Vol. 147, No. 1, 1991

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
L-harmonic functions and the exponential square class

Caroline Perkins Sweezy

Vol. 147 (1991), No. 1, 187–200
Abstract

It is proved for a restricted class of second order linear differential operators L if Lu = 0 in R+d+1, u|Rd = f then if the Lusin area integral of u, Su L, f is in the exponential square class. This extends the work of Chang, Wilson and Wolff who proved the same result for harmonic u [3].

Mathematical Subject Classification 2000
Primary: 35J25
Secondary: 31B25, 42B25
Milestones
Received: 30 November 1988
Published: 1 January 1991
Authors
Caroline Perkins Sweezy