the unit disc
and

_ 1EoN2(1 1o 2V(1 — 12N T2
Il = sup [ [ 10(2)P(1 = |2P)(1 = )it =Tzl dxdy.
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It is implicit in Lemma 3.2 [11], p. 238, that £~ € BMOA iff ||A|. <
+o00. If we use polar coordinates and the fact

2
(1/27:)/ 11— Tre®|2d6 = (1 — |arl))"!,
0
we find
1
Il < sup2a(1 = (2R) [ (1= )~ (1 = P)Moc(r, ') dr.
ieU 0

Now the desired conclusion follows from the simple estimate 1—|4|? <
1—|Ar|?.

COROLLARY 1. (H!, VMOA) = &, where by VMOA we denote
the space of analytic functions of Vanishing Mean Oscillation (see, for
example, [11]).

COROLLARY 2. (H', &) = &, where the little Bloch space %, is
the set of analytic functions f on U for which (1—)A|?)|f"(A)] — 0 as
A — 1.

Proof. Let f € H' and g € % . By Theorem 1,
(4.2) |F * gll« < cllFls, FeH',

where the constant ¢ does not depend on F. If we substitute F =
Sr—f in(4.2), weget | fxg —f*g|l« <c||fr—fll1. Since the term on
the right-hand side of the last inequality approaches 0 when r — 1
(see Theorem 2.6, [4]), it follows from Theorem 5.1, [11], p. 250, that
f*ge VMOA.

Let n,, ny, ... be alacunary sequence of integers in the sense that

Prs1/Me 2> 1.

Since g(z) = Yoo, 2™ € &, the following corollary follows from
Theorem 1.

CoROLLARY 3. If f(z) = Y. a,z" € H', then for every lacunary
sequence {n.},

o0
F(z)=) anz" € VMOA .

k=1
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Since VMOA c BMOA c H?, we get two corollaries from this
result:

(a) Paley’s theorem (see for example [4], p. 104).

(b) the interesting fact: If {n,} is lacunary sequence then a func-
tion F(z) =Y a, z" € VMOA iff F € H?,i.e. Yoo |a, |* < +o0.

If A is a sequence space, A? (the Abel dual) is defined to be
the set of sequence {4,} such that lim,,; Y o ,A,a,r" exists for all
{an} € 4.

Proof of Proposition 1. Suppose that 2< g < oo and p~1+g-1=1.
Since (H')* = BMOA and (HY9)* = H? (see, for example, [4], [11]),
it follows from Lemma 1.1, [1] that

(H', H%) c (H? , BMOA) C ((BMOA)#, HY).
Combining this relation with H! ¢ (BMOA)?, we have (H!, H?) =
(H? , BMOA). Now, Theorem HL completes the proof.

The best known case ¢ = 2 of Theorem HL can be rewritten in the
form:

THEOREM HL*. A4 sequence {l.} is a multiplier of H' into H?
(alias 1) iff

n
> lxA|? = O(n?).
k=1

As a corollary of this, Duren and Shields [6] (see also [16]) observe,
more generally, {4} is a multiplier of H! into /9 (2 < g < +o0) iff

(4.3) i [Kdie|? = O(n9).
k=1

Using a similar procedure as in the proof of Proposition 1, we can
prove

(4.4) (H', 19) = (I, BMOA)
where 1 <g<+o00, pl+g1=1.

PROPOSITION 3. (a) 4 sequence {A.} is a multiplier from 7 (1 <
p <2) to BMOA iff it satisfies

2n+l

(4.5) Z 4|7 = O(1),
k=2"

where p~' +q 1 =1.
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(b) (I', BMOA) = [*,
(c) Items (a) and (b) hold if we replace BMOA with VMOA. .

Proof. Part (a) follows from (4.4), the above-mentioned Duren-
Shields observation, and the fact that conditions (4.3) and (4.5) are
equivalent. To prove (b) we can combine the Duren-Shields result [6],
(H', [*°) = [, with (4.4).

A similar procedure as in the proof of Corollary 1 shows that (c) is
true.

After this paper was prepared for publication, Professor B. Koren-
blum found an interesting proof of the main part of Theorem 1, using
duality and Coifman’s atomic decomposition.
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