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SYMPLECTIC-WHITTAKER MODELS FOR Gl,

MicHAEL J. HEUMOS AND STEPHEN RALLIS

We consider the Klyachko models of admissible irreducible rep-
resentations of the group GL,(F) where F is a non-Archimedean
local field of characteristic 0. These are models which generalize the
usual Whittaker model by allowing the inducing subgroup a symplec-
tic component. We prove the uniqueness of the symplectic models and
the disjointness for unitary representations of the different models.
Moreover, for n < 4 we prove that all unitary irreducible represen-
tations admit a Klyachko model.

Introduction. Let F be a non-Archimedean local field of character-
istic zero. This paper studies the realization of irreducible, admissible
representation of Gl,(F) in certain induced representations general-
izing the Whittaker model. In contrast to generalizing by allowing
degenerate Whittaker characters or smaller unipotent groups arising
from some degenerate data (cf. [Mo-Wa]), we generalize the inducing
subgroup by allowing a symplectic component.

Our investigation is motivated by results of A. A. Klyachko [KI],
who exhibited a model, in the sense of I. M. Gel'fand, for Gl, over
a finite field.” He found a set of representations (which we will re-
fer to as models) which are disjoint, multiplicity free and exhaust the
set of irreducible representations. The representations he considers
form a family .4, ,, 0 < k <[5]. One extreme .4, o, is the Whit-
taker model, a representation induced off a character on the subgroup
of unipotent, upper triangular matrices. When »n is even, the other
extreme .#, ./ is induced off the trivial character of Sp,, the sym-
plectic group of 27 x 2n matrices. The other “mixed” models .4, ,
0 < k < %, are induced off characters of subgroups coming from
smaller unipotent and symplectic groups. Since the Whittaker model
for representations of p-adic Gl, is of considerable importance, e.g.
in the study of automorphic forms, it is natural to investigate the role
of the other models in the p-adic case.

The natural category to study in the local field setting is the category
of admissible representations. The Whittaker model .4,  is the only
model which has received attention. It was shown by I. M. Gel'fand
and D. A. Kazhdan ([Ge-Ka,1]) that the Whittaker model is unique,

247



248 MICHAEL J. HEUMOS AND STEPHEN RALLIS

meaning that for an irreducible representation n, Homg, (7, .4, )
has dimension at most one. ’

The main results of this paper are:

(1) Uniqueness of the symplectic model.

(2) Unitary disjointness of the set of models, i.e. a unitary repre-
sentation cannot embed in two different models.

The advent of unitary representations is natural in light of Gl3. In
that case there is an irreducible representation without a model but
the intriguing fact is that all irreducible unitary representations have
unique models. This prompts focusing our attention on the questions
of existence and uniqueness of models for unitary representations and
leads to the remaining results of the paper.

(3) The description of the category of admissible representations of
Gl; with respect to models. In particular it is shown that every irre-
ducible unitary representation admits a unique model and we describe
the (essentially) only representation which does not admit a model.

(4) The existence and uniqueness of models for irreducible, unitary
representations of Glg.

The reason for the symplectic group playing such a role is not clear;
however there are two properties it enjoys which are prominent in our
results and those in [KI]. The first is that Sp,, is the fixed point set of
an involution on Gl, , which we use in (1). The second is that there is
a bijection between the set of Sp, double cosets of Gly, and the set
of conjugacy classes of Gl, . Over the finite field with ¢ elements, this
bijection has been central to recent work of Bannai, Kawanaka and
Song ([Ba-Ka-So]), who prove that the character table of the Hecke
algebra of Sp, bi-invariant functions on Gl,, is “almost” obtained
from the character table of Gl, by the substitution ¢ to g2.

A word about the proofs. In the finite field case, no explicit de-
scriptions or structure of the irreducible representations is used. In
the p-adic case we depend heavily on the description of admissible
and unitary representations due to I. N. Bernstein and A. V. Zelevin-
skii ([Be-Ze,1], [Ze]) and M. Tadi¢ ([Ta,1]). Using these and the yoga
of Jacquet functors it is not difficult to inductively show that many
representations have models, but this method will not show that a
representation has a symplectic model. It is desirable to have a simple
inductive statement for the existence of symplectic models. One of
our goals is to determine to what extent this is possible. In the case of
Gls; we show that it is. There we consider a representation induced
from representations with symplectic models as part of a family of
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induced representations depending on a complex parameter s. On
these representations we define a functional by an integral and show
that it converges if the real part of s is sufficiently large. Then us-
ing the theory of Bernstein, developed for the analytic continuation
of intertwining operators, we continue the functional to the original
representation. This inductive statement in particular provides the
symplectic models for certain complementary series representations
of Gly. Other unitary representations arise as Langlands quotients
from square integrable data. For these to have symplectic models it
must be shown that the functional descends to the unique irreducible
quotient. The representations of Gls which require this attention are
special cases of a unitary Langlands quotient representation of Gl,,
which is fundamental in the description of the unitary dual. Knowl-
edge of the composition series of this induced representation is used
to show that these irreducible quotients have symplectic models in
general (Theorem 11.1). (H. Jacquet has recently obtained this result
by similar methods.) This is the technical heart of the paper; the case
of Gl illustrates the problems that will be encountered in the general
case.

We now briefly describe the organization of this paper. Section 1
sets notation and conventions and reviews general background. The
next two sections are devoted to proving the general results on unique-
ness of symplectic models and unitary disjointness of models. Section
4 presents some results on symplectic orbits in certain flag varieties.
The rest of the paper is devoted to specific groups Gl, is dispatched
in §5. In §6 we recall the classification of the unitary dual of Gl,, due
to Tadi¢, and explicate it in the cases of Gl; and Gl in §§7 and
10 respectively. Section 8 contains the proof that every irreducible,
unitary representation of Gl; has a unique model. Those admissible
representations of Gl; without models are described in §9. Section
11 shows that the unitary representations of Gls all have models.

We are grateful to various people for discussions which have proven
valuable in the production of this paper. In particular we are grateful
to M. Tadi¢ for explaining some of his work and to H. Jacquet for his
interest and receptivity.

1. Notation and terminology. General references for notation and
terminology are [Be-Ze,1] and [Be-Ze,2].

Throughout, F will denote a non-Archimedean local field of char-
acteristic zero, i.e. a p-adic field. Unless stated otherwise, GL,, will
denote GL,(F).
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The standard (upper triangular) parabolic subgroups of Gl, are in
one-to-one correspondence with partitions of »n: (ny, ..., n;), n; +
ot =n. Py on denotes the associated group and N,,l . its
unipotent radical.

Jn denotes the 2n x 2n matrix (_ ). We sometimes use J to

denote the associated symplectic form J (x,y) ='xJyy. The sym-
plectic group Sp,, preserves this form.

Let U, denote the group of upper triangular unipotent matrices in
Gl,;thus Uy = Ny 1,..,1. For 0 < k <[4],let Nj be the subgroup of
U, of matrices (u;;) where for i # j, u;; =0 unless i <n—-2k <j.
With U,_,, embedded in the upper left, Sp, in the lower right, let
My = (Up—2x X Spg) N -

v denotes the character g — |detg|. Jp denotes the modular
function of the group P. A character of Gl, is of the form g —
x(det g) for some character y of F*. We sometimes write ), to
indicate the group involved, but we will continue to write y, for the
restriction to subgroups of Gl, .

Induction is always normalized, with ind (resp. Ind) denoting com-
pact (resp. full) induction. Given representations a; of Gln‘ , L=

1,..., k, extend On, @ - ®0p to Py, . n so that it is trivial on
Gl,, .
Ny,,...n, . Denote Indp "™ 0, ®--- ® g, by gy X -+ X Op, .

To a character 6 of l N,,lkw,,,k and representation 7 of Gl,, we
have the Jacquet functor 7,  , ¢(7) which is the quotient of the
space of n, V, by the subspace spanned by {zn(n)v — 8(n)v|v €
Ve, h € Ny, ..n}. Itis naturally a Gly, x -+ x Glp, module. If
6 = 1, we delete it from the notation and may simply write (7)y if
there is no risk of confusion with regard to the subgroup N. 7 will
denote the normalized Jacquet functor (cf. [Be-Ze, 2)).

Let y be any nontrivial, complex, additive character of F . Define
the character y, of U, by w,(u;;) = w(ui2+---+u,—1,). Any char-
acter which is nontrivial on all the simple root groups in U, will be
called nondegenerate or said to be a Whittaker character. The diagonal
torus in Gl,, acts transitively on the set of Whittaker characters.

For k < [4], define the set of models for Gl, to be the representa-
tions

(1.1) ///,,,k=1nd,?): Vn®1®1.
When 7 is understood, we simply write .#;, . .4 is called the Whit-

taker model. The Whittaker models for any two Whittaker characters
are equivalent.
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If = is a representation, we denote by (z) (resp. L(x)) the unique
irreducible submodule (resp. quotient module) of 7, when it exists.

2. Uniqueness of symplectic models.

2.1. In this section we show that for an irreducible representation
7, dim HomGl“ (n, #,) < 1. The proof is a combination of the proof
of the uniqueness of the Whittaker model in the p-adic case ([Ge-
Ka,1]) and uniqueness of the symplectic model in the finite field case
(IK1D).

2.2. We collect here some results on polar decompositions. We are
indebted to Daniel Shapiro for the proofs of these results.

Let k be a field of characteristic different from 2, k its algebraic
closure and M (resp. M) denote the set of n x n matrices with
coefficients in k (resp. k). Similarly, let G = Gl,,(k), Sp = Sp,(k),
and G and Sp will be the k rational points of these groups. Let ¢
denote an involution on M , i.e. an anti-automorphism of order two.

LeMMA 2.2.1. For any A € G, there exists a polynomial f € k[t],
such that f(A)> = A.

Proof. If R is a commutative ring with unit, in which 2 is invertible,
it follows from the Taylor expansion of (1+z)!/2 that 1+p is a square
in R, for every nilpotent p € R. If b is a unit in R, let 7 be the
image of ¢ in R[t]/(t—b*)", n>1. Since 5=7— B is nilpotent in
this ring, writing 7 = 52(1 + (b)~%3) implies that 7 is a square.

Let m(t) be the minimal polynomial of A.

(2.2.1) m(t) = [] ¢t-a)".
1<i<s
Choose b; € k such that a; = b?. Then
(2.2.2) k[A1 = k[t]/(m(t)) =R, & --- ® Ry,
where R; = k[t]/(t — b?)™ . The conclusion follows easily O

PROPOSITION 2.2.2. Forany A€ G, there exist S, T € G such that
a(S)=S, o(T)=T"" and A=ST.

Proof. By the lemma, there exists an S € F such that S?
Ao(A). As S is a polynomial in Ao(A4), a(S) = S. Set T
S~14. Then o(T) = o(A)ag(A)a(S)"! = a(4)S~!, and Ta(T)
(S~1A)(a(A)S™ ) =S~1(S?)S~ 1 =1. |
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2.3. Let J =J,. For 4 €Gl,, set A7 = —-J'AJ, where A is the
transpose of 4.

ProPOSITION 2.3.1. Let k denote a local or global field of charac-
teristic zero. There exist Py, P, € Sp,,, such that A’/ = P AP;.

Proof. By Proposition 2.2.2, there exist S, T € Gl,,, such that
T/ =T-!', 87 =8 and 4 =ST. Then 47 = T-1§ = T-14T-!.
Since T € Sp,, if and only if T € Gl,,, and T/ = T~!, the proposi-
tion will follow if we can show there exists such a decomposition with
T € Gly, .

The set

(2'3'1) %(A)z{(P15P2)|AJ=P1AP2’ Plapzegn}:

is an algebraic subset of Sp, x Sp,. Given (P;, P,), (Q1, Q,) €
7(A), set R = Q;P['. As PiAP, = Q;4Q,, it follows that Q; =
A"'R"14P,, so that R € ASp,A~!. Define a left action of Sp, N
ASp,A~! on 7 (A) by R(P;, P,) = (RP;, A"'RAP,). 7(A) is a
left principal homogeneous space for this group.

ASp,A~! is the subgroup of Gl,, which leaves invariant the sym-
plectic form associated to the matrix J' =4J4~!. Sp,NASp,4~! is
thus the group preserving the forms J and J'; denoteitby Sp(J, J').

Since both forms are nondegenerate, an endomorphism ® is de-
fined by the condition that it satisfy J'(x,y) = J(®x,y). In the
terminology of [Kl], ® is a symmetric operator and Sp(J, J') is the
centralizer of ® in Sp(J). By Corollary 5.6 of [Kl], Sp(J, J') is
connected and there is an exact sequence

(2.3.2) 1> U—-Sp(J,J)—»S—1,

where U is a unipotent group and S is a product of symplectic groups.
(The statement in [KI1] is for a finite field, but it is noted in the proof
of Proposition 5.5 that the needed constructions are valid for any al-
gebraically closed field.) Because U is linear and k has characteristic
zero, U is connected.

From (2.3.2) we obtain the sequence in Galois cohomology

(2.3.3) H'(k,U)— H'(k,Sp(J,J")) — H'(k, S),

which is exact at the middle term (cf. [Sp], Proposition 2.2). Since U
is connected and unipotent, H'(k, U) = 0 ([Se], III, §2.1, Proposi-
tion 6). S is a product of symplectic groups which have trivial first
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cohomology ([Se], III, §1.2, Proposition 3), and thus H'(k,S) = 0
([Sp)), and 7°(A) has a rational point. O

2.4. In this section k will now be a non-Archimedian local field
of characteristic zero. Let Z = G x G and & = G x G and define
an action on the left (resp. right) of Sp x Sp (resp. G) on Z by
coordinate (resp. diagonal) multiplication on the left (resp. right). Let
FA(#) denote the space of functions on 2 which are locally constant,
constant on the orbits of Sp x Sp and compactly supported modulo
the action of Sp x Sp, i.e. for each f € .#, there exists a compact set
C c £ such that supp f C (Sp x Sp)C.

Define the involution ¢ on Z by a(g1, &) = ((& '), (&7")’).
Let .4 (G) denote the space of locally constant functions on G which
are constant on the orbits of Sp acting by left multiplication and
which are compactly supported modulo Sp. We now have a symplec-
tic version of Theorem 3 in [Ge-Ka,1].

THEOREM 2.4.1. Define the operator A on A (G) by (Af)(g) =
fig=hH"). If C(h, fo) is a G-invariant, bilinear form on A(G),
then C(fi, f,) = C(Afa, Af)).

Proof. The proof follows that of [Ge-Ka,1]. To use their Theorem
1’, we need only verify that the SpxSp x G orbits in 2 are permuted
by o and that the Sp x Sp xG orbits in 2 are fixed by o. The first
condition is obvious.

Writing (g1, £2) = (s1, 55" )(1, 528287 's1)(s7' g1) , we see that the
Sp x Sp xG orbits may be identified with the Sp double cosets in G .
We have

(2.4.1) (51818, 52828)
= (5597 (&Y (7D, syH (g7 (g7h),
= (2, sD(& N, (g7 Y™,

so that orbits are invariant. By Proposition 2.3.1, there exist s3 and
54 € Sp, such that

(24.2)  o(1,s85) =(s387"s4, 1) =(1, 57" gs5")(s387 's4),

so that the orbits are invariant by o . O

Let n be an irreducible, admissible representation of G on a space
V. Define the representation # on V by #(g) = n((g~!)’). By
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Theorem 2 in [Ge-Ka,1], 7 is equivalent to 7', the contragradient
of m.

By Frobenius reciprocity (cf. [Be-Ze,1], Theorem 2.28), n admits
an embedding in .#, if and only if it supports a nontrivial, Sp, in-
variant linear functional; the embedding is unique up to scalar if and
only if dimHomg, (7, 1) equals one.

THEOREM 2.4.2. Let m be an irreducible, admissible representation
of Gly,. Then dimHomg, (7, 1) < 1.

Proof. This a symplectic restatement of Theorem 4 and its corollary
in [{Ge-Ka,1]. In light of Theorem 2.4.3, their proof applies mutatis
mutandis. ]

3. Unitary disjointness of models. The main result of this section is
the following theorem.

THEOREM 3.1. Let n be an irreducible, unitary representation
of Gl,. Let s1, s, be distinct integers, 0 < 51,5, < [45]. Then
Homg, (7, .#;) is nonzero for at most one 1.

Proof. For simplicity denote % = 4 , M; = M; and y; = ys
(see §1). Assume there are nontrivial maps 7 — .#;, i =1, 2.

7 is equivalent to the Hermitian contragradient representation 7+ =
7' . By dualizing, obtain ./ — 7’ = 7. Let 1, = Indf)z” Wy ', For

fr€n, F e, the pairing

(3.1.1) {f, F}=  f(8)F(g)dg

M,\Gl,
determines a map 1; — .4, via f — {f,-}. Since 1, =71, (see §1),
we obtain a nontrivial map 1, — n ([Be-Ze, 1]); thus the composite

(3.1.2) 1) > T — M

is non trivial. By Frobenius reciprocity, this corresponds to an element
of Holi (12 5 l//l) .

Associated to 1, is a unique isomorphism class of equivariant /-
sheaves .# on M\ Gl, ([Be-Ze, 1], Proposition 2.23). The right
action of M; on M>\Gl, is constructive ([Be-Ze,1], Theorem A,
6.15) with locally closed orbits (ibid., Proposition 6.8(c)).

The restriction of .% to the orbit M,wAM,; is associated to the

: s M, w w _ -1
representation md(M,mw“‘Mzw) w3, where wi'(g) = w(wgw™),
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g € My nw~!'M,w . Frobenius reciprocity gives

.M
(3.1.3) Homyy, (ind ) o1y W35 1)

= HomM‘mw_lew)(t//i” >, ).

The groups M; and M, are associated to symplectic forms with
different ranks, as are M; and w~!'M,w. Thus there exists 4 €
M, nw~'Myw such that y¥(h) # wi(h); hence the right side of
(3.3) is zero (cf. [Kl], Proposition 1.3). Consequently there do not
exist quasi-invariant distributions on ¥ supported on a single orbit
of M, 1-

The proof of Theorem 6.9 in [Be-Ze,1] for invariant distributions
can be trivially modified to apply to quasi-invariant distributions, the
result being that if an /-group acts constructively on an /-sheaf #
such that no orbit supports a non-zero quasi-invariant distribution,
then there do not exist non-zero quasi-invariant distributions of % .
Therefore the composite (3.2) is zero and the theorem follows. O

3.2. Disjointness of symplectic and Whittaker models. In this sec-
tion we drop the assumption of unitarity.

PRrROPOSITION 3.2.1. Let n be an irreducible, admissible representa-
tion. If m has a Whittaker (resp. symplectic) model, then its contra-
gradient ©' likewise has a Whittaker (resp. symplectic) model.

Proof. Having a Whittaker model is equivalent to the existence of
a nontrivial, y,,-quasi-invariant distribution 7. The contragradi-
ent 7’ is equivalent to the representation obtained by composing 7
with the automorphism g — ‘g~ ([Ge-Ka,1], Theorem 2). This au-
tomorphism takes U,, to the opposite unipotent subgroup of lower
triangular matrices. The opposition element s, of the Weyl group
conjugates this back to U,,. Therefore u — sy’ u‘lsg I preserves Us,
and the representation g — 7m(so'g™'sy 1Y is equivalent to 7'. Thus
we have

(3.2.1) T(n(so'u"s5") ) = wan(so'u'sgHT(S)
= y5, (W T(f).
1//2‘"1 is a nondegenerate Whittaker; hence 7’ has a Whittaker model.

The same argument applied to g — —J,'g" /5, gives the sym-
plectic statement. a
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THEOREM 3.2.2. An irreducible, admissible representation cannot
have both a Whittaker model and a symplectic model.

Proof.. If we have 7 — Ind[G,lz" W, , WE obtain n’ — Indgi“ Van . AS

2n n
in §3.1, dualizing gives indS:”' va, — 1 (cf. [Ge-Ka, 1] §3). Thus
if 7 has a symplectic model, we obtain the composite indglz" Yo —

2n
Gl,,

Indspi 1.. o
4. Orbits. For applications in §11, we need descriptions of orbits

in certain flag varieties. We prove here some general results.

4.1. Sp, Orbits in Py,_ i\ Gly,. To compute these orbits it suf-
fices to consider the cases kK < n.

Let 25 denote the variety of k-planes in 2n-space. For X, X, €
2, let J', J" be the restrictions of J to X; and X, respectively.
It follows from Witt’s theorem that X; and X, are conjugate by a
symplectic endomorphism if and only if the radicals of J' and J”
have the same dimension. Thus 2% is the union of symplectic orbits

(4.1.1) 25 (r) ={X € Z;|dimRad J|y =r}.
25.(r) is nonempty if and only if k = r(2).
PROPOSITION 4.1.1. If k < 5 set
_(w O
w= (g w;)

where w; equals
0 0 1
(4.1.2) 0 1,9 O
1y 0 0

If k>4 set we = ("} u?) where w;, equals
k

0 0 1,4
(4.1.3) 0 Iy, 0 |.
I, O
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Let
1,
0 1, 0 \
0 0 0 1
1,_
yr = " klr
1,_,0 0 O
0 0 1,_,0
\ 1n—k
Then
(4'1-5) PZn—k,k\Gl2n/Spn = U PZn—k,kwkyr Spn .
r<k
r=k(2)

Proof. We may choose a representative for the orbit 27(r) which
is spanned by the set {f1, ..., f;, fre1s---» fi> €415 ..., €1}, Where
A= (k+r)/2 and {e,, ..., en, fi, ..., fn} is the standard symplectic
basis relative to J. A basis for the k-plane X, fixed by P, ; is
{fo—k+1>---5 Jut. The image of Xy under w, is the space spanned
by {fi,..., fx}. 7r then maps this set to {fi,..., fi,€s15---,
€}. O

4.1.1. We specialize now to the case kK = n and describe the stabi-
lizer of an orbit. This will be used in §11 in establishing the uniqueness
of symplectic functionals on certain reducible representations.

PROPOSITION 4.1.1.1. Let X, be the stabilizer of the Sp, orbit of
Py nyr. Then Z, = (Gl X Sp(y_y)/2 X SP(n—r)2) Uy, where Uy is unipo-
tent. In particular, for the n-plane X,, with basis {fi, ..., fin-r2,
€rils v €n-r)y2}> Glr XSP(n_ry2 X SP(n—r)2 IS realized as the ma-
trices of the form

g 0 00 0 O
04 0 0 B O
0 040 0 B
0 0 O ‘gt 0 0
0 C 0 0 D O
0o 0Co0o o0 D
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where g € Gl,, (£5) and (4 B)) arein Spy_,2, and U} is the
group of matrices of the form

I, X Yy Z

0 1, 'Z 0

0 O 1, 0 ’
0 0 -X 1,

(4.1.1.2)

where Y is symmetric.

Proof. X, preserves the radical of J restricted to X,; hence it is
contained in the symplectic parabolic subgroup P(s  ry, fixing this
isotropic subspace. The unipotent radical of P,  ry is precisely
U}, it clearly leaves X, invariant.

The Levi component of the parabolic is Gl, x Sp,,_, , realized as the
matrices of the form

g 0 0 O

0 a 0 b
(4.1.1.3) 00 gl 0]

0 ¢c 0 d
where g € Gl, and (‘g 3) € Sp,,_, . For such an element to fix X,, the
symplectic part must leave the span of {e,, ..., €u_r)/2, fre1s .-
fin-r);2} invariant. Since the symplectic form restricted to this space
is nondegenerate, the orthogonal complement is fixed. O

It is straightforward to compute the dimension of the stabilizers X, .
If n is further assumed to be even we have the

COROLLARY 4.1.1.2. Let n = 0(2). There is a single open Sp, orbit
in P, ,\ Gly, given by the double coset P, ,y,Sp,, where

(4.1.1.4) Yo =

o— OO0
OO O -
- O O O
O O - O

4.2. Sp,;y X Sp, s Orbits in Sp, [(Py,n N\ Sp,). Assume n is even
and set P, , = P, ,NSp,. Acting on the right P, , preserves the
span of {f},..., fu}. Thus we consider the variety P, ,\Sp, of
maximal isotropic subspaces.
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ProrosITION 4.2.1. There is a unique open Sp, /2 X SPp/2 orbit in
Sp,, /Py, given by (Spu/2 X Spus2)pJ Py . where

1 0 01
0110
(4.2.1) =100 1 0
0 001
Proof. Let (Vy, ( , )) denote an n-dimensional symplectic vector
space with standard ordered basis {e;, ..., €,2, fi, ..., fn2} asso-

ciated to J, ;. Set W =V, @V, and define a symplectic form on W
by

(4.2.2) (U1, v2), (W, vh)) = (v1, v}) — (2, ).

Let V," (resp. V¥, ) be the embedding of ¥, on the first (resp. second)
factor of W . Let e (resp. f7*) be the images of ¢; (resp. f;)in V.
With respect to the basis {e]", ..., e;{/z, Faees ,272, e st s €
fs-os Sy} the matrix of the formon W is (7 %).

The transformation from W to V,, defined by e/ — ¢; ft —
fis e = fojori and fT — ey, 1 <0 < n/2 is an isom-
etry. The images of '+ and V'~ are spanned by the images of
{el, cees €2, f], ey f;,/z} and {e,,/2+1, oo s €n, f;z/2+l, cee s f;l}
respectively.

According to Proposition 2.1 in [PS-Ra], the only invariant of an
SP/2 X Sp,/; orbit in P, ,\Sp, is the dimension of the intersection
of a representative n-plane with VV+ or V'~ . Thus there is one open
orbit which has a representative intersecting ¥+ and 7~ onlyin O.
A simple example of such a maximal isotropic subspace is given by
the span of {e; + fn/2)+i}. This space is the image of the span of

{fi,..., fu} by the matrix
00 -1 0
00 0 -1 1
(4.2.3) L0 0 11=7 =1,
01 1 0
Thus the open orbit in P, ,\Sp, is P,’,,,,J‘lp—‘(Sp,,/z X Sp,,2). In-
verting this gives the theorem. O

S. Gl;. In this case there are two models, the Whittaker model and
the pure symplectic (Sl;) model.

In the notation of [Ze] the admissible representations of Gl, are
of two types: supercuspidal; (a; X a;), where «; and «, are charac-
ters of k*. In general, supercuspidal representations have Whittaker
models ([Ge-Ka,2]). The second type is irreducible if and only if



260 MICHAEL J. HEUMOS AND STEPHEN RALLIS

a; # apv*!l. Whittaker models satisfy a hereditary property which
says that the representation parabolically induced off representations
with Whittaker models themselves have Whittaker models (cf. [Ro]
Theorem 2, for the precise statement). Thus in the case a; # apv®!,
these representations have Whittaker models.

The remaining cases are (o x av®!). These representations are the
twists of the identity representation and Steinberg representation St.
St is square integrable (mod center) and hence has a Whittaker model
([Ze] Example 9.3, Theorems 9.3, 9.7). The identity clearly has the

symplectic model.

6. The unitary dual of Gl,,. We now recall the classification of the
irreducible, unitary representations of Gl, due to M. Tadi¢ ([Ta,1]).

Let Dy(n) denote the set isomorphism classes of irreducible rep-
resentation of Gl, which are square integrable modulo center and
Dy =U,>oDo(n). Let D(n) be the set of representations of the form
v®§, where o is real and & € Dg; D = (J,5oD(n), M(D) is the
collection of all finite (unordered) multisets on D.

Given a = (d, ..., dn) € M(D), 6; = v*d}, o} € Dy, we may
assume that ay; > --- > a,. The induced representation d; X --- X d,
has a unique irreducible quotient module, L(a).

Given an irreducible representation o, let o+ denote its Hermitian
(complex conjugate) contragradient. Set Il(c, a) = v®c x v %,
for o real. For a positive integer n and € Dy, set u(d, n) =
L(w?d,v?71d,...,v7Pd), where p = (n—1)/2. Thus if J is a
representation of Gl,,, u(d, n) is a representation of Gl,,. (We
sometimes write #(dy,, 1) .)

THEOREM 6.1 (Tadié). Let B = {u(é, n), II(u(d, n), a)|d € Dy,
0<a<i}.
(i)Ifo1,...,0, € B, then g, x---xa, is irreducible and unitary.
(ii) If & is an irreducible unitarizable representation, then there ex-
ist Ty,...,Ts € B, unique up to permutation, such that © =
Ty X -+ X Tg.

7. The unitary dual of Gl;. In this section we explicate Theorem
6.1 in the case of Gl;3. Denote by B, the set B of Theorem 6.1 for
Gl, , i.e. the set of representations of Gl,,, m < n, contained in B.
Let B) denote the set of elements of B, which are representations
of Gl,. Bj is the disjoint union of By = B}, B} and Bj.

For Gl,, B) is composed of:

(1) The supercuspidal representations and the Steinberg represen-
tation St. These are of the form u(d;, 1).
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(i1) The unitary characters. These are of the form
L(ul/zél Xl/_l/zél), 0, € By
([Ze], §89.1 and 3.2).
(iii) The complementary series I1(d,, a), J, € B;, a € (0, %).
The rest of B, comes from B, viz.
(IV) 51 ><52, 51,52€B1.
B is the union of B, and B, which contains:
(i") The square integrable representations J3 = u(ds, 1).
(ii”) The unitary characteris u(d;, 3) = L(vd; x §; x v=16;), d; €
B.
The representations arising from B; and Bj are:
(iii") x1 %02, x1 € By, 6 € Dy(2).
(iv))  x1 X x2, x; a unitary character of Gl;.
(V') XV xvT, X1, X2€B, 0<a<i.
The remaining unitary representations of Gls arise from Bj:

(vi') X1 X X2 X3, X15 X2> X3 € By.

8. Models for Gl;. For Gl; there are only two models, the Whit-
taker model .#, and the mixed model .Z; . The main result of this
section is the following.

THEOREM 8.1. Let n be an irreducible unitary representation of
Gl;. Then m can be uniquely embedded as a submodule of #, or
M

Proof. By Theorem 3.1, n cannot be realized in both models. Since
the Whittaker model is unique, we need to show that every represen-
tation has a model and that the mixed model is unique. We do this
by examining the catalog of representations compiled in the previous
section, showing that they all have models and then examining those
with mixed models to establish uniqueness in those cases.

The simplest cases to deal with are those with Whittaker models.
We need two facts. The first is the hereditary property of Whittaker
models quoted in §5. The other is that square integrable representa-
tions have Whittaker models, since in the terminology of [Ze] they
are transposes of segments ([Ze], Theorem 9.3). Thus case (i), (iii'),
(v') and (vi') all have Whittaker models.

Case (ii') is the unitary character y3. Frobenius reciprocity gives
Homg, (x3, #) = Homg (1, 1), thus the existence and uniqueness

in this case. The remaining case (iv') is x| X x; where y; is a unitary
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character of Gl;. Inducing in stages, we have

(8.1) A1 = Indy" [Indig 2 1] @ 1.

Two guises of Frobenius reciprocity ([Be-Ze,2]), Proposition 1.9(b);
[Be-Ze,2] Theorem 2.28) imply

Gl
(8.2) HomGlB(IndPll X1® 22, Ind1><351 XN, D)

. Gl, x Gl,
=H0mGllxGlz(rl,Z(Indmel ® X2)» Indlxsf 1),

= Homg, (1 2(Indp" 11 ® 2)ls1, > 1)

According to Theorem 1.2 ([Ze]), the Gl; x Gl module

(8.3) A 2(Indy> 21 ® 22)

has a filtration of length two with quotient module (closed orbit) y; ®
x> and submodule (open orbit) v=1/2y, ® Ind ‘(0 ® v12y,). The
last representation cannot support an Sl, 1nvar1ant functional since
the second factor has a Whittaker model. Restricted to Sl,, the first
representation is the identity, it has a unique Sl, invariant functional
and thus the quotient of 7 ,2(Indgl37 X1®x>) supports this functional.

Hence (8.2) is one dimensional and yx; x x, is uniquely embedded in
M . ]

9. Representations of Gl; without models. In this section we de-
termine the admissible, irreducible representations of Gl; which do
not embed in either .#, or .#; . It turns out that these are essentially
the non-unitarizable representations, i.e. what remains after discard-
ing the representations arising from twisting the inducing data in the
set of representations that give the unitary dual.

9.1. Consider the representation I = Ind L 12 @ =1, In the

notation of [Ze], I = (I xv) xv~". By Proposmon 2 1 and Corollary
2.3 in [Ze], I is multiplicity free, asis J = v~ x (1l xv), and
they have the same composition factors. By transitivity of induction,
J embeds in v~! x 1 x v. Both of these have unique irreducible
submodules (J) and (v~!' x | x v), which are equal. (J) = 1, the
trivial representation ([Ze], Proposition 1.10, example 3.2). Thus we
have an exact sequence

(9.1.1) 0—-(I)—-I1—-1-0.

THEOREM 9.1.1. The representation (I) has neither a Whittaker
model nor a mixed model.
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Proof. Consider the case of the mixed model. By Frobenius reci-
procity
(9.1.2) Homg, ((I), #1) = Homxs1)n, ,({1), 1),
= Homg, (r; 2({I)lsy,, 1)

By exactness of r; 2, ry,2(I)/r1 2({I))=1.

We describe r; »(I) in detail. There are two orbits of P; ; on
P, |\ Gls, viz. the closed orbit which has stabilizer P; ; ;, and the
orbit P, jw, where

00 1
(9.1.3) w=|010]}.
100

The stabilizer of P, ;w is Gl; xGl,. Orbital analysis ([Ca], 3.4)
implies that I has a P; ; submodule equivalent to

: . P _
(9.1.4) Ry =indg’ g v @v'?,
and corresponding P; > quotient module

(9.1.5) Ry=ind)? vev'2eu 32

Thus we have the exact sequence of P; ; modules
(9.1.6) 0—-R —-I—-R,—0,
and the exact sequence of Gl; x Gl, modules
(9.1.7) 0 — r1,2(Ry) — ry,2(I) = 11 2(R2) — 0.

The center of Gl; x Gl actson r; »(R;) and r; 2(R;) by the char-
acters

s 00 5]
(9.1.8) 0 ¢ 0|—1,5,
00 ¢ I

respectively. Thus
(9.1.9) ri,2(I) = ry 2(Ry) © 1y 2(R2).

Let f € R;. From the relation
s x y 1 5!
0 _
= |s|7?| det g| f

0 0

X N
(9.1.10) f
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we may, via the restriction to Nj ;, identify R; with the space of
Schwartz functions on F?. The action of N, .2 becomes

1 u v
(9.1.11) ((0 1 O)f) (x,»)=f(x+u,y+v).
0 01

Write f = > 7_,cixi, where ¢; € C and y; is the characteristic
function of the ball of some small radius r, entered at (u;, v;). Let
o be the characteristic function of the ball of radius r centered at
(0, 0). Then

lui (o
(9.1.12) xi={0 1 0]z,
0 0 1

which equals xp in r; 2(R;). Thus f=cyo,and r; »(R,) is the one
dimensional representation 1 ® 1. Restricted to Sl,, it is trivial.
Since the center of Gl; x Gl, acts on r; 2(R;) by a nontrivial char-
acter, the trivial representation does not occur there. Thus r; »({I))
will have a nonzero Sl invariant functional if and only if r; »(Ry)
has one.
Nj ; acts trivially on R;, hence R; =r; »(R;), and restriction to
G11 X Glz gives
(9.1.13) r12(Ry) = indgy X% v @2 @y
1 1,1

. .Gl _
=r®ind,*’ v 2gy=32,
1,1,

Since

(9.1.14) (indglzl v @y )5 = indf,ll,zl vev!,
we have

(9.1.15) HomSIZ(indgi: zglz veriteu3 1)

i

= Homyg, (indf‘,l,2 vev 1)
2 1.1
=HomPlfl(1/5®1, 1),

which is clearly zero. Thus (I) has no mixed model.
Now consider the Whittaker model. Note that (/) will have a
Whittaker model if and only if ry 1,1,y ({I)})) # 0. By exactness of

i1, 1,
(9.1.16) 0— 7,1, 150,({) = 1,1y,
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hence to show that (I) does not have a Whittaker model, it suffices
to show that 71,1, 1;4,(1) =0.

Consider Uz acting on P, |\ Gls3. There is the orbit of P, ; with
stabilizer Uz, and the orbits P, jw; and P, jw, where

1 00 0 01
(9.1.17) wy=|0 01 and w,=[0 1 0].
010 1 00

The stabilizers Pwl and sz of these orbits are the matrices of the
form

1 % = 1 00
(9.1.18) 010 and 01 |,
0 01 0 01

respectively. We have a ﬁltratlon of I by Us; 1nvar1ant subspaces
I>F DF, where F, = 1nd , Fi/F, =ind, v l,and I/Fy =1.

Obviously there are no Uj; morphlsms between 1 and y;. Since
w3 1is nontrivial on the inducing subgroups, Homy, (F,, v3) and
Homy, (F\/F,, w3) are both zero. Thus "1,1,1;:,/3(1) =0

9.2. The classification of irreducible, admissible representations of
Gl,, is given by Theorem 6.1 in [Ze]. Using the previous methods and
the injectivity of the Whittaker map ([Ja-Sh]), it can be shown that,
modulo twisting the inducing data by characters the counterexample
presented is unique.

9.3. We compare the p-adic and finite field situations with respect
to the counterexample. The representation 7 = 1 x v x v~! is multi-
plicity free and has length four ([Ze], Corollary 2.3). The finite field

analogue of T is I = Ind L 1. Thereisa bijective correspondence

between the irreducible representatlons that appear in I, and the ir-
reducible representation of the group algebra CSj, w1th the degree
of the latter giving the corresponding multiplicity (cf. [Car], Theorem
10.1.2). S5 has two distinct characters and a two dimensional repre-
sentation. Thus I, has three irreducible constituents one appearing
with multiplicity two.

10. The unitary dual of Gl;. We now enumerate the set of irre-
ducible unitary representations of Gl,. In the notation introduced in
8§86 and 8, the basic set of representations is By = B, U B3. In the
following, the d,’s will be in Dy(n), all a’s are in the interval (0, 1)
and the y,’s will be unitary characters of Gl, (see §1 for conven-
tions).
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B}, consists of the following:

(1) u(d4, 1) = d4, the square integrable representations of Gl .
(11) u(éz, 2) = L(Vl/zaz X V_1/252) .
(iii) u(d;, 4), the representations of the form

L3 x v P2y xv= Y2y xv=32y)).

These representations are all characters ([Ze]).

The complementary series induced off P, ;:

(iv-1) v%9y x v, .

(1v-2) v X v=%)s.

The representations induced off the parabolic subgroup P, 3 are:

(V-l) X1 X 53 .

(v-2) 21 %X x3.

The representations induced off the parabolic subgroup P; ; , are:

(vi-1) x| x x{ x d,.

(vi-2) X} X A} X 22

(vi-3) 7 X vy X v~ .

(vi-4) vex1 xv=x X X2

The representations induced off the Borel subgroup P | ;,; are:

(vii-1) ¢y x x{ x vy xvox{.

(vii-2) < xf < x{" < x{".

(vii-3) v®x] x v x vy x v xf.

The remaining representations are induced off P, ,:

(viii-1) 65 x 95 .

(Viii-z) 52 X X2.

(viii-3) x5 x x5 -

11. Models for unitary representations of Gl;. In this section we
consider the unitary representations of Gls with respect to the ques-
tions of existence and uniqueness of models. Besides the Whittaker
model, there is a mixed model and a symplectic model. These cases
lead to the technical heart of our investigation where we confront some
of the significant problems which are encountered in proving that an
irreducible unitary representation has a unique symplectic model. One
of our goals is to determine to what extent a simple inductive state-
ment, analogous to the hereditary property of Whittaker models, holds
for symplectic models.

We prove the following general results.

THEOREM 11.1. Let & be an (arbitrary) irreducible admissible rep-
resentation of Gl, .
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(a) The representation v'/*§ x v=12§ admits a nontrivial Sp,, in-
variant functional.

(b) If 6 is further assumed to be square integrable, then the functional
is supported on the unique irreducible quotient L(v1/26 x v=1/2§).

LEMMA 11.2. Let my and m, be irreducible admissible representa-
tions of Gl,,. The representation

(11.1.1) IndS™ 7, ® 71, ® 63

has a filtration by Sp,, invariant subspaces with associated subquotient
representations

(11.1.2) X,(s) = ind;f’"(m M) ® 5§:r(r—n+1)/2 ’

where X, is the group described in Proposition 4.1.1.1, and the super-
script v, indicates composition with conjugation by y,.

CoROLLARY 11.3. Except for a finite set of s the representations
(11.1.1) have at most one nontrivial Sp, invariant functional.

The remaining results pertain to Gls. In this case, a functional is
explicitly constructed on the representations of the corollary for Res
sufficiently large, where n; and 7, are assumed to have symplectic
functionals. The corollary then allows us to apply the method of Bern-
stein to analytically continue the functional to the cases of interest. We
obtain the following.

ProrosITION 11.4. If my and m, are irreducible representations of
Gl, with symplectic invariant functionals, then for Res >> 0, there

exists a unique nontrivial Sp, invariant functional on Ind L T®M®
53 given by a convergent integral. Moreover this functtonal may be

analytzcally continued to the entire complex plane as a rational function
in q75.

Along the way, we examine the catalog of unitary representations of
Gl , determining first which of them have Whittaker or mixed models.
From the results stated above our final result easily follows.

THEOREM 11.5. If & is an irreducible unitary representation of Gly,
then m can be realized in a unique way as a submodule of exactly one
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of the following representations:. the Whittaker #, the mixed model
M, or the symplectic model #, .

11.1. Simple cases for Gly. The previously observed facts about
square integrable representations and the hereditary property of the
Whittaker model allow us to conclude that cases (i), (iv-1), (v-1),
(vi-1), (vi-3), (vii-1), (vii-2), (vii-3) and (viii-1) all have Whittaker
models.

Case (iii), the unitary characters, obviously have symplectic models.

By Theorem 2.4.1, all these models are unique.

11.2. Representations of Gly with the mixed model. There are four
cases which have mixed models: (v-2), (vi-2), (vi-4) and (viii-2).

11.2.1. Case (v-2). Noting that .#, may be written

(11211) A Ind 4I dglzxélGl W2®1,

we have

al, al,
(11.2.1.2) HomGl“(IndPL3 X1® X3, IndU2><Slz N, V2 ® 1®1)
" Gl Gl Gl
= Homgy, x g1, (72,2(Indp* 21®X3), (Indy;* y2) @ (Indg; *1)).

Proposition 1.5 ([Ze]) gives
(11.2.1.3) Ay 200n®@ ) =019 2(3) =1 @v 3@ vy
The Gl, x Gl, representation
(11.2.1.4) (Ind L v Ryiov 12y @uii2y;

corresponds to the closed Pz,z orbit of P; 3\ Gly and hence gives a
quotient module of the orbit filtration of fz,z(Indg’l“3 X1 Q® x3) ([Ze],

Theorem 1.2).
The submodule of the representation is computed similarly. First

(11.2.1.5) Pl @) =xnev ?pevy;.
Conjugating by the coset representative

0100

0010
(11.2.1.6) 1000l

0 001
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of the open P, ; orbitin P 3\ Gly to get v~ 1/2x3@ x1 ®v!/2x3, then
inducing we obtain the submodule

(11.2.1.7) v 12y @ (Indy? v=12x, @ v3/2y3).
1,1
Clearly there are no nontrivial morphisms from this representation to

(11.2.1.8) (Indp)" y2) ® andg‘z 1),

On the other hand Ind L v ~1/2y, ® v3/2y; has a unique Whittaker
model. Whence the umqueness of the mixed model for yx; x x3.
11.2.2. Cases (vi-2), (vi-4), (viii-1). The remaining representations
are all induced off Pz » and are irreducible. For a representation of
the form 7 = Ind L T ® my, F2,2(m) has a filtration of Gl x Gl,

invariant subspaces O =19 C Ty C Ty C 73 = 7, such that 73/7; is
isomorphic to F; = m; ® np, T/T; is isomorphic to Fy =m@m
and 7, is isomorphic to

(11.2.2.1) Fy, =Indp" e wslfy 1 (m) @ 1 (1)),
where
0010 1000
0001 0010
(11222) w) = 1000}l Wy = 0100
0100 0001

Case (v-4) is of the form x| x x{ x x2. x} x x{ is an irreducible
representation of Gl, with Whittaker model; x, has an Sl, model.
Hence

(11.2.2.3)
dim Homay, x a1, (X} X %) ® 12, (Indy” ¥2) ® (Indg* 1)) = 1.
Also
(11.22.4) Homay,xc, (X2 ® (x; x x{), (Ind* ) @ (Indg;” 1)) = 0.
Fioa(xy x xi) is glued from x} ® x{ and x{ ® xj. 71 ,1(x2) =
v=12y, @ v'/2x, . Hence F,, has composition factors
(11.2.2.5) (Indp* 2; @ v™"225) ® (Indp* 2{ @ v'2p2),
and |
(11.2.2.6) (IndP Hev e (Indgllzl X @2y,
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Neither of these representations admits nontrivial homomorphisms
into (11.2.1.7). Thus x| x x{ x x2 has a unique mixed model.

The remaining cases are of the form J, x y,. The argument is
similar to the previous cases. The quotient of 7 5(J; x x2) will be
0> ® x2, which has a unique map to (11.2.1.7). Thus it remains to
show that the other filtration factors of 7 ,(Jdy x x2) have no such
morphisms. By disjointness of models, F,, = x> ® d, has no such
map. To describe Fy,_ , it is necessary to specify J, .

As in the previous case Fy, is built from 7 {(62)®F; 1(X2) s0 J; is
either supercuspidal, the complementary series vy, xv~%yx; or St, the
Steinberg representation. If J is supercuspidal, 7 ;(d,) = 0. For the
complementary series, 7 1(v®x; xv~%xy) is glued from vy, Qv =y,
and vy, @ voyx;. i 1(x2) =v 12 ®@v'/2x,. Thus F, is glued
from (voy; x v=12)) @ (g1 x v!/2x5) and (vox x v12x;) ®
(v®x; xv1/2y,) . Since the characters are the only Gl, representations
with Sl models, we see that in each case the second tensor factor has
no such model, since the central characters of these representations
are v'/2%%(x; ® x,), with 0 < a < %, which are not unitary.

For &, = St, we have the exact sequence

(11.2.2.7) 0-1—-v12xp/2 58t—0.

7y .1 1s an exact functor; hence we get the exact sequence of Gl; x Gl,
representations

(11.2.2.8) 0—v2@u'2 5 (12 xv1/2) = | (St) = 0.

As Fy 1(St) = v1/2@u~1/2 ([Ze], Theorem 1.2), Fy = (v!/2xv=1/2y;)
®(v~12xv1/2y,). If x, is nontrivial, the second factor is irreducible
and has a Whittaker model. If yx, is trivial, v=1/2 x v1/2 is reducible
and supports no Sl, invariant functional, for if it did, it would have
an irreducible unitary character as a quotient but St is the unique
irreducible quotient.

11.3. Unitary representations and symplectic models. We investi-
gate symplectic models for certain representations of Gl,, . This will
include giving the proofs of the general results stated at the beginning
of §11 and finishing the proof of Theorem 11.5, by showing that the
remaining three cases for Gl; have symplectic models.

11.3.1. Proof of Theorem 11.1; case (ii). Case (ii) is u(d, 2) =
L(v1/2§ x v=1/2§), where ¢ is square integrable. That this has a sym-
plectic functional is precisely Theorem 11.1(b). The proof naturally
divides into two parts.
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11.3.1.1. Consider in general the Gl,, representation
(11.3.1.1.1) u(d,2)=Lw'?6 x v=12¢),

where 6 € Dy(n). Since J has a Whittaker model, the full induced
representation 7 = v1/2§ x v=1/2§ does so too.

Suppose that ¢ is square integrable. Then, in the terminology
and notation of Zelevinsky ([Ze]), d = (A)’, where A is a segment

{o,vo,...,vic}, with ¢ supercuspidal, and ¢ is the unique irre-
ducible quotient of
(11.3.1.1.2) oxvex---xvke

(ibid., §9.1, Theorem 9.3). According to Lemma 3.2 in [Ta,2], in the
Grothendieck ring of admissible representations of finite length,

(11.3.1.1.3) n:u(d) 2)+(<Au>l>< (Aﬂ)t)
where
(113.1.14)  Aq=vPANs"'PA, A, =v'PAUL2A

In particular, 7 has length two. The submodule is an irreducible tem-
pered representation, hence has a Whittaker model. Since a represen-
tation cannot have both a symplectic and Whittaker model (Theorem
3.2.2), we conclude that if 7 has a map into the symplectic model, it
must be supported on the irreducible quotient u(d, 2).

We remark that the composition factors appearing in the induced
representation which gives u(d, n) (see §6) are now known. In the
notation of [Ta,3], u(d, n) = L(a), the unique irreducible quotient
of a representation A(a), where a is a multiset of segments. Then a
necessary and sufficient condition for L(b) to be a subquotient of A(a)
is that b < a in the Zelevinsky partial ordering ([Ze, §7]), so that the
composition factors appearing in the Langlands, i.e. square integrable
setting are exactly those which appear in the Zelevinsky, i.e. cuspidal
setting. A proof of this result will be appearing in a forthcoming paper
of Tadic¢.

11.3.1.2. We now show that u(J, 2) has a symplectic functional by
constructing one on v!/2§ x v=1/2§ .
Consider the representation

(11.3.1.2.1) I, =Ind, (1 ®7) © 3} |

where s 1s a complex parameter. For f; € I, and

%
(11.3.1.2.2) pz(gtg4>€ﬂm,
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we have

(113.1.2.3) f(p) =33 " (p)(n(g) @ n('g™")£(1)

= | det g (n(g) ® 7'(2)) (1)
= o0t (pY(n(g) @ 7' (8)) £(1).

n.,n

Thus restricting f; to Sp,, gives an element of
(11.3.1.2.4) Indy" (n®7)®85 ,
where s’ = (2ns+n)/(n+1)— 5
Let /: m ® n' — C be the standard pairing. Then /o f; € [}, =

Spn S’
Ind, 3%

n.n n.n

. | is surjective and induction is an exact functor. Thus

when s’ = 1, integration over P, ,\Sp, with respect to the quasi-
invariant measure is a nontrivial, Sp, invariant functional on I{.
This value of s’ corresponds to s = 1/2n.

The restriction map 1,5, — I P corresponds to a map between the
finite sections of sheaves, induced from the restriction from P, ,\ Glp,
to the image of P, ,\Sp, in P, ,\Gl,,, which is closed. This is also
surjective ([Be-Ze,2], Propositions 1.8, 1.16, Proposition 2.23). The
composite Iy, — I n—C is thus Sp, invariant and nontrivial.
Since

(11.3.1.2.5) Ion = Indp*(n ® ) ® 61/
= Indp*(v'2n @ v=1/27),

we have shown that v'/2z x v=1/2z has an Sp,, invariant functional.

11.3.2. Proofs of Lemma 11.2 and Corollary 11.3. The Sp, orbits
of P, ,\Gl,, are described in Proposition 4.1.1. Orbital analysis (cf.
[Ca]) then gives a filtration of (11.1.2) of the form stated in Lemma
11.2.

The corollary will follow by showing that, except for a finite number
of values of s, only one of the representation X,(s) carries a unique
symplectic functional.

Conjugating the matrix (4.1.1.1) by 7, gives

g 00 0 00
04 B 0 0 0
0oC D 0 0 0
(11.3.2.1) 0 0 0 tel 0 0
00 0 0 A4 B
00 0 0 COD
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Conjugating the unipotent element (4.1.1.2) by y, gives

1 X, 2, Y X Z
01 0 Z, 0 0
0 0 1 -'X, 0 0
(11.3.2.2) 00 0 1 0 ol
00 0 Z 1 0
00 0 -'Xx; 0 1

where X = (X1 X3), Z = (Z,Z;) and Y is symmetric. Mindful of the
normalization in the induction, the inducing representation applied to
an element of X, is

1 X2 Z, g 0 0

(o 1 0)(0 2 BH

0 0 1 0o C" D
1 00 g’ o

® 7y [(’Zl 1 0) (0 A B)}|detg|s+”/2.
~x, 01)J\o c D

The contragradient of X,(s) is

(11.32.3)

(11.3.2.4) Indi‘r’"[(m ®my)"] ®d; I,
Let U/(0) be the elements of the form (11.3.2.2) with ¥ = 0. Then
(11.3.2.5) Homyg, (X;(s), 1) = Homg, (1, X/(s)).

which in turn equals

(11.3.2.6)
Hom , ((77." ® 7 )| det g‘—s+n/2+(2n—r+l) 1)
(Gl, X Sp(,_, 2 X SP(, ) U, ()AL 2 > 1)

where the groups act according to (11.3.2.3). Applying Jacquet func-
tors, (11.3.2.6) equals

(11.3.2.7)

_ 2 _
Homgy xsp, ,,xsp,_,, (TN ®(T2)5,)) ®| det| stnf2+2n-rtl) 1),

where N(r) is the group of unipotent matrices appearing in (11.3.2.3)
and N(r) is the opposite unipotent subgroup. Gl, acts in (n’z)ﬁ(r)
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via transpose inverse. Since (n’z)mr) = ((m2)ne) ([Cas], Corollary
4.2.5), we find Homg, (X,(s), 1) equal to

(11.3.2.8)
Homg xsp,_, , xS, ,(F1)ne ®(72) ni ) @ det | SH/2+CGn=rtl) ),

If r # 0, there is only one value of s for which this groups can be
nonzero. If r =0, we have

(11.3.2.9) Homgp (X:(s), 1) = Homspn/2 x spm(nl ®m,, 1).

This space has dimension one precisely when 7n; and 7, both admit
symplectic models.

11.3.3. Proofs of Proposition 11.4 and Theorem 11.5; cases (iv-2),
(viii-3). Let m#; and =, be irreducible with Sl, invariant functionals
/[y and [/, . Consider the representation I; = Indgzl“2 L Qm ®5;§,2 L Set
[=1,®l,, and denote P, ; by P. ' '

By Corollary 4.1.1.2 the open Sp, orbit in P\ Gly is given by the
coset Py Gl; where

0
(11.3.3.1) (1)

=

l
o e e e
-0 0o
= )

0

For fy eI, lo fs(yg) =10 fs(y) for g € Sl; xSl,, embedded in Sp,
so as to be y conjugate to the diagonal embedding in Gl;. Consider
the integral

(11.3.3.2) A(f) =/ Lo fi(ym)dm,
(Sl2 X Slz)\ sz

where dm is a right invariant measure on (Sl x SI;)\ Sp,. If this
converges, it will provide an Sp, invariant functional on I;. Let-
ting P’ = PN Sp,, by Proposition 4.2.1, the open dense P’ orbit in
(Sl x S1)\ Sp, is (Sl x Sl)pJP'. Thus

(11.3.3.3) A(S) =/ Lo fi(ym)dm,
(Sl, x SL,)pJ P’
We may view the domain of integration as the P’ orbit Py \P' where
b 0
’ g _[a b
(11.3.3.4) Py = 0 c Ig—(c d)eSb ,

0 tg—l
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and thus

(11.3.3.5) Ak = [, 1o heIr)dr,
where dp is a right invariant mea;ure on Py \P'. As
(11.3.3.6) P’={<g ,§%1>|geGlz,ZeSym2},

Py\Px = S\ Gl xSym,. For a right invariant measure dg on
SI,\ Gl, and an additive invariant measure dZ on Sym,, dp =
|gl*dZdg. If h=(25)eSh, ge€Gl, and Z € Sym,,

h b 0 7
(11.3.3.7) 0 c (g tg_l>
0 ! 0 ‘s
:(hg 0 ) 1 Z+hg(50)ts!
0 “thg) ') \o0 1 '
Then by the invariance of dZ ,

(11.3.3.8)

0 1 Z
A(f) = lof; J(g _)( )) 3dgdZ.
(%) /Slz\Glzxsymz of(yp 0 g~ ) o 1))l8lds

g — 'gJg maps Sl,\Gl, bijectively onto the nonzero 2 x 2 skew
symmetric matrices. Identified with F*, the invariant measure on
this Gl, orbit is d*A = dA/|A|, where dA is an additive measure.
Thus

(11.3.3.9) A(fs)=/ Lo fs (prD(A) <(1, f)) APd*adz,
F*xSym,
where
A
(11.3.3.10) D(4) = 1 4!
1
Set £ =ypJ. Then
(11.3.3.11) o =ED(A) (é f)é‘l
1+yA xA xA 1—A+yi
_ -z 1—y -y -z
B z  Al=l+y y+a! z ’

—Ay —AX —Ax A—Ay
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where Z = (3, %) . Define 4 by

1
(11.3.3.12) w = h

Thus
(11.33.13)  fi(w) = (n, (1 0 >®n2 (1 0 ))/;(hé).

0 -2 0 -2
By right multiplication on 4¢ by elements of the maximal compact
subgroup K = Gl,(0), obtain h = hk;, k; € K, where h; = (ZZ) ,
h{ and h; are 2 x 4 matrices and |

_ _(z Al'4+y 1 0
(11.3.3.14) h; _(y A 1).

h has an Iwasawa decomposition (’é‘ ZV )kz , where k; € K. Accord-
2

ing to Lemma 6.8 in [PS-Ra), |det 4| = kp(h]'), where k(4) is the
maximum of the absolute values of the 2 x 2 minors of the 2 x 4
matrix A. We have |detaw| = 1, |deth| = |deth| = |A|~2, and
|det A;||det 45| = |4|~2. Thus for some k € K, depending on x, y,
z and 4

(11.3.3.15)
@t = (m(y &)em(y %)) sm

= (i) 22 (m (o & )em (o ) £eo

Substituting this in the expression (11.3.2.9), we obtain A(f;) equal
to
(11.3.3.16) / A4 ey (B )~ +D)
F*xF?
1 0 1 0 x
|l (nl (O —/1) ® m; (O —l)) fsk)yd*Adxdyd:z.
Making the change of variable A — A~! and w = A1+, we obtain for

A(f5)
_ 452 z w10 e
(11.3.3.17) /FJ“’ vl Kz(y x 0 1)

-l(n (é _0/1) ®n2((1) &))j;(k)dwdxdydz.
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Since the inducing representations of Gl, have symplectic models,
either n; = y; are unitary characters or n; = v*y and 7, = v ™%,
so that

wazg Ji(m(y &) em (s %)) aw| =gl

For s > 1,
(11.3.3.19)  |w—y|%2 < max{|w]|, [y|}*2

<y z w 1 0\*?

so the integral of the absolute value of the integrand in (11.3.2.17) is
bounded by a constant multiple of

z w 1 0\*
(11.3.3.20) L4x2 (y x 0 1) dwdxdydz.

Let I(P,s) =Indy"d} and I(P,s) = Ind>" 65, where P is the
parabolic subgroup opposite to P. Extend dp to Gls via the Iwasawa
decomposition (‘114 = PK. We have the basic intertwining operator
As: I(P,s)— I(P, —s) defined by

(11.3.3.21) A5(F)(g) = /ﬁ Fy(ng)dn,

where N is the unipotent radical of P. From the Iwasawa decompo-

sition of 7= (19), with F, =d5"'/* obtain

(11.3.3.22) A3 (1) =/ Ka(X, 1) 2dX.
F4

As(éf,“/ 2)(1) converges for Res > 1/4 (cf. [Bo-Wa]). In particular
for s = 1/2, we obtain (11.3.3.20). Thus for s > 1/2, we have
constructed an Sl invariant functional on Ind,c;114 X1 ® X2 ®dp. The
representations of interest correspond to 0 < s < % .

We continue the functional A; using the method of Bernstein (cf.
[Ge-PS], pp. 126-129; [Ka-Pa], p. 67). Let V; denote the space of
the representation I; = Indf,}14 X ® 0%, where y 1is a unitary character.
Then V5 is naturally isomorphic to Vj by restriction to K .

The action of Gly on ¥V, via I is given by

(L(8)9) (k) = x(p)35" 2 $(K')
where kg = pk’. Let V be the dual, D = C* as an irreducible
variety and C[D] = C[z, z~!] the ring of regular functions on D.



278 MICHAEL J. HEUMOS AND STEPHEN RALLIS

Write z = ¢7°, —n/logg < s < m/logg. Let R = Ry x R; where
Ry, = {y, } is a countable basis for Vy and R; = {gy} is a countable
basis for Sp,. The family of systems Z; = {I;(g)y, — ¥, = 0;
(v,v') € R}, s € C, is polynomial in z and by Corollary 11.3 it is
a unique solution for Res sufficiently large. According to Bernstein’s
theorem, there is a unique solution A; € (V5 ® C(D))*, C(D) the
function field of D. A(y) is an Sp, invariant functional which
is a rational function of ¢~*. In particular this will give nontrivial
invariant functionals on the remaining representations.
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