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The theorem of Barbosa and do Carmo asserts that the only sta-
ble compact hypersurface of constant mean curvature in Rn+ι is the
round n -sphere. We present an elementary proof of this fact by con-
sidering the 2-parameter family y — s(x + tξ) where x is the con-
stant mean curvature immersion and ζ is the unit normal vector field.

I. Introduction. Let M be a compact oriented ^-manifold and
x: M —> Rn+{ an immersion of M into Rn+ι. For such an im-
mersion we compute the π-area A(x)

(1) A(x)=ί
Jλ

dS
M

where dS is the ft-area element on M induced by the immersion x.
We can also compute the "oriented" volume V(x) enclosed by the
immersed surface x(M). It is given by the formula

(2) v{x) = -±-- ί (χ.ξ)dS
n+ i JM

where ξ is the unit normal vector field determined by the orientation
of M and the immersion x .

Let xt: {—ε, ε) x M —• Rn+ι be a one-parameter family of im-
mersions of M into Rn+ι with χ0 = x. A necessary and sufficient
condition that the area functional A(xt) have a critical value at t — 0
for all variations xt for which V{xt) is constant is that the immersed
surface have constant mean curvature H. Furthermore, such an im-
mersion is said to be stable if for all volume-preserving perturbations
the second derivative of A{xt) at t — 0 is non-negative.

In a recent paper [1] J. L. Barbosa and M. do Carmo proved the
following theorem.

THEOREM [1]. Let M be a compact oriented n-manifold and let
x: M —> Rn+ι be an immersion with non-zero constant mean curvature

375



376 HENRY C. WENTE

H. Then x is stable if and only if x(M) c Rn+ι is a (round) sphere
Sn in [

The stability of the round sphere follows from the isoperimetric
inequality. In their proof of the theorem Barbosa and do Carmo con-
sider a particular variation vector field whose first-order change of
volume is zero and show that the appropriate second variation is neg-
ative unless the surface x(M) is a round sphere. The purpose of this
paper is to exhibit a simple one-parameter family of immersions which
preserves volume, allows easy calculation of the area and enables us
to prove the stability theorem. The family is explicitly described and
its variation vector field is precisely the one considered in [1].

II. The alternate proof. Let x: M —• Rn+ι be the given compact
immersion where we suppose that x(M) has constant mean curvature
H. Let xt = x + tξ be the one-parameter family of parallel surfaces
to x. It is easily seen that xt has the same unit normal vector field
as x. Furthermore the area A(xt) and volume V(xt) enclosed by xt

are easily computed.

(3) A(xt)= f f[(l-kit) dS

where &z are the principal curvatures of x = XQ . This is a polynomial
of degree n in t and may be expanded in the form

A(xt) = ao + a{t + a2t
2 + + ant

n,

α0 = I dS = A(x0),

a{ = - (kι + ' ' + kn)dS = -nHa0,

a2= ίH2dS, H2 = Hkikj,

ak = (-\)k ίHkdS, Hk= Σ hkh"kh'

This is an essentially well-known formula. For the case n = 2 see
Stoker [2, p. 352].

The other key formula is also well known, see Stoker [2, p. 352],
namely

(5) dV(xt)/dt = A(xt) so that
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(6) V{xt) = υo + υιt + v2t
2 + • + vn+ϊt

n+ι

where v\ = #o> 2V2 = a\ = -nHa$, etc. We shall give proofs of
(3) and (5) in the appendix. The family xt is not volume preserving.
In order to obtain a volume-preserving family we apply the appropri-
ate homothety. Namely, let y = sxt be a two-parameter family of
immersions. Clearly we have

(7) A(sxt) = snA{xt) = sn(a0 + aλt + + ant
n)

(8) V{sxt)=sn+ιV{xt)=sn+\v{> + vxt + - + υn+ιt
n+ι).

We now determine s = s(t) by setting V(sxt) = VQ . By use of for-
mula (8) and the binomial expansion we obtain the series for sn

(needing terms only through t2) and substitute into (7). Calling
A(t) = A[s{t)xt] we find

(9) A(t) = - ( -4-r ) ( — )

n{2n (VιY ( n \ ( V

\v0) \n+lj\vo

α0

τr)ai+*2>f

The fact that Λ'(0) = 0 in (9) leads to

(10) ao + (n+ l)Hυo = O.

Substituting the identities in (6) and (10) into the coefficient of t2 in
(9) leads to

(11) A

The second equation in (11) is seen as follows [1, p. 348]

(n - \)n2H2 - 2nH2 = (n-l) [Σkη ~ 2n ( Σ k & i

= (n-\)(Y,kλ +2(n-l)ΣkikJ ~2nΣkikJ
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From (11) we see that if x is not all umbilic then A"(0) is negative
and the immersion is unstable.

Finally, to find the variational vector field for the family s(t)xt =
s{t)[x + tξ] we differentiate to get

But s(0) = 1 and an easy calculation using (8) gives i(0) = H so that
z = Hx + ξ and the normal component is g = z - ξ = H(x ξ) + 1
which is the variation used by Barbosa and do Carmo.

Appendix.

Proof of (3). Introduce local coordinates (u\9 . . . , un) with corre-
sponding maps x(u\, . . . , un) and normal vector ξ(u\, . . . , un). De-
note by X[ = dx/dUi and £/ = dξ/dUi. The metric on M induced by
the map x is given by the matrix g = (gij) where gij = (x/ Xj) and
the element of area for the immersion is dS = \f\g~\du\ dui dun

where \g\ = det(^). For the immersion x + tξ the corresponding
metric tensor is

gij = {x + tξ)i {x + tξ)j = gij -

where hij = — (Xi -ξj) are the components of the second fundamental
form and γ^ = (ξj ξj) determine the third fundamental form. We
set g = (gij), h = (hij), γ = (γu) and compute

det(g) = det(g) det[/ - g~ι(2th - t2γ)].

But the eigenvalues of g~ι(2th - t2γ) are just Itk; - t2kf where /cz

are the principal curvatures of x. Thus

giving us

dSt = y/\f\duιdu2'"dun =

Proof of (5). It is sufficient to prove (5) when t = 0.

Therefore

TtV{Xt)lt=0 = 7iTlI[l " nH{x
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Thus it suffices to show

[l+H(x-ξ)]dS =
JM

A proof of this identity in the case n = 2 may be found in Stoker
[2, p. 303]. It is equivalent to (10). For the general case consider the
(n - l)-form on M given by

ω = { d x , . . . ( n — 1) t i m e s ... 9 d x , x , ζ }

where we have described each column of an (n + 1) x (n + 1) matrix
and ω is the determinant of the matrix.

dω = {dx, . . . , dx, dx, ξ} + {dx, . . . , dx, x,

A straightforward calculation gives

{dx, . . . , dx, dx, ξ} = n\dS,

{dx,...,dx,x9dξ} = n\H(x ί ) </&

Thus dω = /?![1 + //(x ^)] d-S and the assertion follows.
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