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DUALITY AND INVARIANTS FOR BUTLER GROUPS

D. M. ARNOLD AND C. I. VINSONHALER

A duality is used to develop a complete set of numerical quasi-
isomorphism invariants for the class of torsion-free abelian groups
consisting of strongly indecomposable cokernels of diagonal embed-
dings A\ Π Π An -» A\ 0 0 An for ^-tuples (Aι, . . . , An) of
subgroups of the additive group of rational numbers.

A major theme in the theory of abelian groups is the classification
of groups by numerical invariants. For the special case of torsion-free
abelian groups of finite rank, one must first consider the decidedly
non-trivial problem of classification up to quasi-isomorphism. To this
end, we develop a contravariant duality on the quasi-homomorphism
category of Γ-groups for a finite distributive lattice Γ of types.

A Butler group is a finite rank torsion-free abelian group that is
isomorphic to a pure subgroup of a finite direct sum of subgroups of
Q, the additive group of rationals. Isomorphism classes of subgroups
of Q, called types, form an infinite distributive lattice. For a finite
distributive sublattice Γ of types, a T-group is a Butler group G
with each element of the typeset of G (the set of types of pure rank-1
subgroups of G) in Γ. Each Butler group is a Γ-group for some Γ,
since Butler groups have finite typesets [BUI], but Γ is not, in general,
unique. There are various characterizations of Butler groups, as found
in [AR2], [AR3], and [AVI], but a complete structure theory has yet to
be determined. As E. L. Lady has pointed out in [LAI] and [LA2], the
theory generalizes directly to Butler modules over Dedekind domains.

Define Bj to be the category of Γ-groups with morphism sets
Q®z^ovcίz{G, H). Isomorphism in Bj is called quasi-isomorphism
and an indecomposable in Bj is called strongly indecomposable. B.
Joήsson in [JO] showed that direct sum decompositions in Bj are
unique up to order and quasi-isomorphism (see [AR1] for the categori-
cal version). Thus, classification of Γ-groups up to quasi-isomorphism
depends only on the classification of strongly indecomposable Γ-
groups.

A complete set of numerical quasi-isomorphism invariants for
strongly indecomposable Γ-groups of the form G = G(A\, . . . , An),
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the kernel of the map A\ Θ Θ An -» Q given by (a\, . . . , an) ->
a\ H h<z« for ( ^ , ... , v4w) an n-tuple of subgroups of Q, is given
in [AV2]. Specifically, the invariants are {rG[M]\M c Γ } , where
rG[M] = vmk(f]{G[σ]\σ e M}).

Given an anti-isomorphism a\T -+ T of finite lattices of types,
there is a contravariant duality D(ά) from Bγ to 1?Γ' (Corollary 5).
The duality D(a) coincides with a duality on Γ-valuated β-vector
spaces given by F. Richman in [RI1] and includes, as special cases, the
duality for quotient divisible Butler groups (all types are isomorphism
classes of subrings of Q) given in [AR5] and by E. L. Lady in [LAI],
and the duality given for certain self-dual T in [AVI]. The search
for lattices anti-isomorphic to a given lattice is simplified by an obser-
vation in [RI1] that each finite distributive lattice is isomorphic to a
sublattice of a Boolean algebra of subrings of Q.

Groups of the form G = G(A\, . . . , An) are sent by the duality
D(a) to groups of the form G = G[A\, . . . , An], the cokernel of the
embedding Πί-^/U < i < n} -+ A\®- -®An given by a —> (a, ... , a).
This observation gives rise to an application of the duality D{a) .

COROLLARY I. Let T be a finite distributive lattice of types. A com-
plete set of numerical quasi-isomorphism invariants for strongly inde-
composable T-groups of the form G = G[A\, . . . , An] is given by
{rG(M)\M a subset of T}, where rG(M) = rank(Σ{C?(τ)|τ € M}).
Each such group has quasi-endomorphism ring isomorphic to Q.

Despite other options, we develop duality in terms of representa-
tions of finite posets (partially ordered sets) over an arbitrary field k.
This choice is motivated by the fact that duality in this context is
an easy consequence of vector space duality. Moreover, the quasi-
isomorphism invariants given in Corollary I arise naturally when the
groups are viewed as representations. As an added bonus, this duality
is also applicable to classes of finite valuated p-groups. Specifically,
given any finite poset S and prime p, there is an embedding from
the category of Z/pZ-representations of S to the category of finite
valuated /^-groups that preserves isomorphism and indecomposability
[AR4]. Implications of this embedding will be examined elsewhere.

Unexplained notation and terminology will be as in [AR1], [AR2]
[AR4], and [AVI].

If k is a field and S is a finite poset, then a k-representation of
S is X = (£/, Ui\i 6 S), where U is a finite dimensional Λ>vector
space, each £// is a subspace of U, and / < j in S implies that
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Uf c Uj. Let Rep(A:, S) denote the category of ^-representations of
a finite poset S, where a morphism f: (U, l/, |ι e S) -• (I/', C//|ι e 5)
is a fc-linear transformation / : U —• U1 with /(£//) C C// for each
/. This category is a pre-abelian category (as defined in [RIW]) with
finite direct sums defined by

(U, Ui\ieS)®(U', U'i\ieS) = (U®Uf, Ui®Ul\ieS).

Direct sum decompositions into indecomposable representations ex-
ist and are unique, up to isomorphism and order, since endomor-
phism rings of indecomposable representations are local. A sequence
in Rep(fc,S), 0 -> (U, l/f ) -> (Uf, C//) -> (I/", t//') -> 0, is exact if
and only if 0 -> C/ -^ C//; -+ C/" -> 0 and 0 -> Ut ^ U[ - £//' -> 0
are exact sequences of vector spaces for each i eS.

For a poset S, let 5'op denote S with the reverse ordering.

PROPOSITION 1 [DR]. Suppose that S is a finite poset. There is an
exact contravariant duality σ: Reρ(fc, S) —• Rep(λ;, Sop) defined by

, fc)

Proof. A routine exercise in finite dimensional vector spaces, noting
that if f: X —> Xf is a morphism of representations, then σ(f) =
/*: σ(Xf) —> σ(X) is a morphism of representations and that σ2 is
naturally equivalent to the identity functor.

There are some extremal representations to be dealt with. A rep-
resentation of the form X = (U, Uj\i e S) is called a simple repre-
sentation of S if U = k and ί/f = 0 for each /, and a co-simple
representation if £/ = k = C/, for each /. Simple representations
are indecomposable projective and co-simple representations are inde-
composable injective relative to exact sequences in Rep(fc, S). The
duality σ carries simple representations into co-simple representa-
tions. It is easy to verify that a representation X = (£/, Ui\i e S)
has no simple summands if and only if U = Σ{C//|Ϊ € S} and no
co-simple summands if and only if ΠWI* Ξ S} = 0.

Recall that types are ordered by [X] < [Y] if and only if X is
isomorphic to a subgroup of 7 , where [X] denotes the isomorphism
class of a subgroup X of Q. The join of [X] and [Y] is [X + Y],
and the meet is [XnY].

Let G be a Γ-group and 0 / I G G . Then type^x) is the type of
the pure rank-1 subgroup of G generated by x. Define G{τ) = { X E
G|typeG(x) > τ}, the τ-socle of G. Let QG = Q®ZG denote the
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divisible hull of G, regard G as a subgroup of QG, and write Q(j(τ)
for the Q-subspace of QG generated by G(τ).

Define JI(Γ) to be the set of join-irreducible elements of a finite
lattice T of types. That is, JI(Γ) = {τ 6 T\ if τ = £ join γ for
J , γ e T, then r = y or τ = <J}. The poset JI(Γ) o p has a great-
est element, namely the least element of T. In the correspondence of
the following lemma, the simple indecomposables in Rep(<2, JI(Γ)o p)
have no non-zero group analogs. Thus, define Repo(<2, JI(T)op) to be
Rep(<2, JI(Γ)o p) subject to identifying a simple indecomposable rep-
resentation with the indecomposable projective representation (17, Uτ\τ
e JI(Γ)o p) defined by U = Q, Uτ = Q if τ is the greatest element
of JI(Γ) o p , and Uτ = 0 otherwise. This guarantees that a simple
indecomposable representation corresponds to a rank-1 group in BT

with type equal to the least element of T.

LEMMA 2 (a) [BU2, BU3]. There is a category equivalence Fτ: Bτ -+
Repo(Q, JI(Γ)o p) given by FT(G) = (QG, QG(τ)\τ e JI(Γ) o p ) .

(b) FT is an exact functor.

Proof, (a) We observe only that the inverse of FT sends (17, Uτ\τ e
JI(Γ)o p) to the subgroup of U generated by {Gτ\τ e JI(Γ) o p }, where
Gτ is a subgroup of torsion index in Uτ that is τ-homogeneous com-
pletely decomposable (isomorphic to a direct sum of rank-1 groups
with types in τ) . The proof is outlined in [BU3] with details in [BU2].

(b) Note that Bγ is also a pre-abelian category and that a sequence

0->G^H-^K-+0 of Γ-groups is exact in BT if and only if
/ is monic, (kernel# + image/)/(kernelg Π image/) is finite, and
(image g + ^)/(imageg Π K) is finite. In particular, 0 —• QG -»
QH -+ QK —• 0 is exact. Recall that, since we are working in a
quasi-homomorphism category, equality in Bj is to be interpreted as
quasi-equality of groups (G and H are quasi-equal if QG = QH and
there is a non-zero integer n with nG c H and nH c G) and purity
in Bj as quasi-purity (quasi-equal to a pure subgroup).

Let 0->G^H-^K-+0 be an exact sequence in Bγ. It is
sufficient to show that if τ € J I(Γ) o p , then QH(τ) £> QK(τ) -> 0 is
exact. In this case, 0 -> QG(τ) -• QH(τ) -• β^(τ) -> 0 is exact anΐl
0 -+ FT{G) -+ FT{H) -* fr(A') -^ 0 is exact in Rep(Q, JI(Γ) o p ) .

If X is a pure rank-1 subgroup of K of type > τ , then g~ι{X)
is generated in Bγ by a finite set L of pure rank-1 subgroups of
H whose types are in T [BUI]. Thus, type(Λf) is the join of the
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elements in a set L' of types of groups in L with nonzero image
under g in QX. Also, τ is the join of the elements in
{σ meet τ\σ e L1}. But τ join irreducible in T implies that σ > τ
for some σ E 1/, whence QX is in the image of QH(τ) -^ βi£(τ).
Consequently, QH(τ) -^ QK(τ) —• 0 is exact, as desired.

At this stage, it is tempting to try to define a duality from Bj —• Bj,
for anti-isomorphic lattices T and Γ' by using Lemma 2 and Propo-
sition 1. This would require, however, that JI(Γ')o p be lattice isomor-
phic to JI(Γ), a rare occurrence as JI(Γ')o p has a greatest element but
JI(Γ) need not. To overcome this difficulty, we need a functor from
BT to Rep(Q, S) for some other partially ordered set S. A candidate
for S is the opposite of MI(Γ), the set of meet irreducible elements
of T.

Note that MI(Γ)o p has a least element, the greatest element of T.
Define Rep°(Q, MI(Γ)op) to be Rep(Q, MI(Γ)op) with a co-simple
indecomposable representation identified with the indecomposable in-
jective representation (U = Q, Ui\i e S)9 where £// = 0 if / is the
least element of MI(Γ)o p and ty = Q otherwise.

For a Butler group G and a type τ the τ-radical of G, G[τ], is
defined to be f|{kernel/|/: G -• Q, type(image/) < τ}.

LEMMA 3 [LA2]. Let T be a finite lattice of types, G a T-group,
and τeT.

(a) QG[τ] = Σ{QG(γ)\γeT,γϊτ}.
(b) QG(τ) = n{QG[γ]\τ£γeT}.
(c) // τ is the meet of γ and δ, ίλe« QC/[τ] = QG[γ] + QG[δ].
(d) // τ is ίΛejom o/ γ and δ, ί/zen βG(τ) = βG(y) Π

Proof. Proofs of (a) and (b) are given in [AVI, Proposition 1.9]. (c)
and (d) then follow.

THEOREM 4. Assume that T is a finite lattice of types. There is
an exact category equivalence Eτ: Bτ -• Rep°(β, MI(Γ)op) given by

Proof. Clearly, Eγ is a functor where if q®f e Q®ΐlomz(G, H),
then Eτ(q ® /) = q{\ <g> / ) : QG -> QH. Also, ^ r is well defined,
since γ < τ in MI(Γ)o p implies that G[γ] C G[τ].
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The fact that Eτ: QHom(G ? H) -» Hom(£ Γ (G), ET{H)) is an
isomorphism is proved in [LA2, Theorem 1.5]. Also Ej has a well
defined inverse, since G can be recovered, up to quasi-isomorphism,
from (QG, QG(τ)\τ e J I ( Γ ) ° P ) by Lemma 2 and the QG(τ) 's can be
recovered from (QG, QG[γ]\γ e M I ( Γ ) ° P ) by Lemma 3.

It remains to show exactness of Ej. Assume that 0 -» G —• 7/ Λ
ίΓ —• 0 is exact in i? j , and let X be a pure rank-1 subgroup of #
in Bγ of type not less than or equal to y. As noted in the proof
of Lemma 2, g~ι(X) is generated in Bj by a finite number of pure
rank-1 subgroups of H in Bj such that type(-Y) is the join of the
types of those groups having non-zero image under g in QX. There-
fore, at least one of these types is not less than or equal to γ. It
follows from Lemma 3.a that QX is contained in g(QH[γ]). Thus,
QH[y] -^ QK[γ] -> 0 is exact, since g{QH[y]) c βtf [y] is immedi-
ate. Note that this part of the proof does not require γ to be meet
irreducible.

Next, QG n QH[γ] D QG[γ] for each γ. To show that QG[γ] D
QGnQH[γ] for γ e MI(Γ), let X be a pure rank-1 subgroup of G
in £7 and assume that X n G[y] = 0. Then type(AΓ) < γ, by Lemma
3.a. As // is a pure subgroup in Bj of a finite rank completely
decomposable Γ-group, type(X) is the meet of the elements in a
subset L of types of rank-1 torsion-free quotients of H in Bγ such
that the image of X in each of these quotients is non-zero [AVI].
In view of the distributivity of T, γ is the meet of the elements in
{γ join a\a G L} . Since γ is meet irreducible, a < γ for some α G l .
Hence, X Π H[γ] = 0, as X is not in the kernel of a homomorphism
from H to a rank-1 torsion-free quotient of H with type = a < γ.
Consequently, if X is a pure rank-1 subgroup of GnH[γ], then
* <Ξ G[γ], since X Π G[γ] = 0 implies that X n ^[y] = 0, as desired.

An exact sequence 0 — • ( ? — • # - + # — • ( ) in i?^ is balanced if

0 -> G(τ) -> H(τ) -> ^ ( τ ) -• 0 is exact in BT for each type τ e T

and cobalanced if 0 -> G/G[τ] -> i//i/[τ] -^ A:/^[τ] -+ 0 is exact in

Bj for each type τ eT.

COROLLARY 5. Let a: T -+ V be a lattice anti-isomorphism of fi-
nite distributive lattices of types. There is a contravariant exact cat-
egory equivalence D = D(a): Bj —• BT> defined by D(G) = H,
QH = QG" = Hom ρ (QG, Q), and QH[a(τ)] = β G ( τ ) 1 for each
τ G T, with the following properties:



DUALITY AND INVARIANTS 7

(a) D(a~~1)D(a) is naturally equivalent to the identity functor on
Bτ, rank(D(G)) = rank(G), and QH(a(τ)) = QG[τ]L for each
τeT.

(b) D(G(τ)) is quasi-isomorphic to D(G)/D(G)[a(τ)] and
D(G/G(τ)) is quasi-isomorphic to D(G)[a(τ)] for each τeT.

(c) If X is a rank-1 T-group with type(Λf) = the join of the
elements in a subset {τ\, . . . , τn} of JI(Γ), then tyρe(D(X)) is the
meet of the elements in {a(τ{), . . . , a(τn)} c MI(Γ').

(d) D sends balanced sequences to cobalanced sequences and con-
versely.

(e) D(G(AU . . . ,An)) is quasi-isomorphic to G[D(A\)9 . . . ,D(An)]
for each n-tuple (A\, . . . , An) of subgroups of Q with types in T.

Proof, (a) Define D = D(a) = E~}, aaFj, where Fγ and ET>,
are as defined in Lemma 2 and Theorem 4, respectively;

a : Rep o (β, JI(Γ)^) -+ Repo(Q ? MI(Γ'))

is a relabelling; and

σ : Repo(Q, MI(Γ')) ^ Repo(<2, M I ( r ) o p )

is as given in Proposition 1. Note that D is contravariant, since σ
is, and that D is exact since each of the defining functors are ex-
act. Unravelling the definition of D shows that D(G) = H, where
QH = (QG)* and QH[a(τ)] = {QG{τ))L for τ e JI(Γ). In fact,
QH[a(τ)] = QGίτ)-1 for each τeT. To see this, note that τ is the

join of elements in a subset Λf of JI(!Γ). Therefore,

by Lemma 3.d, and

= Σ{QH[a(δ)]\δ eM} = QH[a(τ)],

by Lemma 3.c, since α(τ) is the meet of the elements in {a(δ)\
δeM}.

Now G is naturally quasi-isomorphic to D(a~ι)D(a)(G), via the
natural vector space isomorphism QCJ —> QG**, as a consequence
of Lemma 3. Clearly, mnk(D(G)) = rank(G). An argument using
Lemma 3, analogous to that of the preceding paragraph, shows that if
H = D(G), then QH(a(τ)) = QG[τ]λ for each T G Γ .

(a) is now clear; (c) and (e) follow from (a) and the exactness of
D and (d) is a consequence of (b).
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As for (b), observe that QD(G/G(τ)) = Hom(QGQG(τ), Q) can
be identified with QGiτ)1 = QD(G)[a(τ)]. Under this identification,
QD(G/G{τ))[a(δ)] = Q{G / G(τ)){δ)L corresponds to QG{τ)L[a{δ)] =
QD(G)[a(τ)][a(δ)] for each δ e JI(Γ). Therefore, D(G/G(τ)) is
quasi-isomorphic to D(G)[a(τ)], as desired. The other part of (b)
now follows from the fact that D is a contravariant exact duality.

The proof of Corollary 5 shows that if G has rank one with type
τ, then D(G) is rank one with type a(τ). This observation, together
with Corollary 5.c, shows that D = D(a) is the duality induced by
the duality of Γ-valuated vector spaces given in [RI1]. In case T is a
locally free lattice, as defined in [AVI], then V and D may be chosen
with D representable as Homz(*, X) for X a rank-1 group with
type equal to the greatest element in T. This special case of Corollary
5 follows from Warfield duality [WA].

As noted earlier, given a finite lattice T of types, there is a quotient
divisible V anti-isomorphic to T [RI1]. If, for example, T is quo-
tient divisible, then V and a: T —• V may be chosen by α(τ) = τ',
where the ^-component of τ' is 0 if and only if the /7-component
of τ is oc and the /7-component of τ' is oc if and only if the p-
component of τ is 0. Thus, D induces a duality, independent of
T, on the quasi-homomorphism category of quotient divisible Butler
groups. This duality coincides with the duality functor A on quo-
tient divisible Butler groups given in [LAI] and the restriction of the
functor F given in [AR5] to quotient divisible Butler groups.

For a Γ-group G and a subset M of T, define

G(M) = Σ{G(τ)\τeM} and G[M] = f]{G[τ]\τeM}.

Then rG(M) = rank((7(Λ/)) and rG[M] = rank(G[M]), as defined in
the introduction. Lemma 3 can be applied to see that the rG{M) 's or
the TQ\M\ 'S appear as the dimensions of associated subspaces of QG
generated by {QG(τ)\τ e JI(Γ)o p} or {QG[τ]\τ € M I ( Γ ) ° P } .

Proof of Corollary I. Since T is a finite distributive lattice of types
there is a (quotient divisible) lattice V of types and an anti-isomor-
phism a : T -• V . Let D = D{a) be as defined in Corollary 5. If G
and H are Γ-groups both of the form G[Bχ , . . . , £ „ ] and rG(M) =
rH(M), then QG(M)-L and QH(M)1 have the same Q-dimension.
But D(G)[a{M)] = QG{M)L and D(H)[a{M)] = QH(M)1 via Corol-
lary 5 and Lemma 3. Consequently, if rG(M) = rH{M) for each
subset M of Γ, then rD^[Mf] = rD^[M'] for each subset M1 of
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V. Now D(G) and D(H) are both of the form G(AX, ... , An), by
Corollary 5.e, so that £>((/) and D(H) are quasi-isomorphic [AV2].
This implies that, by applying the duality D(a~ι), G and H are
quasi-isomorphic as desired. Finally, each strongly indecomposable
group of the form G(A\, ... , An) has endomorphism ring isomor-
phic to Q in Bτ [AV2], and D is a category equivalence. The last
statement of the corollary follows.

Corollary I includes a complete set of quasi-isomorphism invari-
ants for the proper-subclass, co-CΓ-groups, of Γ-groups of the form
G[Aχ ,...,An] studied by W. Y. Lee in [LE].
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OBSTRUCTION TO PRESCRIBED
POSITIVE RICCI CURVATURE

PH. DELANOE

Obstruction to positive curvature is a phenomenon currently ex-
plored in global Riemannian geometry; the strongest results bear
of course on the scalar curvature. Hereafter we consider the Ricci
curvature and we adapt DeTurck and Koiso's device to non-compact
manifolds. We also record a simple non-existence result on Kahler
manifolds.

1. Statement of results. Let X be a connected non-compact C 3 n-
manifold, n > 2, and h be a fixed C 2 Riemannian metric on X. We
are interested in finding conditions on h which prevent it from being
the Ricci tensor of any Riemannian metric on X. Following [5] we
consider the largest eigenvalue λ(h) of the curvature operator acting
on covariant symmetric 2-tensors (see [1]). Given any C2 metric g
on X, we let e(g) denote the energy density of the identity map from
(X,g) to (X,h) .

THEOREM 1. Assume λ(h) <l-e on X, for some positive real ε.
Then there is no complete C2 metric % on X which admits h as Ricci
curvature.

THEOREM 2. Assume λ(h) < 1 on X and h complete. Then there is
no C2 metric g on X, with e(g) assuming a local maximum, which
admits h as Ricci curvature.

THEOREM 3. Assume /l(h) < 1 on X. Then there is no C2 metric
g on X, with e(g) vanishing at infinity, which admits h as Ricci
curvature.

2. Remarks and examples. Our results and methods of proof extend
[5] from compact to non-compact manifolds. Related, though weaker,
results, obtained by different techniques, are those of [0] (a reference
kindly pointed out to us by the referee).

Theorem 1 may be viewed as the "true" extension of [5, Theo-
rem 3.2-b]. Interestingly, Theorem 2 looks somewhat stronger than

11
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[5, Theorem 3.2-b] due to the non-compactness of X ; an example
here for (X, h) is the Poincare disk, since constant curvature - 1
implies at once λ(h) = 1 by [1, Proposition 4.3]. Theorem 3 typically
applies when (X, g) is asymptotically flat; as such, it generalizes [8].

It is not possible to drop the completeness of both metrics and
just assume λ(h) < 1, as the following example shows: X is the
euclidean ^-space, h the conformal metric 4(n-l)σ~4E, E denoting
the standard euclidean metric and σ := y/\ + |x | 2 . h satisfies λ(h) =
1 and Ricci(h) = h because it is constructed in the following way:
start with the round n-sphere (Sn, go) of radius r = y/n — l so that
Ricci(go) = go By [1, Proposition 4.3] we see at once that Λ(go) =
1. Now h is obtained as the pull-forward of go by a stereographic
projection composed with the dilation of ratio 1/r.

From the identity λ(ch) = £λ(h) valid for any positive constant
c, one would like to infer that, given any C2 metric h on X, the
preceding theorems hold with ch for suitable c » 1. This is what
DeTurck and Koiso do on compact X. However, this cannot be done
on non-compact X without assuming that λ(h) is uniformly bounded
from above (a mistake to be corrected in [8]). Keeping this in mind,
one can formulate in an obvious way corollaries of our three theorems
analogous to those of [5].

3. Proofs, For each theorem we argue by contradiction and assume
the existence of a metric g with the asserted properties. As observed in
[5], the Bianchi identity thus satisfied by h with respect to the metric
g means that the identity map from (X, g) to (X, h) is harmonic.
Hence the energy density e(g) satisfies on X the elliptic differential
inequality

(1) A[e(g)]<-2\\T\\2-[l-λ(h)]\h\2

deduced in [5] from an identity discovered by R. Hamilton [6]. Here
Δ stands for the Laplacian (with negative symbol) of g, T for the
Q)-tensor difference between the Christoffel symbols of g and h, | |
for the norm in the metric g, || || for another norm (see [5]). Under
the assumption λ(h) < 1, made in all three theorems, e(g) is thus C2

positive subharmonic on (X, g).

Proof of Theorem 1. By Schwarz inequality e(g) < \/ή\h\ so (1)
implies that e(g) solves on X the inequality

(2) Au < -/(«)
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where
f(t) := (2ε/n)t2.

The function / is positive strictly increasing on (0, oo) and it readily
satisfies the following condition: for all a < b in (0, oo),

/•oo / rs \ -1/2

(3) J ( ^ f(t)dt) ds <oo.

Assume provisionally that (X, g) is of class C 3 . Since h = Ricci(g)
is non-negative, {X, g) and / fulfill all the conditions required for the
proof of Calabi's extension of Hopf's maximum principle [2] (Theo-
rem 4). Fixing a € (0, minχ[e(g)]) in (3) and arguing as in [2] yields
an impossibility for e(g) to satisfy (2) on X. So we get the desired
contradiction.

We are left with the C3 regularity of (X, g). It follows basically
from local elliptic regularity, as a repeated use of [4] now shows. Fix
a in (0, 1). Since g is C 1 > α , X admits a C2>c* atlas of coordinates
harmonic for g [4] (Lemma 1.2). Being C 1 > α in the original atlas, h
remains so in the harmonic atlas [4] (Corollary 1.4). Since Ricci(g) =
h, g is C 3 ' α in the harmonic atlas [4] (Theorem 4.5-b) and the atlas
itself actually is C4>α [4] (Lemma 1.2). D

Proof of Theorem 2. By Hopf s maximum principle [7], e(g) is
necessarily constant on X. It follows from (1) that T = 0 hence
Ricci(h) = h o n l . Moreover, the regularity argument above, now
applied to h, combined with a bootstrap argument, provides a har-
monic atlas in which {X, h) is a C°° Riemannian manifold. So
Myers' theorem [10] holds for (X, h), contradicting the noncompact-
ness of X. D

Proof of Theorem 3. Since e(g) vanishes at infinity, it assumes a
positive global maximum M. Fix μ in (0, M) and let K be a
compact subdomain of X outside which #(g) < μ. Hopf s maximum
principle [7] applied to e(g) inside K implies that either e(g) is
constant on K, or e(g) < μ on K. In both cases it contradicts
μ < M. Π

4. A non-existence result on Kahler manifolds. Let X be a con-
nected complex manifold, of complex dimension n > 1, admitting a
C2 Kahler metric h. Denote by |h| the Riemannian density of h.

THEOREM 4. Assume that the scalar curvature of h is bounded above
by n, but not identical to n. Then there exists no C2 Kahler metric g
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on X, with relative density |g|/|h| assuming a local minimum, which
admits h as Ricci curvature.

Proof. Again by contradiction; let g be such a metric. Then the C2

function / : = Log(|g|/|h|) satisfies on X the equation Af = n-S, S
standing for the scalar curvature of h, Δ for its (complex) Laplacian.
From the assumption, / is superharmonic on (X, h) moreover, it
assumes a local minimum, so it must be constant according to Hopf s
maximum principle [7]. It implies that S = n, contradicting the
assumption. D

For non-compact X, Theorem 4 typically applies when (X, g) is
Kahler asymptotically Cn [3]. For compact X, recalling that S(ch) =
S(h)/c for any positive constant c, we obtain a simple proof of the
following

COROLLARY. Let (X, h) be a C2 compact Kahler manifold. Then
there exists a positive real c(h) such that, for any real c > c(h), no
C2 Kahler metric on X admits ch as Ricci curvature.

Of course, as emphasized by J.-P. Bourguignon (in a letter to us), the
classical cohomological constraint bearing on Ricci tensors of compact
Kahler manifolds makes Theorem 4 rather relevant for non-compact
simply connected X.

Acknowledgment. This work originated from a question posed to
me by Albert Jeune, about the contradiction between [3] and Jeune's
Corollary 1 in [8]; as pointed out in §2, the latter turns out to be
incorrect without a boundedness assumption on λ(h).
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NONPOSITIVELY CURVED HOMOGENEOUS SPACES
OF DIMENSION FIVE

MAR!A J. DRUETTA

In this paper we classify, in terms of the rank, the simply connected
homogeneous spaces of nonpositive curvature and dimension five. In
particular, an affirmative answer is given to the conjecture "An irre-
ducible homogeneous space of nonpositive curvature and rank k > 2
is a symmetric space of rank/:".

We exhibit examples in dimension five of rank one homogeneous
spaces of nonpositive curvature having totally geodesic two-flats iso-
metrically imbedded. Moreover, these examples show that the rank in
a Lie group is not invariant under the change of left invariant metrics
of nonpositive curvature

Introduction. In this paper we study, in terms of the rank, the simply
connected Lie groups G of dimension five with left invariant metrics
of nonpositive curvature (K < 0). The results obtained are then used
to get a classification of the simply connected homogeneous spaces of
nonpositive curvature of rank two and dimension five. We exhibit on
G, the Lie group of 3 x 3 upper triangular real matrices of determi-
nant one, many different left invariant metrics of K < 0 and rank
one. We remark that G also has a unique, up to a positive constant
factor, left invariant metric of K < 0 and rank two which turns it
into a symmetric space. Thus we obtain examples of rank one homo-
geneous spaces of nonpositive curvature having two-flats isometrically
embedded. Moreover, we show that a Lie group (of dimension five)
may admit different left invariant metrics of nonpositive curvature of
different ranks.

In §1 we classify the simply connected five-dimensional homoge-
neous spaces H of nonpositive curvature with no flat de Rham factor
and rank two. We show that, either H = H2xT3 where H2 is a two-
dimensional space of constant negative curvature and Γ3 is a rank
one homogeneous space of K < 0, or H = SL(3, R)/ SO(3) the irre-
ducible symmetric space of noncompact type and rank two, provided
that we multiply the metric by a suitable positive constant.

Section 2 is an auxiliary section needed to complete the classification
given in § 1. Here, we study a particular example in dimension five that

17
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corresponds to studying all the left invariant metrics of K < 0 on the
group G of 3 x 3-upper triangular real matrices of determinant one.

In §3 we exhibit many different metrics turning G into rank one
homogeneous spaces having 2-flats isometrically imbedded. Further-
more, a comparison result between the symmetric metric on G and
non-symmetric ones is obtained.

Preliminaries. Let H be a complete simply connected Riemannian
manifold of nonpositive curvature (K < 0). If γ is a unit speed
geodesic in H, rank(y) is defined to be the dimension of the vec-
tor space of all parallel Jacobi fields along γ. The minimum of
rank(y) over all geodesies γ of H is called rank of H and denoted
by rank(iί). This definition was introduced in [3] and coincides with
the usual one if AT is a symmetric space.

Assume that H is a homogeneous space. Then rank(/ί) is the
minimum of rank(y) over all geodesies γ of H such that γ(0) = p
for some p in H. In this case, H admits a simply transitive and
solvable group of isometries (see [1]) and hence, H can be represented
as a solvable Lie group G with a left invariant metric of nonpositive
curvature.

Given a Lie group G with Lie algebra g and left invariant metric
( , ), we recall that if X, Y, Z e g then the Riemannian connection
V is given by

2(VXY9 Z) = ([X, Γ], Z) - ([Y, Z]) + <[Z, X], Y).

If R(X, Y) = [Vχ, Vy] - V[χ? Y] is the curvature tensor associated
to V, the sectional curvature K is given by

\X Λ Y\2K(X, Y) = (R(X ,Y)Y,X)

= l\U(X, Y)\2 - i(U(X, X), U(Y, Y)) - ί\[X9 Y]\2

-i([[X,Y]9Y],X)-$([[Y9X]9X]9Y)

where U(X, Y) = (ad x )*7 + (ad r )*X, and (ad x)* denotes the ad-
joint of adx.

Let G be a solvable simply connected Lie group with a left invariant
metric of nonpositive curvature. If α is the orthogonal complement
of [Q , β] in Q with respect to the metric, it follows from [1, Theorem
5.2] that it is an abelian subalgebra of g which is also totally geodesic
{VxY e a for all I J G O ) . Moreover, A = expα, the connected
Lie subgroup of G with Lie algebra α, is a dim α-flat in G.

In general, a fc-flat in H is defined to be the image of a totally
geodesic isometric imbedding of Rk into H.
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1. Homogeneous spaces of K < 0 and dimension five. In this section
we characterize, in terms of rank, the simply connected homogeneous
spaces of nonpositive curvature (K < 0) and dimension five.

Let G be a solvable and simply connected Lie group with a left
invariant metric of nonpositive curvature. If g is the Lie algebra of
G, then g = [g, g] Θ α where α, the orthogonal complement of [g, g]
with respect to the metric, is an abelian subalgebra of g.

If g'c is the complexification of g' = [g, g] then we have a direct
sum decomposition g'c = Σx %'λ > w h e r e

fl* = {u e g/c: (adH -λ(H)I)kU = 0

for some k > 1 and for all H e a}

is the associated root space for the root λ G (α*)c under the abelian
action of α on g'. If λ = a±iβ is a root of α in g' (that is, g£ Φ 0),
the generalized root space is defined by g'α β = gf

a _β = g' n (g£ Θ βj)
and g' is the direct sum of the adα-invariant subspaces gf

a β .
We assume that G has no de Rham flat factor. Then, it follows from

[2, Theorem 4.6] that the above condition is equivalent to g'o = £ f l /

and αo = {H e a: a(H) = 0 for all roots a + iβ} are zero.

The following formulas about sectional curvatures will be used fre-
quently; we include the proofs for the sake of completeness. In the
sequel, if H e α we will denote by DH and 5# the symmetric and
skew-symmetric part of ad// respectively with respect to the metric

LEMMA 1.1. Assume g1 abelian.

(i) Let {-H/}f=1 be an orthonormal basis for a and set Di = Djj,
1 k T hi = 1, ... , k. Then,

k

(R(X9 Y)Y, X) = Σ((DiX, Y)2 - (DiX, X)(DiY, Y))
( = 1

for all X, Y eg ' .

(ii) (R(X, Y+H)(Y+H),X) = (R(X, Y)Y, X)+(R(X, H)H, X)
for all X,Y€Q' and He a.

In general, we have (R(X, H)H, X) = \SHX\2 - \[H, X]\2 ([1,
Lemma 3.4]).

Proof. Let X, Y eQ' and He a.
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(i) We note that since g' isabelian, U(X 9 Y)ea and (U(X, Y)9

H) = -2(DHX, Y). Hence, U{X, Y) = -2Σf = 1 (AX, Y)Ht\ the
assertion follows from the curvature formula.

(ii) Since VJJX G fl' and V j ^ G α w e have i?(X, 7)// e α; from
this (ii) follows easily.

REMARK 1.2. If there exists an orthonormal basis {///}̂ =1 of α
such that Z)/ ( / = 1, .. . , fc) are all positive semidefinite, we have
K(X, Y) < 0 for all ΛΓ, 7 independent in g'. Moreover, we get
K(X, Γ) < 0 if for some j = 1, . . . , k, Dt is positive definite.

THEOREM 1.3. Let H be a simply connected homogeneous space of
nonpositive curvature and dim// = 5 . If H has no de Rham flat
factor then, either rank(i/) = 1 or rank(/7) = 2 and it is one of the
following spaces

(i) H = H2 x Γ 3 , where H2 is a two-dimensional space of con-
stant negative curvature and T3 is a rank one homogeneous space of
nonpositive curvature.

(ii) H = SL(3, R)/ SO(3), the irreducible symmetric space of non-
compact type and rank two, up to multiplying the metric by a positive
constant

We recall that in a three dimensional homogeneous space of non-
positive curvature, rank one and the visibility axiom are equivalent.
These spaces were completely characterized in [6] (see Corollary 2.5
and Remark 4.3).

Proof. Let G be a solvable Lie group that acts simply and transi-
tively on H. Then, we may assume that H = G is a solvable and
simply connected Lie group of dimension five with a left invariant
metric of K < 0 with no flat de Rham factor.

Let Q = g' Θ α, α the orthogonal complement of g' with respect
to the metric ( , ) . We only need to consider the case dim α =
2. In fact, in the case dimα = 1 it follows from [7, Theorem 1.5]
that G has rank one. If dim α = 3, there exist at most two roots
of α in Q1 (dim Q1 = 2) and consequently we may choose ff E α
satisfying a(H) = 0 for all a with a+iβ root; this implies that G has
de Rham flat factor (see the remark at the beginning of this section).
If dimα = 4, g is the example given in [6, Example 3.4] and G is
isometric to R3 x H2.
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Henceforth we assume that dim α = 2. Note that counting accord-
ing to multiplicities, there are three roots of α on g1. Their real parts
span the dual space α* (otherwise αo would be nonzero). Thus there
are two cases: either

(1) two real parts are proportional and the third is independent of
them, or

(2) the three real parts (necessarily roots) are pairwise independent.
We first show the following lemma.

LEMMA. If Q' is not abelian, then a has three real roots λ\, λ2 and

A3 on gf such that λ\ and λ2 are independent and λ?> = λ\ + λ2.
Moreover the center 3 of g1 is the root space of A3.

Proof. Note that }φθ because g is solvable and hence g1 is nilpo-
tent. Since 3 is one-dimensional and adα-invariant we have 3 = gf

λ,
the root space associated to a nonzero real root λ (g'o = 0). We ob-
serve that there is no complex root γ = a + iβ, a Φ 0 if this is the
case, £,'c = βfθflSθflJ with 0 φ \$, tf] C fl;;+y = £& . Thus λ = 2α,
implying that G has de Rham flat factor. Hence, since Q1 is not
abelian we have real roots λ\, λ2 and λ\ + λ2 (0 Φ [g'λ , gf

λ ] c g'λ + A )
where λ\ and λ2 are independent.

Case 1. The lemma shows that gr is abelian. It follows from the
direct sum decomposition of gf in generalized root spaces that there
is an adα invariant orthogonal direct sum decomposition g' = g\ θ g2

(see [1, §5.3]) in which

(i) g\ has dimension / (i = 1, 2).
(ii) There is a basis {γ, a} of α* such that γ is the (necessarily

real) root of α on g\ and the real part of every root of α on gf

2 is
proportional to a.

We define Hx, H2 e a by γ(H) = (//, #1) and a(H) = ( # , Jf2)
for all H e a. It follows from Lemma 5.4 (iv) of [1] that (Hi, H2) >
0. Thus, there are two cases to consider: either

(1.1) (Hl9H2) = 0

or

(1.2) (HuH2)>0.

Case 1.1. In this case it turns out that G is isometric to a Riemann-
ian product. Let t = gf

2 θ RH2 and f) = g\ 0 Ri7i. Then t is an
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ideal of g, \) is a subalgebra, and g is the orthogonal direct sum of
t and Q . Note that ad# |fl/ is almost normal and has purely imag-
inary eigenvalues because a(H\) = (H\ , Hi) = 0. It follows from
Lemma 4.4 of [1] that ad# ^ is skew symmetric. Since Q' and α are
abelian, it now follows that adχ|t is skew symmetric for every X el).
Hence, G is isometric to the Riemannian product Γ 3 x H2 where
Γ 3 and H2 are the connected Lie subgroups of G with Lie algebras
t and f) respectively, and left invariant metric induced by the one
of 0 (see [6, Lemma 4.1]). Moreover, H2 has sectional curvature
K = K[β\, H\) = -\H\\2 (e\ is a unit vector in g\) and Γ 3 is a rank
one homogeneous space of K < 0 since it has no flat de Rham factor
(see [7, Theorem 1.5]).

Case 1.2. In this case it turns out that G has rank one. We will
prove this in the two following steps:

(1) (R(X9 Y)Y, X) < 0 whenever X, Y e g' are independent.
(2) There is X e gf with (R(X, H)H, X) < 0 for all nonzero

Hea.

Hence, applying Lemma l.l-(ii) we get K(X, Y + H) < 0 for all
Y independent of X in gf and all Hea; consequently the geodesic
γ in G satisfying y(0) = e, /(0) = X has rank one and therefore
rank(G) = 1.

Step 1. This will be done by showing that DHl is positive definite
and the unit vector Ho e a with {Ho, H2) = 0 and {Ho, H\) >
0 gives DHQ positive semidefinite. Then by applying Remark 1.2,
assertion (1) follows.

Note that the choice of Ho means that ad#o has a positive eigen-
value on the one-dimensional space Q\ and has purely imaginary
eigenvalues on g'2 (γ(H0) = {Hθ9 H{) > 0 and a(H0) = {Ho, H{) =
0). By the argument explained above in Case 1.1, one sees that ad#o

is skew symmetric on gf

2 . Thus, DH vanishes on g'2
 a n d hence it is

positive semidefinite on gf.
Since {H\, Hi) > 0, it follows that DH2 is positive definite on g\.

It remains to show that DH2 is positive definite on g!2. We observe first
that if ca is the real part of a root of α on gr it follows from Lemma
5.4 (iv) of [1] that c > 0 (gf is abelian). Hence, both eigenvalues of
ad#2 |^ have positive real part and since Ύτ(DH^) = Tr(ad#|fl/) > 0,
we have that DH, / cannot be negative definite. Thus, it suffices to
prove that DH ^ is definite. If this is not the case, then there is
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X e 02 w ^ DH2% = 0. Since DH0 vanishes on 0'2, it follows that
DHX = 0 for all H e a, which is impossible because the only one-
parameter subgroups which are geodesies are exp tH, /f G α (see [8,
Theorem 3.6]).

Step 2. Since Z>//2 is positive definite, we can choose a nonzero
vector e2 G 02 such that Atf2e2 is a nonzero multiple of e2 {DH ^ is
symmetric). Let e\ be a nonzero vector in 0̂  and let X = e\ + 2̂
For any Hea, Dne\ and £#£2 are orthogonal, and Dπe\ = 0,
AF/^2 = 0 if and only if H is orthogonal to H\, and H is a multiple
of HQ respectively (Ho is the same as in Step 1). Since (Ho, Hi) = 0
and H\, #2 a r e independent, it follows that DJJX φ 0 for all nonzero
Hea.

Now, we observe that (DHX, SjyΛΓ) = 0 for all H e 0 {SHe\ =
0, Z)^ |fl/ = 0 , DH^I is a multiple of^ |fl

Hence K(X9 H) = \SHX\2 - \[H, X]\2 = -\DHX\2 < 0 for all
nonzero Hea.

Case 2. We will show that either G has rank one or G is an irre-
ducible symmetric space of rank two.

Case 2.1. gf abelian with three pairwise independent real roots
λ\, A2 and A3.

We prove next that G has rank one. By permuting λ\, λ2 and A3,
one can assume that A3 = aλ\ + bλ2 with both a and b positive.
In fact, we define Ht e a by λi(H) = (H, Ht) (/ = 1, 2, 3) for
all H e a. Then the Hi's are three nonzero vectors in the two-
dimensional space α and since (Hi, Hj) > 0 (see [1, Lemma 5.4(iv)])
the angle between any two of them is at most π/2. We assign the
indices so that H\ and H2 are the two outer vectors and H3 lies in
between.

Since 0; (/ = 1,2,3), the root space associated to A/, is one-
dimensional and the roots A/ are pairwise independent, we have an
orthonormal basis {e\, e2, e3} of 0' (see [1, §5.3 (Hi)]) such that:

[H, e{\ = λx(H)eι, [H, e2] = λ2(H)e2, [7/, e3] = λ3(H)e3

for all Hea. Hence ad# is symmetric for all Hea and its matrix
with respect to the basis {e\, e2, e3} is given by

H,H{) 0 0
0 (H,H2) 0
0 0 (H,aHλ+bH2)
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Let HQ be a unit vector in α such that (HQ, H\) = 0 and (HQ, H2)
> 0. Observe that DQ = ad#o is positive semidefinite and restricted
to g'9 , = g'; ® g'; is positive definite. Also, Z>i = ad# is posi-

Δ , J Λ2 Λ3 1

tive semidefinite and restricted to gΊ i = g'; Θ g'; is positive defi-
1 , J Λj Λ3

nite. Hence, if X = c^i + J ^ + ^^3 is a unit vector and 7 E g',

it follows from the curvature formula given in Lemma 1.1-(i) that,

(R(X, Y)Y, X) = 0 if and only if P|0> Y is proportional to de2+ee3

and p\Q> Y is proportional to c^i + ^ 3 , where p denotes the orthog-

onal projection onto the indicated subspaces.
By a simple computation we deduce that if e φ 0, (R{X, Y)Y, X)

= 0 if and only if Y is proportional to X. Hence, choosing d Φ
0, e Φ 0 (or c / 0) for any Y independent of X in g' we get

', Y) Y, X) < 0. Moreover, for any nonzero vector H e a,

- d2λ2(H)2 - e2λ3(H)2 < 0

since A2(//) and A3(i7) (or λ\(H)) cannot be simultaneously zero.
Therefore, if γ is the geodesic in G with γ(Q) = e, γ'(0) = X, 7 has
rank one and hence rank(G) = 1.

Case 2.2. Assume g' nonabelian. It turns out that either G has
rank one or G is an irreducible symmetric space of rank two.

It follows from the lemma that there are three real roots λ\, λ2

and A3 = λ\ + λ2 with λ\ and λ2 independent. Moreover, 3 is the
eigenspace associated to A3. By the same argument as in Case 2.1
we get an orthonormal basis {e\ ,e2,e{) of g' such that [//, e{\ =
λi(H)ei(i= 1,2,3) for all He a.

Let Hi be defined by A/(/J) = (H, Hf) (i = 1, 2), H e a. We
consider a unit vector HQ in α such that (HQ , H\ + H2) = 0 and
(Ho, Hι)>0.If H = {Hi +H2)l\Hχ +H2\, the matrices of ad#o and
ad- with respect to the orthonormal basis {e\, e2, £3} are given by

0
0 (H0,H2) 0
0 00

•,#1) 0 0

0 (H,H2) 0
0 0 (H,Hι+H2)]

Since g' is nonabelian, ([ΰf

λ , ΰ'λ ] C ĝ  + A =3) and we
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may assume that ε > 0 (otherwise we change e?> to -e?). Set e4 =

i / 0 , e5 = H, a = {H9Hή9 β = (i/,/f 2> and 7 = < # 0 , # i > > 0 .

Then, {ei, e 2 > ^3, £4 > ^5} is an orthonormal basis of 0 satisfying:

e2] = ε e 3 , [ei, e3] = 0 = [e2, ^3],

^1] = ye\, [e4, e2j = -7*2, [^4, ^3] = 0 = [e4, e5],

j [e5, ^2]

with ε > 0, 7 > 0 and a + β > 0. Moreover, a > 0 and β > 0 since
* ( * i , e3) = \ε2 - α(α + /?), ^ ( ^ 2 , e3) = | ε 2 - )ί(α + β) (see §2, (3))
and the sectional curvature K < 0. This special case will be studied in
detail in §2. As we will see, G is isomorphic to the Lie group of 3 x 3
upper triangular real matrices of determinant one, and it follows from
Corollary 2.8 that G has rank one or two. In the latter case, provided
that one multiplies the metric by a suitable positive constant, G is
isometric to the irreducible symmetric space of noncompact type and
rank two SL(3, R)/ SO(3) (see Remark 2.8).

By examining all the cases, Theorem 1.3 follows. Note that G sat-
isfies visibility or not depending on whether dim α = 1 or 2.

COROLLARY 1.4. The simply connected homogeneous spaces H of
nonpositive curvature, with no flat de Rham factor, with dim(/f) <
5 and rank(7/) = 2 are H2 x T2, H2 x T3 or H an irreducible
symmetric space of noncompact type.

Proof. It is immediate by Theorem 1.3 and Corollary 4.4 of [6].
H2, T2 and Γ 3 are as in the statement of Theorem 1.3.

2. Example. Let 0 be the Lie algebra of dimension five generated

by {ei}Si=\ a n c * L * e bracket given by

[e\, e2] = εe3, [ex, e3] = 0 = [e2, e3],

[e4, ex\ = yex, [e4, e2] = -7*2, [e4, e3] = 0 = [e4, e5],
[e5, e2] = βe2, [e 5 , e3] = (α

where α, /?, 7, ε are positive real numbers. (Note that Q' is spanned
by {ex, £2, £3}.) We will say that such a 0 is associated to (α, β,

Let ( , ) be the inner product in g with respect to which {£/}^=1

is an orthonormal basis of g, and let G be the simply connected Lie
group with Lie algebra 0 and left invariant metric associated to ( , ) .
By a straightforward computation, using the connection formula and
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the definitions of R, K we get:

(1) Veιe{=γe^ae5, ^ef2 = \εe3, V eχe3 =-\εe2,

Ve2e2 = -ye* + β*s > Veie3 = \εeγ, V ^ 3 = (a + /?)e5,
v e ^ 4 = - ^ i > V ^ = - α ^ , Ve2e4 = γe2,
V , / 5 = -β*2 > V ^ 4 = 0, Ve3e5 = -(a + β)ey

(2) R{ex, e2)eι = ( | ε 2 + aβ - γ2) e2 , R{ex, e 2)^ 2 = (y 2 - α ^ - | ε 2 ) ^ ,

R(ex, 62)e3 = - ^ e ( α + ^ ) e 5 , JR(^ 2 , e3)ex = \ε(yeA + α ^ 5 ) ,

R{e2,ez)e2= {-\ε2 + β{a +β)) e3, R(e2, e3)e3 = (\ε2 - β(a +β)) e2,

R{e{,e3)e{ = (~\ε2 + α(

(3) K{eι,e2) = -\ε1 + γ2 -aβ, K(eχ, e3) = \ε2 - α(α + β),

K(e2 , e3) = \ε2 - β(a + β), K(e4 , e2) = K(e4 , eχ) = -γ2 ,

K(e5, e2) = -β2 , K(e5, £>3) = - ( α + βf.

We note that in all computations above, a, β, γ and ε may be arbi-
trary.

(4) We remark that it will be shown in §3.1 that if a = β = e/2 —
γ/^3 then G is a symmetric space.

Conversely, assuming G symmetric (i.e., Vi? = 0) we get a =
β = e/2 = γ/y/3. This follows by a straightforward computation of
Veχ{R{e\, ^2)̂ 1) ? Ve2(i?(£i, ^2)̂ 3) and Veι(R(e\, ^2)̂ 4) using Vi? =
0 and (1) and (2) above.

The following lemma is proved in [7]. We state it here since it
is applied in Lemma 2.2 to obtain an expression for the sectional
curvature that will be used repeatedly.

LEMMA 2.1. Let g be a solvable Lie algebra with an inner product
( , ) such that α, the orthogonal complement of g' is abelian. If
ad// |fl/ is symmetric with respect to ( , ) for all H e a, then

{R{X + H, Y + T){Y + T),X + H)

= {R(X9 Y)Y,X)-\[H9 Y]-[T,X]\2

- ([H9 Y] - [T9 X]9 [X, Y]) + ([[H9 Y] - [T9 X]9X]9 Y)

-([[H9Y]-[T9X]9Y]9X)

for all X, Y e 0' and H,Tea.
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LEMMA 2.2. Let a, b, c, r, s, t be real numbers and H, T ele-
ments in α then

(R(aex + be2 + ce3 + H, rβ\ + se2 + te3 + T)(re{ + se2 + te3 + T),

ae\ + be2 + ce3 + H)

= [(cs - bt)2K(e2, e3) + ε(cs - bt)(aλ,(T) - rλx(H))

- {aλ{{T) ~ rλx{H))2]

+ [(at - cr)2K(e{, e3) + ε(at - cr)(bλ2(T) - sλ2(H))

-{bλ2{T)-sλ2{H))2]

+ [(as - br)2K(ex, e2) + e(as - br)(cλ3(T) - tλ3(H))

- (cλ,(T) - tλ3(H))2]

where λ; (/ = 1, 2, 3) are defined by

(U,γe4 + ae5), λ2(U) = (U, -γe4 + βe5) and

= (λι + λ2)(U) = (a + β)(U, es) for all Uea.

Proof. First of all we show that,

(R(ae\ + be2 + ce3, re\ + se2 + te3)(re\ + se2 + te3), ae\ + be2 + ce3)

= (as - br)2K(eι, e2) + t2(a2K(eι, e3) + b2K(e2, e3))

+ c2(r2K(ex,e3) + s2K(e2,e3))

- 2ct(arK(ex, ez) + bsK(e2, e3)).

Let X = ae\ + be2 and Y = re\ + se2. Applying the linearity of R
and using that R(X, Y)e3 is an element in o (see (2)) we have,

(R(X + ce3,Y + te3)(Y + te3), X + ce3)

= (R(X, Y)Y, X) + 2ct(R(X, e3)Y, e3) + t2(R(X, e3)e3,X)

+ c2(R(e3,Y)Y,e3).

Now, since R(e\, e3)e3 is a multiple of e\ (see (2)), an easy calcu-
lation shows that

(ii) (R(X, e3)e3, Y) = arK(ey, e3) + bsK(e2, e3).
Hence, (i) is deduced from (ii) and the equality

(R(X, Y)Y,X) = \X/\Y\2K(ex, e2) = (as - br)2K(ex, e2).

Now, the formula stated in the lemma follows by a straightforward
computation using Lemma 2.1.

Next, in the two propositions below we find necessary and suf-
ficient conditions for G to have nonpositive curvature in terms of
a, β, γ, ε.
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PROPOSITION 2.3. If G has sectional curvature K < 0 then the
following relations among α, β, γ, ε hold: ε2 < 2β(a + β), ε2 <
2α(α + β), γ2 < \ε2 + aβ. Jft particular, K(e2, ^3), ^ ( ^ 1 , e3)
^(^1 ? ^2) #re ## strictly negative.

Proof. We first show that if ε2-2β(a+β) > 0 (or e 2 -2α(α+£) > 0)
then there exists a plane π in Q with sectional curvature J5Γ(π) > 0.
In fact, if we take H = 0, T = λe4 we have λ3 = A3(Γ) = 0 and
λi = λi(7") = -yλ with λi 7̂  0 for any nonzero real λ. Hence, by
applying the curvature formula given by Lemma 2.2, we get

{R(ae\ + ceτ>, e2 + λe4)(e2 + λe4), ae\ + ce?)

= c2K(e2, e3) + a2(K(ex, e2) - λ\) -

for any real numbers a, c. If we consider this expression as a poly-
nomial of second degree in α (K < 0, λ\ Φ 0) its discriminant Δ is
given by

Δ = c2(λ2(ε2 + 4K(e2, e3)) - 4 / ^ , ^ 2 ) ^ ( e 2 , e3)).

Note that ε2 + 4K(e2, ^3) = 2(e2 - 2β(a + β)). Thus, by choosing
λ so that

we get Δ strictly positive for any nonzero real c. For this λ and
nonzero c, a real number a can be chosen satisfying

K(aex + ce3, e2 + λe4) > 0.

The other statement follows in the same way by interchanging the roles
of e\ and e2 . Hence, the first two inequalities follow.

Now we prove the last one. In the same way as above, if we take
T = λ{-βe4 + γe5) with λ φ 0 (hence, λ2 = λ2{T) = 0 and λ3 =
A3(Γ) = Λy(α + β) φ 0) and applying the curvature formula again, we
have

(R(be2 + ce3, ex + T){ex + T), be2 + ce3)

e3) - A2) - ελ3bc,

which considered as a polynomial (of second degree) in c has dis-
criminant

Δ = b2(λj(ε2 + 4K(eι, e2)) - AK{ex, e2)K{ex, e3)).
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Note firstly that ε2 + 4K(e\, e2) = 2(-e 2 + 2(y2 - aβ)). Thus, if we
assume 2(γ2 - aβ) - ε2 > 0 (or y2 > ε2/2 + aβ), taking λ in such a
way that

) 2 - λ\) X 3

for any nonzero real b we get Δ > 0. Hence, a real c can be chosen
such that K{be2+ce?>, e\+T) > 0. The assertion follows since K < 0.

PROPOSITION 2.4. 77*e conditions ε2 < 2β(α + β), β2 < 2α(α + β),
72 < ^e2 + oίβ are sufficient for G to have sectional curvature K < 0.

Proof. We note from the curvature formula given in Lemma 2.2
that each term in between brackets is a polynomial of second de-
gree {K(e\, e$), K(e2, £3) and K(e\, ^2) are negative) in (cs - 6ί),
(at - cr) and (αj - br) respectively, with discriminant

(bλ2(T)-sλ2(H))2 (ε2 + 4K(eue3)), and

(cλ3(T) - tλ3(H))2 (ε2 + 4K(eue2)).

Under our assumption, ε2 < 2J?(Q: + β), ε2 < 2α(α + jff) and
72 < \ε2 + aβ, these discriminants are nonpositive and therefore
each polynomial is also nonpositive. Thus,

K(aex + be2 + ce3 + H, rex + se2 + te3 + T) < 0

for any real a9b,c,r9s9t and H, Tea. Hence, K < 0.

Next, under the assumption K < 0, we will get some conditions
for G to have rank one.

PROPOSITION 2.5. The real number ε must satisfy ε < a+β. More-
over, G has rank one if ε < a + β.

Proof. The condition ε < a + β follows immediately from the first
two inequalities of Proposition 2.3. We note that {a+β)2 < 2a(a+β)
or (α + β)2 < 2β(a + β) depending on whether β < a or a < β
respectively. Consequently, ε < a + β if and only if ε2 < 2a(a + β)
or ε2 <2β(a + β).
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Next we check the last statement. Using Lemma 2.2, for each Y e g '
orthogonal to e3 and T e a, we have

(R(ex + e2,Y + te3 + T)(Y + te3 + T),e{+ e2)

= t\K{ex, e3) + K(e2, e3)) - tε(λx - λ2)

-λ2-λ2 + \(ex+e2)ΛY\2K(ex,e2).

This expression is a polynomial p(t) of degree two in t whose dis-
criminant Δ is given by

A = e2{λx-λ2)
2

+ 4(K(ex, e3) + K(e2, e3))(A? + λ\ - Ifo + e2) Λ Y\2K(ex, β2)).

Now, we assume ε < α + β . Since ί < 0 we have

Δ < δ 2 ^ ! - λ2f + 4(K(ex, e3) + K(e2, e3))(λ2

ι + λ\).

If we substitute the expressions for K(e\, e$) and K(e2, e$) into the
expression above, we get

Δ < ε2{λλ - λ2)
2 + 4 (\ε2 - (α + ^ ) 2 ) (λ2 + λ\)

= ^2(A! - A2)
2 + 2e2(λ2 + ̂ ) - 4(α + ^)2(Af + ^ )

= ε2(3A? + 3A| - 2λ{λ2) - 4(α + ^) 2 μf + λ\).

Now, we consider the two cases, T Φ 0 and Γ = 0. If T Φ 0, since
λ\(T) and ^2(Γ) are not simultaneously zero, 3λ2 + 3λ2 -2λ\λ2 >
(λ\ - λ2)

2 > 0. Hence, if e < a + β , we get

Δ < (a + β)2Oλ\ + 3λ2

2 - 2λxλ2) - 4(α + β)2(λ\ + λ\)

= -(a + β)2(λι+λ2)
2<0,

and then p(t) < 0 for all real t, T Φ 0 in α and 7 in g' orthogonal
to e3.

If T = 0, />(ί) = t2{K{ex, β3)+ΛΓ(e2, e3))+\{eλ+e2W
2K{ex, ^2) <

0 whenever t Φ 0 or y , orthogonal to ^3, is independent of e\ + e2.
(Note that K(e{ +e2,Y) = K(ex, e2) < 0.)

Therefore, K(ex+e2, Y+te3 + T) < 0 for all real number ί, Γ G α,
7 E J ' orthogonal to 3̂ and independent of ex + e2. Thus, the
geodesic y in G satisfying γ(0) = e and /(0) = βi + e2 has rank
one.

PROPOSITION 2.6. The numbers a, β, γ satisfy the inequalities γ2-
2αjS - β2 < 0 αnrf y2 - 2αβ - α 2 < 0. Moreover, if γ2 - 2aβ - β2 < 0
or y2 - 2α/? - a2 < 0, G /zαs raw/:

Proof. The first two inequalities follow immediately from Proposi-
tion 2.3 (γ2 -aβ < e2/2).
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Now, we will show the last assertion. Applying Lemma 2.2, for each
Tea and Y in Q' orthogonal to e2, we have

(R(eι +e3,Y + se2 + T)(Y + se2 + T)9ex+ e3)

= s2{K{eλ, e2) + * t e , *3)) + se(λx + A3) -λ\-λ\

+ \(eι+e3)ΛY\2K(eι,e3)=p(s),

where A; = Λ, (Γ) (/ = 1, 3) are defined as in Lemma 2.2.
Note that p{s) is a polynomial of degree two in s whose discrimi-

nant Δ is given by

Δ = ε2{λλ + A3)2 + A{K{ex, e2) + K(e2, e3))

x(λ2

ι+λl-\(eι+e3)ΛY\2K(eue3)).

Substituting K(eχ, ^2) a n d ^(^2 5 ^3) for its expressions, and since
K < 0 we get,

Δ < e2(λι + A3)2 + 4 (-^ε 2 + γ2 - 2αj? - £ 2 ) (A? + Â )

= ε2(λv + A3)2 - 2ε2(A? + λ\) + 4(γ2 - 2α£ - )52)(A? + λ\)

= -β2(A! - A3)2 + 4(γ2 - 2α)ff - β2)(λ2 + A2).

To prove that G has rank one we will see that if γ2 - 2aβ - β2 <0
then K(eι+e3, Y+se2 + T) < 0 for all s, T in α, F E g ' orthogonal
to 2̂ and independent of e\ + e3. We first consider the case T Φ 0
since Ai(Γ) / 0 we have Δ < -ε2(Ai - A2)

2 < 0 and hence, the
polynomial p satisfies p(s) < 0 for all s9 T Φ 0 in α and Y e tf
orthogonal to e3. If T = 0,

p(j) = J2(ΛΓ(^ , e2) + ΛΓ(e2, ^3)) + l(*i + ^3) Λ Y\2K{ex, ^3) < 0

whenever ί / 0 or 7 e j ' 5 orthogonal to ^3, is independent of
ei + e3 (K(e\, ^3) < 0 and iΓ(^2, £3) < 0). Therefore, the assertion
is proved and consequently, the geodesic γ in G such that y(0) = e
and /(0) = 1̂ + e3 has rank one.

If γ2 - 2α/? - a2 < 0, interchanging the roles of e\ and e2, we also
obtain that G has rank one.

We summarize the preceding results in the following:

THEOREM 2.7. Let G be the simply connected Lie group with Lie
algebra associated to (a, β, γ, e) and left invariant metric as defined
above. Then G has sectional curvature K < 0 if and only if

F2

ε2 < 2a{a + β), ε2<2β(a + β) and γ2<-γ + aβ.
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Moreover, G has rank one if any of the following conditions hold:

ε<a + β, γ2-2aβ-a2 < 0 , γ2 - 2aβ - β2 < 0.

COROLLARY 2.8. If G has nonpositive curvature, then G has rank
one or two and in the latter case, a = β = ε/2 = γ/y/3.

Proof. We note first that the roots of α in g' are given by λ\(H) =
(H9γe4 + ae5), λ2(H) = (H, -γe4 + βes), λ3=λ{+λ2 for all He a,
where λ\ and λι are independent with associated root spaces g'λ =

Re, (/ = 1, 2, 3). Thus, go = 0 = αo and hence G has no de Rham
flat factor. Then, it follows from Theorem 1.3 of [7] that G has rank
one or two. If rank(G) = 2, Theorem 2.7 implies that ε = a + β and
γ2 - 2aβ - β2 = 0 = γ2 - 2aβ - a2. Hence, a = β = ε/2 = γ/y/3.

REMARK 2.8. It will be shown in §3 (3.1) that when a = β = ε/2 =
y/v/3, G coincides with the symmetric space SL(3, R)/ SO(3), pro-
vided we multiply the metric by a suitable positive constant.

3. The group of 3 x 3 upper triangular real matrices of determinant

one.

3.1. Let G be the solvable simply connected Lie group of 3 x 3-
upper triangular real matrices of determinant one. Its Lie algebra β
consists of the 3 x 3-upper triangular real matrices having trace zero
and has a basis {Ei}5

i=ι given by

l =

0
0
0

: 1

0
0

: i
0

o

1
0
0

—

0
1
0

0
0
0.

0
2
0

5

0'
0
1

o :

0
2

E2 =

and

and

0
0

.0

£5

El

0
0
0

= 1

=

0
1
0.

(i

•2
0
0

, Eι =

^5+El),

0 0
- 1 0

0 - 1

0
0
0

0
0
0

1
0
0

where

Let a, β, γ, ε be any positive real numbers. Setting e\ = 2aE\,
e2 = 2βE2, e3 = (4aβ/ε)E3, e4 = γ/3E4 and e5 = \{βE\ + aE2

5),
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we obtain a basis {e*}^=1 of g satisfying:

= 0 = [e2> ^]>
[̂ 4, ^3] = 0 = [e4, <?5],
[*5, ^3] = (α + β)e3.

That is, 0 is isomorphic, as a Lie algebra of matrices, to the Lie
algebra associated to (a, β, γ, ε) which was studied in §2. I learned
of this realization from [9]. Thus, considering on 0 the inner product
( , ) such that {ei}5

i=ι is an orthonormal basis of 0, we see that
any choice of (α, β, γ, ε) gives us a left invariant metric on G.
Moreover, almost all these metrics are not isometric. Note, since 0'
is nonabelian, it is deduced from the proof of Theorem 1.3 that any
left invariant metric on G of K < 0 is, up to an isometry, the metric
associated to some (α, β, γ, ε) .

In the case a = β = ε/2 and y = (λ/3/2)ε, provided that we
multiply the metric by a suitable positive constant, G is isometric
to the irreducible symmetric space of noncompact type and rank two
H = SL(3, R)/SO(3). In fact, G = NA where N = expn, n is the
Lie algebra of 3 x 3-strictly upper triangular real matrices and A is the
group of diagonal real matrices of determinant one. Since SL(3, R) =
SO(3)ΛOί is an Iwasawa decomposition for SL(3, R), it is well known
(see [1, Lemma 2.4] and [10]) that G acts simply transitively on H.
Now, if p is the orthogonal complement of so(3) in sί(3, R) with
respect to the Killing form B on sl(3, R) (B(X ,Y) = 6 tτ(X, Y)), p
may be identified with the tangent space to H at o = ISO(3), and the
metric on T0H corresponds to the restriction of the Killing form to
p. If θ is the Cartan involution in sί(3, R) relative to so(3) (Θ(X) =
—X*) then the inner product in 0 = n θ α, where α is the Lie algebra
of A, obtained from the metric on p is given by

(X+H, Y+T) = -\B(X, ΘY)+B(H, T) forX, Y en, H, Tea.

It is a straightforward computation to see that the metric given
by a = β, fi = 2α and y2 = 3α2 (that is, {EiyEj) = 0, i φ j ,
| ^ | 2 = \E2\

2 = | £ 3 | 2 = l/4α 2 , | £ 4 | 2 = 3/α2, \E5\
2 = 1/α2) is a

multiple of the metric ( , ) . Moreover, ( , ) = 12α2( , ) .

3.2. Next we will obtain a comparison result between the symmetric
metric on G and nonsymmetric metrics. The idea is to compare the
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curvature associated to the 4-tuples (a, β, γ, ε) and
2αo) where the last one corresponds to the symmetric case.

Let α, β, γ, ε be positive real numbers and let {Ei}5

i=ι and {̂ /}̂ =1

be as in (3.1). We consider the inner product ( , ) on 9 such that
iei}l=i i s a n orthonormal basis of 9. Then we have:

I 2 * 117 |2 _

l = 7 T T l£2i
2 = 9.

In order to compare the metrics associated to different (a, β, 7, β)
it is convenient to multiply the metric ( ) by the factor 4α 2 β 2 /ε 2 .
Then the orthonormal basis with respect to the new metric, that we
also denote by {e/} and ( , ) is given by

e{ = -=Eι, e2 = -E2, e3 = 2E3,
p a

Now, observe that the metric on 3 = RE3, the center of gf, does
not depend on (a, β, γ, ε) that is, if Z\, Z 2 G 3 then (Zi, Z2) =
(Zi, Z2)o where ( , )o is the metric associated to (αo > Λ) ? 7o ? £0)
Therefore, since [g;, gf] = [ί1, 31] C 3 (3 1 is the orthogonal comple-
ment of 3 in g'), for X, Y e 0' and //, Γ e α, the curvature formula
given in Lemma 2.1 tells us that the last three terms of its expression
do not depend on (a, β, γ, ε).

Let X = aEχ+ bE2 and Y = Yf + dE3 with Y' e 3^ . Then, from
(i) in the proof of Lemma 2.2, we get

Substituting for K(e\, e2), K(e\, e$) and K(e2, £3) and taking into
account that the metric was multiplied by Aa2β2/ε2, we get

γ\-A2

Λ ) — ——~

4ε2
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where Δ 2 , defined by the expression \X Λ Yf\2 = (a2β2/ε4)A2 does
not depend on (a, β , γ, ε).

If we write [//, Y] - [T, X] = r£Ί + s £ 2 + tE3, we have

Therefore, if i?o denotes the curvature tensor associated to the metric
( , ) 0 , we get

H,Y + T)(Y+T),X + H)

= {R(X, Y)Y, X) - {R0(X, Y)Y, X)o

- \[H, Y] - [T, X]\2 + \[H, Y] - [T, X]\l

Δ2 (γ2 -aβ yl~
F2 F2

16 [4 [a2 al)+ 4 ^ 2 βij

2 (β Pθ\ r
~a \a~^ΌJ~ \β βo,

\εo b ) Vεo b J

Now, if we choose a$ = βo, εo = 2αo and γ$ = 3αg, the right hand
side of (*) becomes

A2fγ2-aβ 1\ d2 (a2 b2\(ε2

4 \ e2 2) ' 16

Hence, if (a, β, γ9 ε) satisfies the conditions ε < 2α, ε < 2β and
y2 < ε2/2 + aβ , it follows that

, Y+T)(Y+T),X + H)

Γ), X + H)o < 0.

If R(π) = (R(X + H,Y + T)(Y + T), X + H), where π is the

plane spanned by {X + H, 7 + T} , we get ίΓ < 0 and the stronger
condition R(π) < Ro(π) for every plane π c g.

Conversely, if i?(π) < i?o(^) for all plane π c 0, considering
the planes spanned by {X, 7} (X, 7 e 3 1 ), {ex + T, ex + H) and
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{e2 + T, e2 + H) (T and H such that λx{T) φ λx{H)) respectively,
we get in each case γ2 < ε2/2 + aβ , ε < 2β , ε <2a. Thus, we have
the following:

PROPOSITION 3.2. Let G be the simply connected Lie group of 3 x 3-
upper triangular real matrices of determinant one with the left invariant
metric associated to (a, β, γ, ε). Then, R(π) < i?o(π) for cill plane
π C g if and only if γ2 < ε2/2 + aβ, ε <2a and ε < 2β. Moreover,
R(π) = Ro(π) for all plane π c g if and only if γ2 = ε2/2 + aβ,
ε = 2α α«ύf ε = 2β {that is, G is symmetric).

In particular, G is not symmetric if R(π) < Ro(π) for some plane
π c g.

3.3. It follows from Theorem 2.7 that:
(i) G admits many different metrics of nonpositive curvature of

rank one and only one metric, up to multiplication by a positive con-
stant, of rank two. So the rank in a homogeneous space is not invariant
under the change of homogeneous metrics of nonpositive curvature.
This situation does not occur for Hadamard manifolds which are com-
pact or have finite volume (see [4]).

(ii) G with the left invariant metrics of rank one, gives us examples
of homogeneous spaces of rank one having two-flats. In fact, A =
exp(α) is a flat totally geodesic submanifold isometrically imbedded
in G of dimension two.

Acknowledgment. I would like to thank the referee for very detailed
suggestions which helped to improve the exposition of this paper,
shortening the proof of Theorem 2.1 and strengthening the statement
of Theorem 2.7.
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COMBINATORIAL TECHNIQUES AND
ABSTRACT WITT RINGS III

R O B E R T W. F I T Z G E R A L D

We introduce an equivalence relation on maximal elements (i.e.,
-x) is maximal). We present a form theoretic proof of Mar-

shall's classification of reduced Witt rings, thus providing a possible
outline for proving the full elementary type conjecture. The same re-
lation restricted to elements of index two yields characterizations of
Witt rings with a factor either of local type or a group ring extension
of a totally degenerate Witt ring.

(R, G, q) will denote a finitely generated (abstract) Witt ring R,
its associated group of one-dimensional forms G and the associated
quaternionic mapping q. As in [7, 8] we use the abstract Witt ring
as defined by Marshall-Yucas [13] rather than Marshall's modification
in [12]. The technique introduced here is the formation of equiva-
lence classes of maximal elements (x e G with D(l, -x) maximal).
While forming classes is not combinatorial, it does blend well with the
techniques of the previous two papers in this series.

We start by discussing a four step approach to the elementary type
conjecture, two of which are statements about classes of maximal ele-
ments. The four steps can be verified when R is reduced, thus giving
a new, form-theoretic, proof of Marshall's classification theorem [11].
Each step is valid for Witt rings of elementary type (as opposed to
the main steps in Marshall's proof or in the proofs for \G\ < 32).
And, when restricted to maximal elements with [G : D{\, -x)] = 2,
the proposed approach leads to new results clarifying the structure of
such Witt rings. The first section concludes with a verification (with
some details omitted) of the four steps when R is reduced. Of in-
terest here is the identification, when R is reduced, of the quotient
structure defined in [8] with a Pfister quotient as defined by Marshall
in [12].

For non-reduced R, maximal elements and their classes are difficult
to handle. In the second section we consider only elements of index
two (x e G with icD(l, -x) — 2). The restricted equivalence classes
behave well and occur in two types. Using classes of type 1, we slightly

39
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improve the characterization of local type factors in [6]. Working with
classes of type 2 yields an analogous result for factors which are group
rings over totally degenerate Witt rings (called S-rings here).

The last section takes up two extreme cases. First we consider the
case where there are two classes of elements of index 25 one of each
type, which generate B = q(G, G). We show R is then a product of
two Witt rings, one of local type and the other an S-ring. Then, since
many of the previous results involve conditions of the form Q(x) Π
Q(y) = 19 we consider the case where some Q(x) is contained in all
Q(y). Under quite general conditions (satisfied if x has index 2, for
example) we show R is of local type.

The notation is the same as in [7, 8]. Thus for any group H,
H' denotes / / - { I } . For a e (?, Q(a) = {q(a,x)\x e G} and
YR = {Q(a)\a e G}. B denotes the image of q, g(G9 G). The value
set of (1, -x) is D{\, -*) = {y e G\q(x,y) = 1}. The radical of
G is rad(G) = {x e G\D(l, -JC) = G}. We say R is degenerate if
radG Φ {1} and totally degenerate if radG = G. We will assume
throughout that R is non-degenerate.

R is of local type if \B\ = 2. We let An denote the group of
exponent two and order 2n. The group ring R[Δn] is again a Witt
ring. The direct product in the category of Witt rings is the fiber
product over Z2, which we will denote by the usual product symbol.
Thus:

R{ x R2 = {(ri, 7*2)|rz G Ri and dimri = dim ^(2)}.

R is of elementary type if it can be built from Z2, Z4 and Witt rings of
local type by a succession of group ring extensions and products. We
will often use orthogonal decompositions as defined in [3]. Subgroups
H\, ... , Hn of G yield an orthogonal decomposition (denoted H\ _L
•• ±Hn) if G = H{ x x Hn and */ €D( ί, -*,-) for all Xt eH t ,
xjeHj, iφj.

1. Reduced Witt rings. The two notions which form the basis for
all three sections are:

DEFINITION. An element m £ G% is maximal if D(l, -m) c
D{\, -x) implies x = 1 or D{\, -m) = D(ί, -x). The collection
of maximal elements of G will be denoted by M.

DEFINITION. For α, b e M write a ~ b if a = b or ab e M.
We say α and ft are equivalent, and write α « b, if there exist
C\, ... , Ck G Λf such that: <z ~ ci ~ cι ~ ^ c^ ~ b.
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Equivalence is clearly an equivalence relation. Denote by C(a)
the equivalence class of a e M. Let H(a) be the subgroup of G
generated by C{a).

Recall the quotient structure of [8]. For g e G' let Q(g) =
{q(g, h)\h e G} and H(Q(g)) = {h e G\Q(h) c Q(g)}. Set G/g =
G/H(Q(g)) and define:

qg:G/gxG/g-+B/Q(g)9

(aH9bH)»q(a9b)Q(g).

If qg is linked the resulting Witt ring is denoted R/g. We consider
a possible outline for proving the elementary type conjecture:
(1.1) (a) G is generated by M.

(b) If a φ b, where a, b e M9 and if x e H(a) 9 y e Hφ)
then x eD(l9 -y).

(c) qa is linked for all ae M.
(d) If G = H(ά) for some a e M and if i?/Z? is of elemen-

tary type for all b e M then R is of local type or a group ring.

Proving these four steps would prove the elementary type conjec-
ture. The first two steps show there is an orthogonal decomposition
(cf. [3]) G = H{aχ) JL - i. H{at), where C{ax), ... ? C{at) are the
distinct equivalence classes. Each H(a) generates a Witt ring, if each
of these Witt rings is of elementary type then so is R [3, 3.8]. We may
thus assume G = H(a) for some ae M. Steps (c) and (d) constitute
an induction argument on \G\ which completes the proof.

There is some evidence for the truth of the elementary type con-
jecture. It holds if R is reduced (proven for abstract Witt rings by
Marshall [11], simplified in [12]; cf. [2], [4], [9] for the field case) and
if |G| < 32 (proven by a variety of unrelated counting arguments).
There is also some evidence that (1.1) will yield a proof of the ele-
mentary type conjecture. First, the four steps of (1.1) can be proven
if R is reduced, thus given a new proof of Marshall's result. Sec-
ond, each of the four statements of (1.1) are true for Witt rings of
elementary type. This may appear to be an insignificant advantage.
However, none of the intermediate results in Marshall's proof of the
reduced case are valid for non-reduced Witt rings. Only reduced Witt
rings are determined by their space of orderings. Also, very few of
the counting arguments used for \G\ < 32 yield information about
larger Witt rings. Third, (1.1) can be followed partially for maximal
elements with [G : D{\, -x)] = 2 yielding significant improvements
over previous results (see §2, 3). Unfortunately, we have been unable
to prove any new cases of the elementary type conjecture via (1.1).
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The remainder of this section is devoted to sketching the proofs of
(l.l)(a)-(d) if R is reduced. Thus for this section (R,G,q) will
denote a finitely generated, reduced Witt ring. Then D{\, 1) = {1}
and as a result, if a e D(l, b) then D{\, a) c D(l, b).

LEMMA 1.2. Let a, b eG.

(i) If D{\,a)=D{\,b) then a = b.

(ii) # /s maximal iff a is rigid.
(iii) .For any g e G*, g is a product of elements of D(l, g) ΠM.

In particular, G is generated by M.

Proof (i) D(l9a)=D(l,b)cD(l, -ab). Thus a, b, -ab, and
hence - 1 , lie in D{\, -<z&). i? reduced implies ab = 1.

(ii) {JC G (?|Z)(1, -α) C D ( l , -x)} = { c G G|x € D( l , a)} since
i? is reduced. Then a is maximal iff this set is {1, a} iff a is rigid.

(iii) If \D(l,g)\ = 2 then * e M by (ii). If |Z><1,*)| > 2
write Z)(l, q) = {1, £ , x3 , . . . , xt} . Then g = X3>-xt. D{1, X/) $

, g) by (i), so by induction each xt is a product of elements in
g). π

LEMMA 1.3. Let a, b eM. Then either:

(i) Z)<l,-αδ)=Z)<l,-α)nZ><l,-a),
or

(ii) a& b.

In particular, ifaφb, x e //(α) αnrf y € H{b) then x e D(l, - y ) .

Proo/. Suppose first that 1 e D(α, 6). Then α, b e D(l,ab)
and - α # € Z)(l, —α) Γ)D(l, -b). We obtain (i), since R is reduced.
Next suppose that 1 $ D(a9 b). Then D(a9 b) c M by [1, I 1.2]
and (1.2)(ϋ). We may choose c eMnD{l, ab) by (1.2)(iii). Hence
c € M and αc, 6 C G Z)(α , 6 ) c A f . S o α ~ c ~ ό . D

The following is of some interest independent of (1.1). We show
that when R is reduced, the quotient defined in [8] is the same as the
Pfister quotient defined by Marshall in [12].

LEMMA 1.4. Let aeM. Then:

(i) H(Q(a)) = {l9a} = D(l9a),
(ii) R/a is well defined, and

(iii) R/a is reduced.
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Proof, (i) Let A e H(Q{a)). Then <?(-l, A) € β(A) c β(α) . By
linkage (on G) there exists z eG with:

Thus A G zZ)(l, 1) = {z} and z 6 Z)(l, a). So H{Q{a)) c 7)(1, α) =
{1, <z}. We have equality since clearly 1, a e H(Q(a)).

(ii) Let / be the fundamental ideal of R. Since R is reduced we
may assume [12, 3.23] that q : G x G —> I2/I3 is given by q(x, y) =
((-x, -y)) + / 3 . Thus β(α) = (1, -α)J + 73 and by (i):

, a) x G/D(l, α> -> I1 / ( I , -α>7 + 7 3 ,

There is a well-defined Pfister quotient i?/ann(l,α) [12, 4.24]
which is reduced [12, 6.10]. Note that

ann(l, a) = ({(1, -χ)\χ e D{\, a)}) = ((1, -α)).

Set / = 7/((l, -a)). The quaternionic map for 7?/ann(l, a) is:

q*:G/D{l,a)xG/D(l9a)-*J2/J3,

Map a : I2 -+ J2/P by α(??) = φ + ((1, -tf)) + / 3 . This is clearly
a surjective homomorphism with (1, —a)I + 73 c ker α. If 9? € ker α
then ί? - η € ((1, - α ) ) , for some η € I3. Thus ^ - f/ = (1, —α)χ
for some form χ, and indeed χ € I as φ - η e I2. Hence ^ €
(l,-fl)/ + /3.

Thus α is an isomorphism and the linkage of q* implies qa is
linked.

(iii) Let y = yD{\, α) and suppose tfα(-l, y) = 1. Then ^ ( - 1 , y)
G β(α) and as in the proof of (i) we obtain y e Z>(1, a). Hence
y = T in G/D(l, 0) and so 7?/<z is reduced. D

The proof of (1.1) (d) is long and tedious. We present one part of
the proof both to give the flavor of the whole and because a weaker
version of this result holds generally for Gorenstein Witt rings (see
[5]).

PROPOSITION 1.5. Let aeG* be maximal. Suppose G = H(ά) and
R/a is a group ring. Then R is a group ring.

Proof. We may write G = Go x {1,1}, where { l 5 f l } c G o C ( ? =
Go {1, 0 > a n ( * ί is two-sided rigid in R/a. Write Go = {1, a} 770

where a £ HQ and - 1 e 77Q .
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We will assume R is not a group ring and first show that D(l, —s)
has index 2 in G. Let Ao e HQ. Then hot, -Aί € Af*, the maximal
elements of G. The value set in G, Z)(l, x ) , is

If JC € Af * then either:

(i) x9 ax eM
or

(ii) x e M and Z)(l, <z;c) = {1, a, x, ax}
or

(iii) ax eM a n d D ( l , s) = {l,a,x, ax}.

Now if ±/zoί e Af or dbzAoί € Af then R has two-sided rigid elements
(1.2) and is thus a group ring. Otherwise, one of two cases occurs:

(i) hot e M, D(l, ahot) = {1, hot, a, ahot}, -ahot e M and
D(l, -hQή = {1, -Λoί, a, -ahot} or

(ii) ahot e M, D(l, hot) = {1, hot, α, ahot}, -Aoί e AT and
Z>< 1, -αAoί) = {1, - h o t , a, -αAoί}.

We see then that for all AoG//o either Aô  or -hot lies in D ( l , - α ) .
In particular, taking Ao = 1, we have t or -t lies in D{\, —α). Thus

If ί e ΰ ( l , -fl> then G = {1, - α , ί, -at}H0 and I G # ( 1 , -α) = 2.
Similarly, /GZ)(1, -fl) = 2 if - ί € D(l, ~ α ) .

We now obtain the desired contradiction by showing that G = H{a)
implies D(l, -α) does not have index 2 in G. Note that i?/α being
a group ring implies \M*\ > 2 and so \M\ > 2. Since G = H(a),
there exists m e M - {a} with am 6 Af. Now - 1 ^ Z>(1, -a)
since R is reduced, so either m or —m lies in D(l, -a) (since
/GZ)(1, -a) = 2). But - m € Z)(l, a) implies D( l , -m) C D( l , - a )
and m $ M. And m e Z)(l, -a) implies D(\, - am) c D{\, - a )
and am $ M. Thus we have contradicted the initial assumption that
R is not a group ring. D

2. Elements of index 2. We now drop the assumption that R is re-
duced. (R9 G, q) will denote a finitely generated non-degenerate Witt
ring. Let i{x) denote the index of D{\, -x) in G (this is a slightly
different use of i(x) than in [6]). Maximal elements in an arbitrary
Witt ring are difficult to work with. If, however, we restrict our atten-
tion to those maximal elements with i(x) = 2 then the equivalence
relation of § 1 is a useful tool.
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Set T = {xe G\i(x) = 2} and take the same relation of §1 on T,
namely, for x , y e T write x ~ y if x = y or xy € T. Thus for
x, y e T, x ~ y iff /(xy) < 2. In what follows we will frequently
use Marshall's result [12, 5.2]:

\D{\, -xy)/D(l ,-x)nD(l, -y)\ = \Q{x) n Q(y)\.

LEMMA 2.1. Let x, y eT and suppose x Φ y. Them
(i) i(χy) = 4,
(2) D(l, -xy) =D(l, -x)ΠD(l, -y),
(3) Q(χy) = Q(x)Q(y).

Proo/. By definition, /(xy) > 4 while D(l, -x) n D ( l , -y) C
Z)(l, -xy) and /<;(£( 1, -Λ:) nD(l, -y)) < 4. This proves (1) and
(2). Further, 2 = |£>(1, -y)/D{\, -x)nD(l, -xy)\ = \Q(x)Γ)Q(xy)\.
Thus Q(x) c Q(xy), as \Q(x)\ = 2. Similarly, Q0>) c Q(xy). Then

c Q(xy) c β(Λ)Q(y) which gives (3). α

LEMMA 2.2. Lei x, y G T and suppose x ~ y. Then either
D{\, -x) = D(l, -x) = D{\, -y) or Q(x) = Q(y). Further, if both
occur then x = y.

Proof. Suppose D(l., -x) φ D(\, -y). Then

\D{\, -xy)/D(ΐ, -x)ΠD(ί, -y)\ > 2.

Hence \Q(x) n Q{y)\ = 2 and Q{x) = Q(y). If D{\, -x) =
D{\, -y) and β(x) = β(y) then

2 = |β(*) n Q{y)\ = \D{\, -xy)/D{\, -x)\

shows i(xy) = 1 and x = y. D

THEOREM 2.3. ~ is an equivalence relation on T.

Proof. We need only check transitivity. Suppose x, y, z e T with
x ~ y and y ~ z. We may assume xφy, xφ z and y Φ z, so that
/(jcy) = z(yz) = 2. We show i(xz) = 2.

Suppose not. Then x Φ z and xy Φ yz. By (2.1), D(l, -xz)
is contained in Z>(1, -x), C{\, -z), D{\, -xy), D(l, -yz) and
hence D{\,—y). Now £>(l,-x) ^ D{\,—z) since otherwise
D(l, —JC) = D{\, -xz) and /(xz) = 2. There can only be three
distinct subgroups of index 2 containing D(\, -xz), as /(xz) = 4.
We must have £>(1, -x) = D(l, -y) or D(l, -y) = D(l, - z ) .
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We will assume D{\, -x) = D{\, -y) = D{\, -xy), the other case
being similar.

We thus have D{\, -y) = D{\, -x) ^ D(l, -z) and so Q{y) =
Q(z) by (2.2). We claim i(xyz) = 4. Otherwise, D{l,-xz) c
Z>(1, -y) implies Z>(1, -xz) is contained in D(l, -y), Z>(1, —z),
D(l,—yz) and Z)(l,-xj;z), all of index 2. Again there are
only three distinct subgroups of index 2 containing D{\, -xz) . So
Z>(1, -xyz) equals one of D(ί, —y), Z)(l ,-z) or D(l, —yz), which
we know are distinct. But D{\, -y) = Z)<1 ? -xyz) implies D{\, -y)
= Z)(l,-xz) and /(xz) = 2, Z)(l,-z) = Z)(l?-xj;z) implies
D(l, -z) = D(l, -xy) = Z)(l, -y). And Z)(l, -yz) = Z)(l, xyz)
implies £>(1, -yz) = D{\, -x) = Z)(l, -y) = D(l, - z ) . All three
possibilities are impossible which proves the claim.

We thus have i(xyz) = 4 and D(l,-xz) c £>(l,-y). So
Z)<1, -xz) = D{\, -xyz) c Z)(l, -y), D{\, - z ) . Hence:

, -xz>
1

D(l,-xyz)r\D(l,-y)

D(\,-xy)
D{\, -xyz)Γ)D(l, -z)

which is impossible as Q(y) = Q(z).

= \Q(xyz)nQ(y)\,

= \Q(xyz)nQ(z)\,

NOTATION. For a e T let C'ia) denote the class of a in T under
the relation ~ . Let C(a) = C'{a) U {1}.

LEMMA 2.4. .For each aeT, C(a) is a subgroup of G.

Proof. Let x, y € C{a). \ϊ x or y equals 1 then xy € C(a), so
suppose x, y eC'(a). Then x ~ y and so /(xy) < 2. If /(xy) = 1
then xy = 1 e C(α). If /(xy) = 2 then x y e Γ , and xy ~ x ~ α.
Hence xy € C(a). D

PROPOSITION 2.5. Let aeT. Then either:
(1) Q(a) = Q(x) for all x e C{a), or
(2) D{\, -a) = D(l, -x) for all x € C'(α).

Proof. Set Q(α) = {x € C'(a)\Q{x) = Q(α)} U{1} and C2(a) =
{x e C(a)\D{l, -x) = £>(1, -a)} U {1}. We first claim that d(β)
is a subgroup of C(α). If x, y e CΊ(Λ) and x φ 1, y / 1 then
Q(x) = Q(a) = Q(y). So Q(xy) c β(Jc)βCv) = β(α). Hence either
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xy = 1 or Q(xy) = Q(a). In either case, xy e C\(a). Next we
claim C2(a) is a subgroup of C(a). If x , y £ C2(α) with x ^ 1,
y φ 1 then Z)(l, -x) = Z)(l, -y) c £>(1, - x y ) . So either xy = 1
or D(l, -xy) = £>(1, -a) and so xy e C2(a).

Now C{a) = Cχ(a) U C2(a) by (2.2). Hence either C(a) = Ci(α),
yielding (1), or C(a) = C2(a), yielding (2). D

DEFINITION. Let α e <? have index 2 (i.e. a eT). We say α has
*>;/?£> 1 if Q(a) = β(jc) for all x € C'(έi). We say a has ίype 2 if
D{\, -α) = Z)(l, -x) for all x e C(α) and |C(α)| > 4.

Every α E Γ thus has type 1 or type 2 (but not both, by the re-
striction that \C(a)\ > 4 for type 2). We observe that if a has
type 2 then C(a) c D(l, -a) (namely, if m e C'(a), m Φ a then
£>(1 ? - m ) = D ( l , -α) = D ( l , - a m ) . In particular, - 1 e D ( l , - α ) .
Hence C(α) C/)( l , - α ) ) .

Elements of index 2 having type 1 have appeared in the literature
before. We reformulate two such results in this language.

PROPOSTION 2.6 {Marshall [12]). Suppose G is generated by ele-
ments of index 2. Then R is a fiber product of Witt rings of local
type.

Proof. We have G = C{a{) C(ak), where the C'(α/) are the
distinct classes in Γ. If x € C(α, ), y € C(α/) with / Φ j then
x e D(l, -y) by (2.1). In particular, no C{a{) has type 2, else all
the C(fl; ) are contained in D(ί, -α/) and so G c ΰ ( l , - α 7 ) . We
thus have G = C(ax) x x C(α^) and β(C(α/)) n β(C(α7)) = {1}
if / 7̂  7 . Thus i? is a fiber product with the / th factor generated by
C(di). Since |β(C(α/))| = 2 (a has type 1) each factor is of local
type. D

PROPOSITION 2.7 {Fitzgerald-Yucas [6]). i>/ a e T have type 1.

Set H = C{a) and K = ΓlΛe^^ί1 > ~ Λ )
(1) // H n AT = {1} then G = H ±K is an orthogonal decomposi-

tion.
(2) If further, Q(a) £ Q(K) then R = RιxR2 is a fiber product

with R\ of local type.

Proof. We refer to [6]. C{a) = -M and C{a) = M2. The
conclusion of (1) is Proposition 2.12(1)—(4) which depends only on



48 ROBERT W. FITZGERALD

Proposition 2.11 which in turn depends only on the assumption that
HC\ K = {1}. Thus (1) holds; statement (2) is Theorem 1.1. D

We note that, in (2.7), if K generates a Witt ring of elementary
type (as in an inductive argument) then condition (1) is sufficient to
show R is a fiber product with one factor of local type [3, 3.8].

We turn now to elements of index 2 having type 2. Among Witt
rings of elementary type these arise from fiber products R\xR2 where
Rι = S[A], S a degenerate Witt ring with radical Ds satisfying
\DS\ > 4 and |Δ| = 2. Here any a = (g, 1) e Ds x 1 has type 2
and C(a) = Ds x 1. One difficulty is that here the class does not gen-
erate a factor of R. In the simplest case where S is totally degenerate
(i.e. Ds = Gs) then the element {t, 1) (where Δ = (1, t)) is required
along with C(a) to generate R\. Note that Q(t, 1) = Q(C(a)).

DEFINITION. A Witt ring R is an S-ring if R is a group ring ex-
tension S[A] where S is a totally degenerate Witt ring, jCr̂ l > 4 and
|Δ| = 2.

DEFINITION. Let a e T have type 2. An element t e G is a cap
for a if β(ί) = fi(C(fl)).

We will concentrate on the easiest case of type 2 elements. We seek
conditions on an a 6 T having type 2 analogous to (2.7) which will
yield an S-ring factor.

In what follows we will often use the observation that Q(a) c Q(b)
iff G = D(l, -a)D(l,-ab).

LEMMA 2.8. Let aeT have type 2.

(1) Q{C{a)) = \JmeC{a)Q{m).
(2) For any g eG and m, m' e C{a) we have Q(m) c Q(g) iff

Q(m')cQ(rnm'g).

Proof. (1) We check that the union is a group. Let p\ e Q{m{)
and p2 € Q{mi) where m\, πi2 € C(a). If either p\ = 1 or pi = 1
then pιp2 e Q{m\) U Q(m2). Suppose /?i ̂  1, p2 φ 1. Then /?! =
#(mi, y) for some y φ D{\, -m\) = Z)(l, —m^) , since α has type
2. Thus p 2 = Q(m2>y) and /?i/?2 = <?(wiW2,y) € Q(mιm2) with

(2) β(m) c Q(g) iff G = D(l,-m)Z)(l,-w^> iff G =
ΰ(l,-/«')ί)(l,-/wί) (as D{l,-m) = D{\, -m1)) if β(m') c
Q(mmrg). Π
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PROPOSITION 2.9. Let a e T have type 2 and set P = Q(C(a)).
For any g e G either:

(1) Q(g)ΠP = {l},or
(2) Q(g) ΠP = Q(m), for some m e C{a), or
(3) PcQ(g).

Proof. Suppose Q(g) ΠP φ {1} or P. Then there exist m.\ and
m2 e C{a) with Q{mx) c β(s) and Q(m2) £ Q{g) by (2.8). Set
Hi = H(Q(g)) and //2 = H(Q{mιm2g)). We wish to show #i Π
C{a) = {1, mi}. Now m2 € H2 and mi ^ i/2 by (2.8). Let m3 €
Hi n C'(a) so that Q(m3) c β(^) . Applying (2.8) with m = m3 and
m' = mim2m3 yields Q(mim2m3) c Q{m\m2g) Thus mim2m3,
and so mim3, lies in / ^ . This shows m\{H\ n C'(Λ)) C /^2.

If |#i nC(α) | / 1 then there exist distinct x, yeHxnC(a). So
m\x, m\y, myxy €H2 and hence mi e H2, a, contradiction. Thus
i/i Π C'(α) = {mi} as desired. D

We can now re-derive a result of Kula [10]. We use the counting
formula of [7]:

J l__ -2 . v - 1

nβ(z) | " | β ( χ z ) Γ

COROLLARY 2.10 (Λ:i//α). Let α ^ T have type 2 and set P =
Q(C(a)). If Q(G) = P /ten i? is an S-ring.

Proof. Choose b φ C(a) and apply (*) with z = b. We split
the left-hand sum into sums over C'{a), bC(a) and G\{\, &}C(α).
For any x ^ C(a) we have β(x) = P by (2.9). Set g = |G| and

| = | P | . We obtain:

We split the right-hand sum into sums over {1}, C'(a)Γ)D(l, -b)
and D{\, -b)\C(a). We obtain:

+ l + ̂ + ,
c 2 c

where ί/ = |D(1, -b) D C(α)|. Equating the two sides gives:

c-2 = d(c-2)
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and so d = 1. Thus for all b $ C{a), D{\, -b) n C{a) = {1}. In
particular, C(a) c D{1, -a) c C(a) and so I>(1, -a) = C{a).

Fix b i C{a). Since iGC(a) = i{a) = 2 and D{\, -b) n C(α) =
{1} we get D{\, -b) = {1, -b). Further, -1 e I>(1, -a) (cf. the
remarks after (2.5)) and so D{\, b) = {I, b} also. Thus b is 2-sided
rigid and E = S[A] is a group ring extension. We have |Δ| = 2 and
D(\, -a) = Gs since i(a) = 2. Moreover we have shown that if
x GG'S then x e D(\, -a) = C{a) and so £>(1, -x) = D{\, -a) =
Gs. Thus S is totally degenerate. Finally, by definition of type 2,
\GS\ = \C(a)\ > 4. So i? is an S-ring. •

We refine (2.9):

COROLLARY 2.11. Let as T have type 2 and set P = Q(C(a)).
Let geG.

(1) If Q(g) n P = Q{m) for some m e C'(a) then Q(mg) ΠP =

{!}•
(2) If Pc Q{g) then Q(g) = Q(mg) for all m e C(a).

Proof. (1) Q(m) c Q(g) implies Q{mg) c Q(g). Hence if Q(mg)
Γ\P Φ {1} then Q(mg) Γ\P = Q(tn) also. Suppose this occurs and
choose n e C'(a)\{m}. Applying (2.8) with m = m and m' = n
to Q(m) c Q(g) gives Q(n) c Q(mng). Next, using M = m and
m' = m« for Q(m) c Q(mg) gives Q(mή) c Q(mng). Hence
β(m) c Q(mn)Q(n) c Q(mng). Apply (2.8) to this inclusion with
m = m and m' = n to obtain Q(n) c Q(ίf), which is impossible.
Thus Q(mg)ΠP = {\}.

(2) Fix m0 € C(α). Then Q(mm0) c β(g) for all m € C(α) and
so Q(m) C β(wo^) by (2.8). Thus P c (2(wog). From β(w0) c

c β(^) we obtain β(mo^) = Q(g). •

We may do better assuming there is a cap for a.

PROPOSITION 2.12. Let aeT have type 2 and let t be a cap for a
(i.e. β( ί ) = Q{C{a))). Set P = Q(C(a)) ,L = {xe G\Q(x) n P = 1}
and K = D(l, -a) n Z>(1 ,-t). Let geG. Then:

(1) Lcί.
(2) // β(^) Π P = Q(m) for some m e C'{a) then mgeL.
(3) If PC Q(g) then either:

(i) There exists a unique m € C(a) with mtg eL, or
(ii) Q(mg) = Q(m'gt) for all m, m'e C(a).
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Proof. (1) If Q{x) n Q(t) = 1 then Z)<1, -jcί> = D(l, -JC) n
, -ί) and so x G Z)(l, - ί ) . Also Q(x) 0 Q(a) = 1 so that

xeD(l,-a). Thus LcK.
(2) is (2.11)(1). For (3) we first show there is at most one m e

C(a) with mgt e L. Suppose not, that is, Q{m\gt) n P = 1 =
Q{m2gt)nP. then for all ra, Q{m)nQ(migt) = 1 (i = 1, 2) and so
D(l, -ntigt) =D(1, -m)nD(l, -mrriigt). Taking m = mim2 and
/ = 1 , 2 shows (1, -mxgt) = D(l, -m2gt). From Q(migt)nQ(t) =
1 we obtain D(l, -mi) = £>(1, -ί) Π Z)(l, -mxgt) = D(l, -ί) Π
/ ) < l , - m 2 ί ί > = i ) ( l , - m 2 g > . Further, Q(m{g) = Q(m2g) by (2.11)
and hence m\ = m2.

Suppose now that (i) does not occur. Then P c Q(rngt) for all
m E C(fl) by (2.11)(1). So Q(mgt) = Q(m'g) for all rn, rn'e C(a)

D

There are no examples of Case 3(ii) of (2.12) occurring among Witt
rings of elementary type. The possibility that it might occur is the
major obstacle to showing every a of type 2 with a cap arises from a
fiber product where one factor is an S-ring.

We do however have a result analogous to (2.7).

P R O P O S I T I O N 2.13. Let aeT have type 2 with a cap t. Set H =
{l,t}C(a) and K = D(l9-a)nD(l,-t).

(1) If t £ D{\, -a) then G = H ±K is an orthogonal decompo-
sition.

(2) If further Q(t) n Q(K) = 1 then R = RxxR2 where Rx is an
S-ring.

Proof (1) Let g e G. Either g or gt e D(l, -a) as i{a) = 2.
Further, C(a)nD(l, -ί) = 1 and |C(fl)||D(l, -ί>l = 1̂ 1 bY ( 2 8)
Thus G = UmeC(tf) w/)(l, — ί). There exists then an m G C(α) such
that rag or ragί is an D{\, -α) Π D(l , -t) = K and so g G # X .

If ^ G / ί n ^ then KcD(l,-g) since g € / / . For all m e C(a),
g e D{\, -ra) = Z)(l, -a) and g G 2)<1, - ί ) , since g eK. Hence
H c D(l, -g). Then G = HK c D(l, -g) and £ = 1. Thus
7/ΠΛΓ = 1 and G = HIK is an orthogonal product.

(2) follows from (1) by [3, 3.4]. D

We again note that if K in (2.13) generates a Witt ring of elemen-
tary type then condition (1) yields R = R\ x R2 with R\ an 5-ring
by [3, 3.8].
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We may combine (2.7) and (2.13) with a change in hypotheses.

T H E O R E M 2.14. Let aeG have index 2 . Set P = Q(C(a)). Sup-
pose:

(1) There exists xeG with Q(x) = P, and
(2) For no y is Q(my) = Q{m'xy) for all m, m' e C(a).

Then R = R\ x R2 with R\ of local type if a has type 1 and R\ an
S-ring if a has type 2.

Proof Set H = {l,x}C(a), L = {y e G\Q(y) n P = 1} and
K = f\heHD(l, -A). We first note that L c K. If a has type 2 then
this is (2.12). If a has type 1 and y e L then Q(m)Γ\Q(y) = 1 for all
m e C(a), as β(m) = β(α) = P. Thus Z>(1, -my) = D{\, -my) n
D(l, -y) and y € D{\, -m) for all m e C(α). Then y e K as
Q(x) = β(α) implies x € C(a) and 7/ = C(α).

We next show G = HL. If α has type 2 then this is (2.12) com-
bined with assumption (2) which eliminates Case 3(ii). Suppose a has
type 1. If g e G, g £ L then Q(a) c Q(g) since \Q(a)\ = 2. As-
sume, by way of contradiction, that g £ HL. Then Q(a) c Q(mg)
for all m e C(α). So Q(m) c Q(mg) c Q(m)Q(g) = β ( ^ ) , which
implies Q(mg) = Q(g) for allm e C(<z). Again noting that the x
of assumption (1) lies in C(a), we see that assumption (2) is contra-
dicted. So G = HL.

We thus have G = HK as well and (by [6, 1.2]) that HΓ)K=l.
Then G = H xK, L c K and G = HL imply that L = K. Thus
G = # i. # and P ΓΊ β(fc) = 1 for all k e K. We obtain that R =
RχxR2 with i?! generated by H. If α has type 1 then |β(if) | = 2
shows R\ is of local type, while if α has type 2 then (2.10) shows R\
is an S-ring. D

3. Extreme cases. As before, T is the set of xeG with /<?/)( 1, —Λ:)
= 2. We consider the simplest of cases where T has both elements
with type 1 and type 2.

THEOREM 3.1. Suppose Q(G) is generated by the Q(x) with x e T.
Suppose further that T = C'(a) U C'(b), where a has type 2 and b
has type 1. Then 7? = R\ x i?2 where R\ is an S-ring and R2 is of
local type.

Proof Set P = β(C(α)) and B = Q(G).
ΛQ? 1. For all g e G\ Q(g) = β(ft), β(m), Q(m)Q(b)9 P or

5 , for some m e C\a).
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There are three possibilities for Q(g) Π P by (2.9). First suppose
Q(g) n P = 1. Then [B:P] = 2 implies \Q(g)\ = 2. Thus g e T =
C{a) u Cφ) and certainly g £ C'(a) so that Q(g) = Q(b) (as b
has type 1).

Next suppose Q(g) n P = Q(m) for some m e C'(a). Then
Q(grn) n P = 1 by (2.11), and so gm = 1 or gm e C\b). In
the first case Q(g) = Q(m) and in the second case Q(g) = Q(bm) =
Q(b)Q(m) by (2.1). Lastly, suppose P c β(s ) . Again [5 : P] = 2
implies Q(g) = P or 5 .

5ί^p 2. There exists / e G with Q(t) = P.
Suppose otherwise. Then for any g e G either g E C(a)C(b) or

= JB , by Step 1. We again use the counting formula from [7]:

~2 i V Li V -L-
\Q(ax)\ \Q(a)\ y ^ a ) \Qiy)Y

Set e = \C(b)\, g = \G\ and c = \C(a)\ = \P\. We note that
H(Q(m)) = {1, m} and H(Q(bm)) = {\,m}C{b) for m e C(α).
Further, C(α)C(Z>) c I>(1, -a), by (2.1) and the remark after (2.5).
We split the left-hand sum into sums over C'(a)\{a}, C'(b), aC'(b),
(C-{a)\{a})C(b) and G\C(a)C(b). We obtain:

f - 2 , g - 1 , g - 1 , ( c - 2 ) ( g - l ) g - c g
2 4 4 4 Ac

We split the right-hand sum into sums over {1}, C'(a), C'φ),
C {a)C'φ) and D(l, -a)\C(a)C(b). We obtain:

c ~ λ i e ~ l i ( ^ - 1 ) ( g ~ 1 ) , (gβ)-ce

Equating the two sides gives:

c - 2 e-\ 3 _ c - 2 e-\ e

-5/4= -3/2,

a contradiction.
Step 3. There is a cap ί for a with ί ^ D{\, —α).
Set F = H(P). We will show F £ D{\, -a), since then if ί 6

F\Z>(1, -a) we must have β(ί) = P lest ί E C{a) cD(l,-f l>. Let
/ = |F | and / = IF n/)(l, - α ) | . We use the same formula as Step 2.
On the left-hand side we need only replace the sum over G\C{ά)C{b)
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by sums over F\C(a) and G\(C(a)C(b)uF). We obtain:

c - 2 e-l e-l ( c - 2 ) ( e - l )
+ + +

/c
2c2c 4c

On the right-hand side we need only replace the sum over
D{l,-a)\C(a)Cψ) by sums over (F n D{19-a))\C(a) and
D(l, -α)\(C(α)C(£>) U F ) . W e obtain:

~ 1 , e- 1 , ( g - l ) ( g - 1) , * - c (g/2) -ce-ί + c
- 1 - 1 1 1 .
2 2 4 c 2c

Equating the two sides gives:
e-l f - c c - ce - f _ - 1 e-l i - c c - ce - ί

f/4c = i/2c,

f=2i.

Thus F <£ D{1, -a) as desired
Step 4. Finish.
Let t be the cap of Step 3. Set H={1, t}C(a) and K = D(ί9 -a)Γ)

D{1, -t). Then G = H LK by (2.13). Arguing as in Step 1, we see
that if k e K then Q(k) = Q(b), P or B. Hence (in the nota-
tion of [8]) |ΓAΊ < 3 and the Witt ring R2 generated by K is of
elementary type [8, 3.7]. Indeed, Rι is of local type since otherwise
Rι is a product of two local factors and \P\ = 2, which is impossible
(\P\ = \C(a)\ > 4 since a has type 2). Thus R = R{ x R2 by [3,
3.4], R2 is of local type and R\, generated by H, is an S-ring by
(2.10). D

Both (2.7) and (2.13) require a condition of the form Q(x) <jL Q{K),
where i(x) = 2, to deduce that x arises from a fiber product. We
consider the case of extreme failure of this condition, namely Q(x) c
β(j/) for all y e G\ When i(x) = 2 we will show that Q(jc) c β(y)
for all y, implies R is of local type.

LEMMA 3.2. Suppose Q(w) c Q(g) for all g e G\ Let H =
H(Q(w)). In the quotient R/w set Ί = zH and Q{z) = Q(z)/Q{w).
Then:

Y- (h/q)-ε(z)\D{l,-a)ΠH\ ( \\ 2
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where A e G\H, h = \H\, q = \Q{w)\ and:

0, ifzHnD(l,-a) = 0,

1, ifzHΓ\D{\,-a)φ<3.

Proof. R/w is well defined by [8, 2.4]. We start with the counting
formula of [7] for both (R, G) and (R/w, G):

)nQ(ά)\ \Q(ax)\

Note that for all g G <? and A € / / , we have Q(g) = Q{gh).
Namely, Q(gh) c Q(g)Q{h) = (2(^)β(«;) = β(^) and similarly

LHS(2)= j ;

•.|β(*)nβ(α)| \Q(ax)\
xeaH

^ 1
~ q\Q(a)\ + q\Q(a)\+ 4- IQW nβ(α)|

z^l,α

Now |β(g)| = \Q{g)\q and |β(x)nβ(fl)| = |fl(*)nfl(5)|tf. Thus:

1

(2(3)11(2(32)1

Equation (3) then implies:
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We turn now to the right-hand side of (2):

Σ \Q(y)\

-2 , v \D(l, -a)nzH\
\Q(a)\ ^ \Q(z)\

zeG

If ε(z) = 1 then D(l, -a) n zH = x{D{\, -a) n H) for some
x e zH. Thus \D(l, -a) n zH\ = e(Ί)\D{l, -a) n H\. Further,
since D(ί, -a) = D{1, -a)D(\, -aw)/H, if z £ D{\, -a) then
D{\, -a) Π z// = 0 . We obtain:

-2 , ^ ε(z)\D(l,-a)ΠH\

Equating the two expressions for LHS(2) and RHS(2) (and mul-
tiplying by q) gives:

e(z)\D(l,-a)ΠH\

\Q(z)\ j 1(2(3)1'

This is easily seen to be equivalent to (1). D

THEOREM 3.3. Suppose Q(w) c Q{g) for all g e G'. Set H =
H{Q{w)). If \Q{w)\ < \H\ then R is of local type.

Proof. Let q = |β(tu)|, h = \H\,z = zH and Q(z) = Q(z)/Q(w).
We assume, if possible, that g Φ H. Set g = \G\. If there exists
an a e C?\// such that \D(l, -a) n H\ < h/q then LHS(l) > 0
while RHS(l) < 0, a contradiction. Hence for all a e G\H we have
\D(l,-a)ΠH\>2h/q.

We now count, in two ways, the number N of pairs (a, x) where
a € G\H, x £ H' and a € D(\, -x). If we fix x, the number of
pairs with this x is

\D(l, -x) n (G\H)\ = \D{\, x)\ = |D<1, -x) n i/ |
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Thus

{h-l)g ^p \D(l,-χ)nH\.

Denote this last sum by β .

Next, if we fix a e G\H the number of pairs with this a is

\D{\ ,-a)DH'\ = \D(l, -a) n H\ - 1.

So:

aeG\H

Comparing the two expressions for N yields:

{ g ) β ,

{g-h)2h-{g-h)q<{h-\)g-βq.

Now β = ΣχeH. \D(l,-x)nH\>(h-l). Thus:

(g - h)2h -(g- h)q + (h- l)q < (Λ -

gh- gq + g < 2h2 - 2hq + q,

g(h-q+l)<2h(h-q) + q.

N o t e t h a t h - q + l>l s i n c e h > q. T h u s :

2h(h-q) + q h

since q <2h. Thus g = h and so G = H. Then Q(g) = <2(w) for
all g € Cr'. i? is then of local type [7, Th. 5]. D

The condition q = \Q{w)\ < \H\ = h in (3.3) can be viewed as
follows: In the quotient R/w, let a = aH. Then |£>(1, -a)\ =
\D(1, —a)\q/h. Thus if q < h, no value group increases in size upon
passing to the quotient.

COROLLARY 3.4. Suppose ioD(l, -w) = 2 and Q(w) c Q(g) for
all g € (? Then R is of local type.

Proof. Clearly |Q(iw)| = 2 < \H{Q(w))\, so apply (3.3). D
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COROLLARY 3.5. Suppose Q{w) c Q(g) for all g e G'. Suppose
further that the counting coefficients of the Hasse diagram for YR (cf
[7, p. 49]) are positive. Then R is of local type.

Proof Here we get \Q(w)\ = 2 by [7, Th. 13], so apply (3.4). D
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DENTABILITY, TREES,
AND DUNFORD-PETTIS OPERATORS ON U

MARIA GIRARDI

If all bounded linear operators from L\ into a Banach space X
are Dunford-Pettis (i.e. carry weakly convergent sequences onto norm
convergent sequences), then we say that X has the complete continu-
ity property (CCP). The CCP is a weakening of the Radon-Nikodym
property (RNP). Basic results of Bourgain and Talagrand began to
suggest the possibility that the CCP, like the RNP, can be realized
as an internal geometric property of Banach spaces; the purpose of
this paper is to provide such a realization. We begin by showing
that X has the CCP if and only if every bounded subset of X is
Bocce dentable, or equivalently, every bounded subset of X is weak-
norm-one dentable (§2). This internal geometric description leads to
another; namely, X has the CCP if and only if no bounded separated
(?-trees grow in X, or equivalently, no bounded J-Rademacher trees
grow in X (§3).

1. Introduction. Throughout this paper, X denotes an arbitrary Ba-
nach space, X* the dual space of X, B{X) the closed unit ball of X,
and S(X) the unit sphere of X. The triple (Ω, Σ, μ) refers to the
Lebesgue measure space on [0, 1], Σ+ to the sets in Σ with positive
measure, and L\ to L\(Ω9Σ9 μ). All notation and terminology, not
otherwise explained, are as in [DU]. For clarity, known results are pre-
sented as Facts while new results are presented as Theorems, Lemmas,
and Observations.

The following fact provides several equivalent formulations of the
CCP.

FACT 1.1. For a bounded linear operator T from L\ into X, the
following statements are equivalent.

(1) T is Dunford-Pettis.
(2) T maps weak compact sets to norm compact sets.
(3) T(B(Loo)) is a relatively norm compact subset of X.
(4) The corresponding vector measure F: Σ —• X given by F(E) =

T(XE) has a relatively norm compact range in X.
(5) The adjoint of the restriction of T to L^ from X* into L^

is a compact operator.

59
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(6) As a subset of L\, T*(B(X*)) is relatively Li-norm compact.
(7) As a subset of L\, T*(B(X*)) satisfies the Bocce criterion.
The equivalence of (2) and (3) follows from the fact that the sub-

sets of L\ that are relatively weakly compact are precisely those sub-
sets that are bounded and uniformly integrable, which in turn, are
precisely those subsets that can be uniformly approximated in L\-
norm by uniformly-bounded subsets. As for the equivalence of (6)
and (7), [G] presents the two definitions below and shows that a rela-
tively weakly compact subset of L\ is relatively Li-norm compact if
and only if it satisfies the Bocce criterion.

DEFINITION 1.2. For / in L\ and A in Σ, the Bocce oscillation of
f on A is given by

observing the convention that 0/0 is 0.

DEFINITION 1.3. A subset K of L\ satisfies the Bocce criterion if
for each ε > 0 and B in Σ+ there is a finite collection & of subsets
of B each with positive measure such that for each / in K there is
an A in & satisfying

Bocce-osc / U < e.

The other implications in Fact 1.1 are straightforward and easy to
verify. Because of (4), the CCP is also referred to as the compact
range property (CRP).

Towards a martingale characterization of the CCP, fix an increasing
sequence {πn}n>Q of finite positive interval partitions of Ω such that
V σ(πn) = Σ and πo = {Ω}. Let ^ denote the sub-σ-field σ(πn) of
Σ that is generated by πn. For / in L\{X), let En(f) denote the
conditional expectation of / given ^ .

DEFINITION 1.4. A sequence {fn}n>o in Lχ(X) is an X-valuedmαr-
tingale with respect to {9^} if for each n we have that fn is im-
measurable and En{fn+\) = fn in L\. The martingale {fn} is uni-
formly bounded provided that supπ HΛIk^ i s finite. Often the mar-
tingale is denoted by {fn, 9^} in order to display both the functions
and the sub- σ-fields involved.

There is a one-to-one correspondence between the bounded linear
operators T from Lx into X and the uniformly bounded X-valued
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martingales {/n)«^}. This correspondence is obtained by taking

T(g)= lim / fn(ω)g(ω)dμ(ω) if {/„} is the martingale,

and

Σ ^ i f Γ i s t h e °p e r a t o r

Esπn

Fact 1.1.6 implies that a bounded linear operator T from L\ into
X is Dunford-Pettis if and only if

lim sup \\En(T*x*)-Em(Γx*)\\L=0.

Since En(T*x*) = x * ^ in L i , we have the following martingale
characterization of Dunford-Pettis operators, and thus of the CCP.

FACT 1.5. A bounded linear operator from L\ into X is Dunford-
Pettis if and only if the corresponding martingale is Cauchy in the
Pettis norm. Consequently, a Banach space X has the CCP if and
only if all uniformly bounded X-valued martingales are Pettis-Cauchy.

Recall that a bounded linear operator T: L\ -• X is (Bochner)
representableiΐthere is g in Loo(μ, X) such that for each / in Lχ(μ)

Tf = ί fgdμ.

A Banach space X has the Radon-Nikodym property if all bounded
linear operators from L\ into X are Bochner representable. It is
clear that a representable operator from L\ into X is Dunford-Pettis.
Thus, if X has the RNP then X has the CCP. Both the Bourgain-
Rosenthal space [BR] and the dual of the James tree space [J] have
the CCP yet fail the RNP.

2. Dentability. In this section, we examine in which Banach spaces
bounded subsets have certain dentability properties.

Dentability characterizations of the RNP are well-known (cf. [DU]
and [GU]).

FACT 2.1. The following statements are equivalent.

(1) X has the RNP.
(2) Every bounded subset D of X is deniable.

DEFINITION 2.2. D is deniable if for each e > 0 there is x
in D such that x g cδ(D\Bε{x)) where Be(x) = {y e X :
\\x-y\\<ε}.
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(3) Every bounded subset D of X is σ-deniable.
DEFINITION 2.3. D is σ-dentable if for each ε > 0 there is
an x in D such that if x has the form x = ]Γ^=1 α/z, with
z, eD, 0 < QLl , and Σ)"= 1 α; = 1, then | | x - z , || < ε for some

The natural question to explore next is what dentability condition
characterizes the CCP. Towards this, the next definition is a weakening
of Definition 2.2.

DEFINITION 2.4. A subset D of X is weak-norm-one deniable if for
each ε > 0 there is a finite subset F of D such that for each x* in

there is x in F satisfying

Petrakis and Uhl [PU] showed that if X has the CCP then every
bounded subset of X is weak-norm-one deniable. For our characteri-
zation of the CCP, we introduce the following variations of Definition
2.3 that are useful in showing the converse of the above implication
of [PU].

DEFINITION 2.5. A subset D of X is Bocce deniable if for each
ε > 0 there is a finite subset F of D such that for each x* in S(X*)
there is x in F satisfying: if x = Σ?=i aizi w ^ Zi e D, 0 < α,,
and E"=i <*i = 1, then ΣU <*i\x*(χ - */)l < fi •

DEFINITION 2.6. A subset D of X is midpoint Bocce deniable if for
each ε > 0 there is a finite subset F of D such that for each x* in
£(£*) there is x in i 7 satisfying: if x = jZi + \zι with z, G Z) then
\x*{x - zx)\ = \x*{x - z2)\< ε.

We obtain equivalent formulations of the above definitions by re-
placing S{3F) with B(Xη.

The next theorem, this section's main result, shows that these
dentability conditions provide an internal geometric characterization
of the CCP.

THEOREM 2.7. The following statements are equivalent

(1) X has the CCP.
(2) Every bounded subset of X is weak-norm-one deniable.
(3) Every bounded subset of X is midpoint Bocce deniable.
(4) Every bounded subset of X is Bocce deniable.
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The remainder of this section is devoted to the proof of Theorem
2.7. Because of its length and complexity and also for the sake of
clarity of the exposition, we present the implications as separate the-
orems. It is clear from the definitions that (2) implies (3) and that
(4) implies (3). [PU, Theorem II.7] shows that (1) implies (2) by
constructing, in a bounded non-weak-norm-one dentable subset D, a
(cδZ>)-valued martingale that is not Cauchy in the Pettis norm. Using
Fact 1.1.7, Theorem 2.10 shows that (3) implies (1). That (1) implies
(4) follows from Theorem 2.8 and the martingale characterization of
theCCP (Fact 1.5).

THEOREM 2.8. If a subset D ofX is not Bocce dentable, then there
is an increasing sequence {πn} of partitions of [0, 1) and a D-valued
martingale {fn, σ(πn)} that is not Cauchy in the Pettis norm. More-
over, {πn} can be chosen so that \J σ(πn) = Σ, πo = {Ω}, and each
πn partitions [0, 1) into a finite number of half open intervals.

Proof. Let D be a subset of X that is not Bocce dentable. Accord-
ingly, there is an ε > 0 satisfying:

(*) for each finite subset F of D there is x*F in S(X*)
such that each x in F has the form x = ]ζ£Li aizi
with Σψ=χ &i\Xp{x - Zi)\ > ε for a suitable choice of
Zi e D and at > 0 with γ^L{ at = 1.

We shall use property (*) to construct an increasing sequence
{πn}n>o of finite partitions of [0, 1), a martingale {fn, σ(πn)}n>0,
and a sequence {Xn)n>\ i n S(3£*) such that for each nonnegative
integer n :

(1) /„ has the form fn = Σ,Eeπn
 XEXE where xE is in D,

H

(3) if E is in πn, then E has the form [a, b) and μ(E) < 1/2"
and

(4) 7ΓO = {Ω} .

Condition (3) guarantees that \J σ(πn) = Σ while condition (2) guar-
antees that {fn} is not Cauchy in the Pettis norm.

Towards the construction, pick an arbitrary x in D. Set πo = {Ω}
and /o = XXQ . Fix n > 0. Suppose that a partition πn of Ω
consisting of intervals of length at most 1/2" and a function fn =
Σεeπ XEXE with XE E D have been constructed. We now construct
fn+\, πn+{ and x*+1 satisfying conditions (1), (2), and (3).
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Apply (*) to F = {XE :E eπn} and find the associated x*F = x*+ι

in S(X*). Fix an element E = [a, b) of πn . We first define fn+\XE
Property (*) gives that XE has the form

m m
χE = ΣaiXi W i t h Σ a ' l * « + l ( X " xi)\ > €

i=\ ι = l

for a suitable choice of X[ e D and positive real numbers a\, ... ,am

whose sum is one. Using repetition, we arrange to have α/ < 1/2W+1

for each /. It follows that there are real numbers do, d\, . . . , dm

such that
a = do < d\ < - < rfm_i <dm = b

and
rf/ - rf/_i = α, (fc - α) for / = 1, . . . , m.

Set
m

J = l

Define / r t +i on all of Ω similarly. Let πnΛ.\ be the partition con-
sisting of all the intervals [d/_i, dϊ) obtained from letting E range
over πn .

Clearly, fnJr\ and πn+i satisfy conditions (1) and (3). Condition
(2) is also satisfied since for each E = [a, b) in τrw we have, using
the above notation,

m rdir m rdi

I \x*n+ι(fn+ι-fn)\dμ= Σ /
JE / = 1 Jd^

m

= (b-a)J2ai\K+\(χi -χε)\> μ(E)ε.
ι = l

To insure that {fn} is indeed a martingale, we need to compute
En(fn+ι) - F i χ E = [a, b) in πn . Using the above notation, we have
for almost all t in is,

D a Ja

b-a

m

Thus En(fn+χ) = fn a.e., as needed.
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This completes the necessary constructions. D

We need the following lemma which we will prove after the proof
of Theorem 2.10.

LEMMA 2.9. If A is in Σ + and f in Loo(μ) is not constant a.e. on
A, then there is an increasing sequence {πn} of positive finite measur-
able partitions of A such that V σ(πn) =ΣnA and for each n

and so

THEOREM 2.10. If all bounded subsets of X are midpoint Bocce
deniable, then X has the complete continuity property.

Proof. Let all bounded subsets of X be midpoint Bocce deniable.
Fix a bounded linear operator T from L\ into X. We shall show
that the subset T*(B(X*)) of L\ satisfies the Bocce criterion. Then
an appeal to Fact 1.1.7 shows that X has the complete continuity
property.

To this end, fix ε > 0 and 5 in Σ + . Let F denote the vector
measure from Σ into X given by F(E) = T(XE) . Since the subset
{frlτ : E c B and E e Σ+} of X is bounded, it is midpoint Bocce
deniable. Accordingly, there is a finite collection & of subsets of B
each in Σ + such that for each x* in the unit ball of X* there is a set
A in & such that if

F(A) \F{EX) \F{E2)
μ(A) 2μ{Ex)

 + 2 μ(E2)

for some subsets E\ of B with E( € Σ+ , then

(1)
1 x*F(Eι) x*F(A)

μ(Ex) μ(A)

x*F(E2) x*F(A)

μ(E2) μ(A)
< ε.

Fix x* in the unit ball of X* and find the associated A in &. By
definition, the set T*(B(X*)) will satisfy the Bocce criterion provided
that Bocce-osc{T*x*)\ A < ε.

If Γ*x* G L\ is constant a.e. on A, then the Bocce-osc (T*x*)\ A is
zero and we are finished. So assume T*x* is not constant a.e. on A.
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For a finite positive measurable partition π of A, denote

XE

and

and
En =

Note that for E in Σ

μ(E) ~ μ(A) )

. x*F(E) ^ x*F(A) 1

x*F(E)= ί(x*T*)dμ.
JE

Compute

(2) X*fπ~
x*F(A)

dμ
μ(A)

x*F(E) x*F{A)

μ(E) μ(A)
dμ

= μ(A)
Eeπ

μ(E)
μ(A)

x*F{E) x*F(A)

μ{E) μ(A)

μ(A)
x*F(E+)

μμΪE~)
' μ(A)

x*F{A)
μ(A)

x*F(E~)

μ(Eΰ)

x*F(A)

μ(A) }•
Since the L\ -function Γ*x* is bounded, for now we may view

T*x* as an element in LQQ . Lemma 2.9 allows us to apply property
(1) to equation (2). For applying Lemma 2.9 to A with / = T*x*
produces an increasing sequence {πn} of positive measurable parti-
tions of A satisfying

(πn) = ΣΓ)A and

For π = πn, condition (2) becomes

(3) π» μ{A)

= μ(A) \

dμ

X*F{A)

μ(E£) μ(A)

X*F(A)
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Since F(A)/μ(A) has the form

F(A) μ(Eiβ)F(Eiβ) μ{E-)F{E-)

μ(A) μ(A) μ(E}J μ(A)

) 1
+2 μ{Et) + 2 ^

applying property (1) to equation (3) yields that for each πn

L χ'f*. -
x*F{A)

μ{A)

Since \Jσ{πn) = ΣnA and

dμ < μ(A)ε.

E-^πn\i X )\A,
n<E)

we have that (x*fπn)\A converges to (T*x*)\A in Li-norm. Hence,

Bocce-osc(rχ ,U S S

Thus T*(B(X*)) satisfies the Bocce criterion, and so as needed, X has
the complete continuity property. D

We now verify Lemma 2.9.

Proof of Lemma 2.9. Fix A in Σ + and / in Loo(μ). Without loss
of generality, / is not constant a.e. on A and fAfdμ = 0. Find P
and N in Σ satisfying

A = PuN, μ(P) =

and

f
Jp

= 2M>0, [ fdμ = -2M<0.
p JN

Approximate / by a simple function /(•) = ΣaiXA (•) satisfying

(1) \\f-fhoo<M,
(2) \JAj = A and the A\ are disjoint,
(3) A\ C P if / < m and A\ c N if i > m for some positive

integer m.
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Note that

P = U At and N = \J At.

To find the sequence {πn}, we shall first find an increasing sequence
{πζ} of partitions of P and an increasing sequence {π%} of parti-
tions of N. Then πn will be the union of πζ and π%. To this end,
for each A\ obtain an increasing sequence of partitions of Ax•:

At = E? .

such that for n = 0, 1, 2, ... and k = 1,... , 2n

pi n+\ I i pi n+l _ pin pi n+\ n pi n+1 _ rx ιι(Fin\ — ^ '

For each positive integer n, let πζ be the partition of P given by

πζ = {Pg:k=l,...,2n] where P£ = \J Ej?,

π% be the partition of N given by

πξ = {N£: k=l,...,2n} where iVfc" = ( J

and πw be the partition of A given by

πn = πζuπ%.

The sequence {πn} has the desired properties. Since

μ(Λ)
2 n ~~ 2 n ~~ 2 n + ι

i<m

and

ι<m

any element in πΠ has measure μ(A)/2n+ι. Thus \J σ(πn) = ΣΠA.
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As for the other properties, since / takes the value αz on Ej? c A\
we have

f fdμ=Σ f
17 ^* i<mJhk

f
i<mJhk

and likewise

/ fdμ = ̂  ί fdμ<0.
N"k 2" JJV

We chose / close enough to / so that the above inequalities still hold
when we replace / by / ,

ί fdμ> f (f-M)dμ
Jpn

k Jpn

k

-λ ί fj..
~ 2" JpJ μ 2n+ι

M Mμ{A)
>
> 2n 2" 2«
>0

and likewise

Thus the other properties of the lemma are satisfied since for each n,

and so
_μ(A)
~ 2

Note that the partitions {π,,} are nested by construction. D
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3. Bushes and trees. In this section, we examine which Banach
spaces allow certain types of bushes and trees to grow in them. First
let us review some known implications.

A Banach space X fails the RNP precisely when a bounded J-bush
grows in X. Thus if a bounded <5-tree grows in X then X fails the
RNP. The converse is false; the Bourgain-Rosenthal space [BR] fails
the RNP yet has no bounded J-trees. However, if X is a dual space
then the converse does hold.

Bourgain [B2] showed that if X fails the CCP then a bounded <5-tree
grows in X. The converse is false; the dual of the James Tree space
has a bounded J-tree and the CCP. It is well-known that if a bounded
<S-Rademacher tree grows in X then X fails the CCP. Riddle and Uhl
[RU] showed that the converse holds in a dual space. This section's
main theorem, Theorem 3.1 below, makes precise exactly which types
of bushes and trees grow in a Banach space failing the CCP.

THEOREM 3.1. The following statements are equivalent.

(1) X fails the CCP.
(2) A bounded separated δ-tree grows in X.
(3) A bounded separated δ-bush grows in X.
(4) A bounded δ-Rademacher tree grows in X.

The remainder of this section is devoted to proving Theorem 3.1.
That (1) implies (2) will follow from Theorem 3.2 below. All the other
implications are straightforward and will be verified shortly. As usual,
we start with some definitions.

Perhaps it is easiest to define a bush via martingales. If {πn}n>o is
an increasing sequence of finite positive interval partitions of [0, 1)
with V σ(πn) = Σ and πo = {Ω} and if {/„, σ(πn)}n>o is an X-
valued martingale, then each fn has the form

fn =
Eβπn

and the system

{x%: ft = 0, 1, 2, . . . andE eπn}

is a bush in X. Moreover, every bush is realized this way. A bush
is a δ-bush if the corresponding martingale satisfies for each positive

While typing this paper, I learned that H. P. Rosenthal has also recently obtained the result
that if X fails the CCP then a bounded J-Rademacher tree grows in X .
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integer n

(i) IIΛ(0-Λ-i(0ll>*.

A bush is a separated δ-bush if there exists a sequence {Xn)n>\ i n

S(X*) such that the corresponding martingale satisfies for each posi-
tive integer n

(ϋ) W(/ Λ ( ί)-/ Λ . i( ί))|>ί.

In this case we say that the bush is separated by {x*}. Clearly a
separated J-bush is also a £-bush.

Observation that (3) implies (1) in Theorem 3.1. If a bounded sepa-
rated (J-bush grows in a subset D of X, then condition (ii) guarantees
that the corresponding Z)-valued martingale {/n, <τ(πw)} isnotPettis-
Cauchy since

||Λ-/*-l||pettis> /

Thus, if a bounded separated <5-bush grows in X then X fails the
CCP (Fact 1.5). D

If each πn is the nth dyadic partition then we call the bush a
(dyadic) tree. Let us rephrase the above definitions for this case, with-
out the help of martingales. A tree in X is a system of the form
{x£ : n = 0, 1, . . . k = 1, . . . , 2n} satisfying for n = 1, 2, . . . and

(iii)

Condition (iii) guarantees that {fn} is indeed a martingale. It is often
helpful to think of a tree diagrammatically:

/ \
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It is easy to see that (iii) is equivalent to

(Hi') * 2V, - x"2k = 2(*fc_1 - x Γ 1 ) = 2 ( * Γ ! " xik) •

A tree {*£} is a δ-tree if for « = 1, 2, . . . and A; = 1, . . . , 2n~ι

An appeal to (iii') shows that (iv) is equivalent to

/ΊvΛ II γn γn II -s ΊΆ
(IV ) \\x2k-l -χ2kW > Z ό '

A tree {x%} is a separated δ-tree if there exists a sequence {x%}n>i
in £(£*) such that for n = 1, 2, ... and A: = 1, ... , 2""1

Another appeal to (iii') shows that (v) is equivalent to

(V) \x*n(x!k_ι-xϊk)\>2δ.

Furthermore, by switching x^-i a n c * xik w ^ e n necessary, we may

assume that (v') is equivalent to

Since a separated ί-tree is also a separated J-bush, (2) implies (3) in
Theorem 3.1.

A tree {x% : n = 0, 1, ... k = 1, ... , 2n} is called a δ-Rade-
macher tree [RU] if for each positive integer n

Σ (γn - χ n \ ^ ? Λ Λ

A:=l

Perhaps a short word on the connection between Rademacher trees
and the Rademacher functions {rn} is in order. In light of our discus-
sion in §1, there is a one-to-one correspondence between all bounded
trees in X and all bounded linear operators from L\ into X. If {x£}
is a bounded tree in X with associated operator T, then it is easy to
verify that {x%} is a J-Rademacher tree precisely when ||Γ(rrt)|| > δ
for all positive integers n.

Fact that (4) implies (1) in Theorem 3.1 [RU]. Let {/„} be the
(dyadic) martingale associated with a <J-Rademacher tree {x?}. If x*
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is in £* and /£ is the dyadic interval [(k - l)/2", k/2n) then

r 2"~' /•

\x*(fn-fn-ύ\dμ = Σ M*Vn-fn-
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2 " -

-Σ
k=\

A:=l

i f c = l

- 2 "

From this we see that {^} is not Cauchy in the Pettis norm since

Wfn ~ Λ-l||pettis = SUP / \x*(fn - fn-i)\ dμ
xm€B(X*)JΩ

> sup

-l ~ X2k)
fc=l

1

Thus if a bounded J-Rademacher tree grows in a subset D of X, then
there is a bounded Z>-valued martingale that is not Pettis-Cauchy and
so X fails the CCP (Fact 1.5). •

Observation that (2) implies (4) in Theorem 3.1. A separated (J-tree
can easily be reshuffled so that it is a ^-Rademacher tree. For if {x£}
is a separated 5-tree then we may assume, by switching x^-i a n c *
*2fc when necessary, that there is a sequence {x*} in S(X*) satisfying
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With this modification fx?} is a <5-Rademacher tree since

C2k-1 X2k)
k=\ k=\

2n-l

k=\ k=\

It should be noted that a bounded (5-Rademacher tree need neither
be a (5-tree nor a separated £-tree. For example, consider the co-
valued dyadic martingale {fn} given by

fn = (SQ , . . . , Sn , 0, 0, .. . ) ,

where the function sn from [0,1] into [-1, 1] is defined by

{-\)k2~n if ω e 1% with k < 2;

(-1)* if ω e / £ w i t h £ > 2 .

The tree associated with {/„} is a ^-Rademacher tree but is neither a
(5-tree nor a separated <5-tree for any positive δ. Thus, since a cϊ-tree
grows in a space failing the CCP, the notion of a separated J-tree is
more desirable than that of a J-Rademacher tree for characterizing
the CCP.

To complete the proof of Theorem 3.1, we need only to show that
(1) implies (2). Towards this end, let X fail the CCP. An appeal
to Theorem 2.7 gives that there is a bounded non-midpoint-Bocce-
dentable subset of X. In such a set, we can construct a separated
<5-tree. This construction is made precise in the following theorem.

THEOREM 3.2. A separated δ-tree grows in a non-midpoint-Bocce-
dentable set.

Proof. Let D be a subset of X that is not midpoint Bocce deniable.
Accordingly, there is a δ > 0 satisfying:

(*) for each finite subset F of D there is a norm one linear
functional x*F such that each x in F has the form
x = (χι + xi)j2 with \x*F{x\ - xi)\ > δ for a suitable
choice of X\ and X2 in D.

We shall use the property (*) to construct a tree {x% : n = 0, 1, . . .
k = 1, . . . , 2n} in D that is separated by a sequence {Xn)n>\ of
norm one linear functionals.
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Towards this construction, pick an arbitrary x^ in D. Apply (*)
with F = {x^} and find x*F = x\. Property (*) provides x\ and x\
in D satisfying

Next apply (*) with F = {x\, x\} and find x*F = x\ . For k = 1

and 2, property (*) provides .xffc-i a n c * x\k *n ^ satisfying

Instead of giving a formal inductive proof we shall be satisfied by
finding x\, x\, . . . , x\ in D along with X3. Apply (*) with F =
{x\ ,x\,x\, x\} and find x£ = X3. For k = 1, 2, 3 and 4, property
(*) provides xffc-i a n c * xlk ^n ^ satisfying

Λfc = l(χ2k-ι+x2k) a n d l^3*(^2\- i-^\)I > < J •

It is now clear that a separated (5-tree grows in such a set D. D

REMARK 3.3. Theorem 2.7 presents several dentability characteri-
zations of the CCP. Our proof that (1) implies (2) in Theorem 3.1
uses part of one of these characterizations; namely, if X fails the
CCP then there is a bounded non-midpoint-Bocce-dentable subset of
X. If X fails the CCP, then there is also a bounded non-weak-norm-
one-dentable subset of X (Theorem 2.7). In the closed convex hull of
such a set we can construct a martingale that is not Pettis-Cauchy [PU,
Theorem II. 7]; furthermore, the bush associated with this martingale
is a separated <J-bush. However, it is unclear whether this martingale
is a dyadic martingale, thus the separated (5-bush may not be a tree.
If X fails the CCP, then there is also a bounded non-Bocce-dentable
subset of X (Theorem 2.7). In such a set we can construct a martin-
gale that is not Pettis-Cauchy (Theorem 2.8), but it is unclear whether
the bush associated with this martingale is a separated <5-bush.

REMARK 3.4. The 5-tree that Bourgain [B2] constructed in a space
failing the CCP is neither a separated (5-tree nor a J-Rademacher tree
since the operator associated with his tree is Dunford-Pettis.

4. Localization. We now localize the results thus far. We define
the CCP for bounded subsets of X by examining the behavior of
certain bounded linear operators from L\ into X. Before determining
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precisely which operators let us set some notation and consider an
example.

Let F(L\) denote the positive face of the unit ball of L\, i.e.

F(LX) = {feLx:f>0 a.e. and | |/ | | = 1},

and let Δ denote the subset of F(L\) given by

Note that the Li-norm closed convex hull of Δ is F(L\).
Some care is needed in localizing the CCP. The example below (due

to Stegall) illustrates the trouble one can encounter in localizing the
RNP.

EXAMPLE 4.1. We would like to define the RNP for sets in such a
way that if a subset D has the RNP then the coD also has the RNP.
For now, let us agree that a subset D of X has the RNP if all bounded
linear operators from L\ into X with Γ(Δ) c D are representable.
Let X be any separable Banach space without the RNP (e.g. L\).
Renorm X to be a strictly convex Banach space. Let D be the unit
sphere of X and T: Lx -+ X satisfy Γ(Δ) c D. Since X is strictly
convex, it is easy to verify that Γ(Δ) is a singleton in X. Thus T
is representable and so D has the RNP. If this is to imply that cδD
also has the RNP, then the unit ball of X would have the RNP. But
if the unit ball of X has the RNP then X has the RNP; but, X fails
the RNP. The same problem arises if we replace Γ(Δ) c D by either
T(F(Lι))cD or T(B(Lx))cD.

Because of such difficulties, we localize propeties to nonconvex sets
by considering their closed convex hull. We now make precise the
localized definitions.

DEFINITION 4.2. If D is a closed bounded convex subset of X, then
D has the complete continuity property if all bounded linear operators
T from Lγ into X satisfying Γ(Δ) c D are Dunford-Pettis. If D is
an arbitrary bounded subset of X, then D has the complete continuity
property if the cδD has the complete continuity property.

The RNP for subsets is defined similarly. We obtain equivalent
formulations of the above definitions by replacing Γ(Δ) c D with
T{F{L\)) C D. Because of the definitions we restrict out attention to
closed bounded convex subsets of X.
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We can derive a martingale characterization of the CCP for a closed
bounded convex subset K of X. As in §1, fix an increasing sequence
{Kn}n>o of finite positive interval partitions of Ω such that \/ σ(πn) =
Σ and no = {Ω}. Set ^n = σ(πn). It is easy to see that a martingale
{fn 9 &n) takes values in K precisely when the corresponding bounded
linear operator T satisfies Γ(Δ) c K. In light of Fact 1.5, we now
have the following fact.

FACT 4.3. If AT is a closed bounded convex subset of X, then K
has the CCP precisely when all A^-valued martingales are Cauchy in
the Pettis norm.

Theorem 2.7 localizes to provide the following characterization.

THEOREM 4.4. Let K be a closed bounded convex subset of X. The
following statements are equivalent.

(1) K has the CCP.
(2) All the subsets of K are weak-norm-one deniable.
(3) All the subsets of K are midpoint Bocce deniable.
(4) All the subsets of K are Bocce deniable.

Proof. It is clear from the definitions that (2) implies (3) and that
(4) implies (3). Theorem 2.8 and Fact 4.3 show that (1) implies (4)
while [PU, Theorem II.7] and Fact 4.3 show that (1) implies (2). So we
only need to show that (3) implies (1). For this, slight modifications
in the proof of Theorem 2.10 suffice.

Let all subsets of K be midpoint Bocce dentable. Fix a bounded
linear operator T from L\ into X satisfying Γ(Δ) c K. We shall
show that the subset T*(B(X*)) of L\ satisfies the Bocce criterion.
Then an appeal to Fact 1.1.7 gives that K has the complete continuity
property. To this end, fix e > 0 and fi in Σ + . Let F denote
the vector measure from Σ into X given by F(E) = T(XE) . Since
Γ(Δ) c K, the set { g g : E c B and E e Σ+} is a subset of K
and thus is midpoint Bocce dentable. The proof now proceeds as the
proof of Theorem 2.10. D

Towards a localized tree characterization, let K be a closed bounded
convex subset of X. If K fails the CCP, then there is a subset of
K that is not midpoint Bocce dentable (Theorem 4.4) and hence a
separated 5-tree grows in K (Theorem 3.2). A separated <J-tree is
a separated 5-bush and, with slight modifications, a J-Rademacher
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tree. In light of our discussion in §3, if a separated J-bush or a δ-
Rademacher tree grows in K, then the associated ^-valued martin-
gale is not Pettis-Cauchy and so K fails the CCP (Fact 4.3). Thus
Theorem 3.1 localizes to provide the following characterization.

THEOREM 4.5. Let K be a closed bounded convex subset of X. The

following statements are equivalent

(1) K fails the CCP.
(2) A separated δ-tree grows in K.
(3) A separated δ-bush grows in K.
(4) A δ-Rademacher tree grows in K.
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ULTRAPRODUCTS AND SMALL BOUND
PERTURBATIONS

KRZYSZTOF JAROSZ

It is very well-known that two real Banach spaces are isometric if
and only if they are linearly-isometric or that two uniform algebras
are linearly-isometric if and only if they are isomorphic as algebras.
These and similar classical "isometric" results have been extended by
£ . Behrends, M. Cambern, J. Gevirtz, R. Rochberg, the author and
others to "almost isometric" cases. Proofs of the extended results are
usually quite technical. In this note we show that using ultraproducts
of Banach spaces we can in some cases deduce an "almost isometric"
result from the classical one in just a few lines.

0. It is a well-known classical result of Ulam that an isometry T
from a real Banach space X onto a real Banach space Y with Γ(0) =
0 is automatically linear. More recently, in 1982, Gevirtz [5] proved
that this result is stable:

THEOREM. Let T be a map from a Banach space X onto a Banach
space Y with Γ(0) = 0 such that

{\-e)\\x-y\\<\\Tx-Ty\\<{\+ε)\\x-y\\, forx,yeX,

then

\\T(x + y) -Tx- Ty\\ < ε'{\\x\\ + \\y\\)9 forx,yeX

where e' —• 0 as ε —• 0.

The proof of the above result repeats, roughly speaking, the basic
idea of Ulam's proof but is much longer and much more technical.
The intent of this note is to draw attention to the method of ultra-
products of Banach spaces. Using this method we can extend in just
a few lines some "isometric" results to "almost isometric" cases. This
includes the theorem of Gevirtz.

1. In this section we give a definition of the ultraproduct of Banach
spaces and list some basic results. We refer to the paper by Heinrich
[6] for a more extended exposition.

We denote by N the set of all positive integers and by & a non-
prime ultrafilter of subsets of N. That is, we assume that & is a

81
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proper subset of 2N which does not contain a one point set and such
that

ifAB

Ae^ or B e^ iΐAuBe^.
Throughout this paper we assume & is fixed.

DEFINITION. Let (an)™=ι be a bounded sequence of complex num-
bers. We write

limαn = g if Vε > 0 3A e SΓ Vn e A \an - g\ < ε.

It is easy to observe that lim^r an exists for any bounded sequence of
complex numbers. To get a useful alternative definition let p e jffN\N,
where βN is the maximal compactification of N. Since a = (an)%Lι
is a continuous bounded function on N it can be uniquely extended
to a continuous function a on βN. We have ά(p) = lim$ran where
& is the set of all neighborhoods of p, restricted to N.

DEFINITION. Let {Xn)%L\ be a sequence of normed spaces and let
m(Xn) be the space of all norm bounded sequences (xn)%Lι with
xneXn. We introduce a seminorm || ||^r on m(Xn) by HCx^^H^ =
lim^ ||JCΠ|| . The ultraproduct Y\^Xn of (Xn)%Lι is the quotient space
of the space m(Xn) mod ker|| \\&-.

DEFINITION. Let Xn, Yn, n e N, be sequences of normed spaces
and let Tn: Xn -> Yn be a sequence of maps such that

(1) II^(*«)H < K\\xn\\ ϊorneN, xneXn

(We do not assume that Tn are linear.) Let Π ^ Tn denote the map
from YlpXn into U^Yn defined by Π^ Tn{[xn\r) = [Tn(xn)]r.

For (xn)%L\ € m(Xn) we denote by [xn]f the corresponding ele-
ment of ΠJΓ Xn If Xn are equal to a fixed normed space X then
Π^r X = Vίgr Xn is called an ultrapower of X.

From (1) it follows that Π ^ Tn is well-defined and that

(2) Π 7 " ^ * * ^ ) - ^ll[^nl^lk> [Xn]τ G Π Z w

Note that if Xn is not only a Banach space but also a Banach algebra
then we can carry this multiplicative structure to Π ^ Xn by defining

= [Xn ' yn]f , for [Xn]r , |>n]^- € f j
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Here is a list of some basic properties of ultraproducts:
1° Tl$rXn is a Banach space, that is Y[^Xn is complete even if

theXw are not.
2°. A map from X into Π ^ X defined b y x π [χ]#- (mapping x

onto the sequence constantly equal to x) is an isometric embedding
of X into Up X. This map is surjective if and only if X is finite
dimensional.

3°. If Tn: Xn —• Yn are all linear then Π ^ Tn is a linear map with

4°. If Tn: Xn -> Yn is a sequence of invertible maps with

then ΓU Tn is invertible and (ΓU Tn)~ι =
5°. If XΛ = C(ΛΓΛ) then ΓU*« = C(K), where # is compact.
6°. If Λfπ are closed subalgebras of C(Kn), then Π^ JΓ* is a closed

subalgebra of C(tf).
7°. With any element [x£[sr of WgrXl we can associate a lin-

ear functional on W^Xn by putting [JC^]y([xπ]) = lim^rx*(xn) for
[^«]^ e ΓV AΓΛ. This defines a linear isometric embedding of Π ^ ^
into (Π^^«)* which is surjective if the spaces Xn are superreflexive.

Proofs of properties l°-7° are easy exercises, we show here only
3° and 4° to get some additional information about the structure of
the algebra U^An C Y[<?C(Kn). The algebra m{C(Kn)) consists of
all continuous bounded functions defined on (U^Li K n) > the disjoint
union of Kn . So m(C(Kn)) can be identified with the algebra of all
continuous funtions on S = β(\J'%Lι Kn) The kernel of the seminorm
||(Λ)||^ = l iπ^ | | / π | | on m(C(Kn)) = C(S) is a closed ideal. Any
closed ideal / in C{S) is of the form / = Jκ = {/ e C{S) : f\K =
0} where K = K c S. We also have C(S)/Jk = C(K). Hence,
UP C(Kn) can be identified with a subalgebra of C(K) where K c
β(\JKn)\\JKn. Now, since An is a subalgebra of C(Kn), Y[^An is
a subalgebra of C(AΓ).

2. In this section we give some applications of the method of ultra-
products. We start with the proof of the theorem of Gevirtz. Assume
the result is false. Then there are sequences of Banach spaces Xn and
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Yn , a sequence Tn: Xn -> Γw of surjective maps with 7^0 = 0 and

(3)

and sequences xneXn, yn e ΓΛ with

(4) ||Γn(xΛ + y π ) - ΓnxΛ - Γ ^ U > β'dl^H + | |yΛ | |), n € N,

where ε' > 0 is a fixed number.
Without loss of generality, by putting

and

in place of Γπ, xn and yπ , respectively, we can assume that \\xn\\ +
| | ^ | | = 1 for all neN.

Put

τ°°= Π T n : Π ^ " ^ Π Y n > Xoo = iXn^' y°°= [ ^ ^

By (3) and the property 4°, T^ is a surjective isometry. By the
theorem of Ulam Γoo is linear, but from (4) we get

||Γoo(Xoo + J>oo) - Foo( Xoo) - Tooty^Wr

= ]im\\Tn(xn+yn) - Γπ(xπ) - Tn{yn)\\ > ε' > 0

which is a contradiction.
To formulate the next result we need some definitions.
By a uniform algebra we mean a sup-norm closed subalgebra with

unit, of the algebra C(K) of all continuous complex functions defined
on a compact set K.

A linear map T from a Banach space X onto a Banach space Y
is called ε-isometry if | |Γ| | < 1 +ε and yΓ"1!! < 1 +ε.

A linear map T from a Banach algebra A into a Banach algebra
B is called ε-multiplicative if

(5) \\T(fg) - Γ ( / ) T(g)\\ < ε\\f\\ \\g\\, f , g e A .

It is well-known that, in general, a linear and multiplicative map
T: A -+ B need not be continuous [14]. It is also well-known that, if
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B is commutative and semisimple then a linear, multiplicative map
T: A —• B is automatically continuous [15]. The same is true for ε-
multiplicative maps. In [8, p. 37] it is shown that an e-multiplicative
map T from a Banach algebra^ into a uniform algebra is automati-
cally continuous, so by (5) we have | |Γ| | < 1 + ε. The general case of
a semisimple commutative algebra B follows easily from this by the
same arguments (closed graph theorem) as in the multiplicative case.

THEOREM 2. Let A and B be uniform algebras. If T\ A-+B is ε-
multiplicative then T is an ε1-isometry. If T\ A-+B is an ε-isometry
then f: A-> B defined by f(f) = (Tf)(Tl)~ι is ε"-multiplicative.
Here ε, εf, ε" tend to zero simultaneously.

This theorem was proved in 1979 by R. Rochberg [13] under some
additional assumptions about A and B. The general case was proved
in 1983 in [7] (see also [8, p. 35]). On the other hand, the isometric
case of this theorem, that is the case where ε = ε' = ε" = 0, is a
classical result proven in 1959 by Nagasawa [12]. Using ultraproducts
we can simply reduce the general case to the isometric one. We show
here, by contradiction, the implication in one direction, the second
being equally obvious.

Assume Tn: An —• Bn is a £ -isometry between function algebras
An and Bn.

The map ΠJΓ Tn: X\?An -* W^Bn is a linear surjective isometry
between function algebras so, by the classical result [15] Π ^ Tn{[\\^)
= [Tn(l)]$r is an invertible norm one element of Y\^rBn, with the
norm of its inverse equal also to one. Let Fn be an element of

, the space of all linear-multiplicative functionals on Bn . Since
Fn e 2tt(fl^ Bn), we have

1 = \imFn(Tn(l))

so for all sufficiently large n, Tn{\) is invertible in Bn with

lim| |Γ n (l) | | = l and lim IK^Cl))-11| = 1.

Hence, we can define^ map fn: An -* Bn by Tnf = {Tnf){Tn{\))-χ

and we have lim^ ||fB|| = 1 = lim^ \\f-χ\\.
Assume there are εQ > 0 and / „ , gn eAn, \\fn\\ = 1 = \\gn\\ such

that

WTnifn gn) - TnWn)TH(gn)\\ > to.
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Then

(6) >eo>O.

On the other hand f ] ^ Tn is a linear isometry from f ] ^ Λn onto
Π^r 2?w which maps the unit onto the unit, so again by the Nagasawa
theorem it is multiplicative, which contradicts (6).

A linear projection P : X —• X is called e-LP-projection, 1 < p <
oo, if

(1 -β)||jc| | < (\\Px\\p + \\x -Px\\p)χlp < (1 + β)||jc||, xeX,

with the obvious modification for p = oo. //-projections and ε-Lp-
projections play important roles in studying structure, isometries and
small-bound isomorphisms of various Banach spaces. The main result
here is due to E. Behrends [2]. He proved that if dimX > 2 and
p φl then X admits a non-trivial U -projection for at most one p
and any two such projections commute. In [4] this result was extended
to ε-Lp-projection as follows.

THEOREM 3. Let X be a Banach space with dimX > 2. Let 1 <
P, Q < oc, p φly let P, Q : X —• X be ε-LP and ε-Lq projections,
respectively. Then

\P-Q\< e;(p) ond \\PQ - QP\\ < ε'{p), where ε1 -> 0 as ε -> 0.

Using the method of ultraproducts we can deduce the above the-
orem from the result of Behrends in what is now an obvious way.
It is enough to notice that Y[^Pn is an U-projection if Pn is an
jl'Lpn-projection and pn —• p, as n —• oo.

There are a number of open questions related to the problems dis-
cussed here. We conjecture just two of them.

Conjecture 1. Let A be a uniform algebra. Let F be a linear func-
tional on A such that

\F(f g ) - F { f ) F { g ) \ < ε\\f\\ \\g\\, f 9 g € A .

Then there is a linear and multiplicative functional G defined on A
such that

\\G - F\\ < ε', where ε' -> 0 as ε -> 0.

REMARK. The question whether an almost multiplicative functional
is close to a multiplicative one was raised in [8], in connection with the
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theory of perturbations of Banach algebras. It was noticed there that
any such functional is automatically continuous [8]. B. E. Johnson
[10] gave an example of a non-uniform, commutative Banach algebra
which does not have the property described in the above conjecture.
He proved [11] also that C(K) algebras and the disc algebra A(D)
have this property. The problem is open, for uniform algebras in
general, e.g. for H°°(D)—the algebra of all bounded analytic functions
defined on the unit disc.

Conjecture 2. Let X, Y be real Banach spaces such that there is a
surjective map T: X -* Y with

(l-e)\\x-y\\<\\Tx-Ty\\<(l+ε)\\x-y\\9 forx,yeX,

where 0 < ε < 8Q and βo is an absolute constant. Then X and Y
are linearly isomorphic.

REMARK. The above statement is known to be true for certain spe-
cial classes of Banach spaces like uniform algebras [9]. It is also known
that this is false, even for C(K) spaces, if we do not assume that ε
is close to zero. By the theorem of Gevirtz to prove the conjecture it
is enough to show that an almost linear map is close to a linear one.
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THE LOCAL STRUCTURE
OF SOME MEASURE-ALGEBRA HOMOMORPHISMS

RUSSELL LYONS

Extending classical theorems, we obtain representations for bound-
ed linear transformations from L-spaces to Banach spaces with a
separable predual. In the case of homomorphisms from a convolu-
tion measure algebra to a Banach algebra, we obtain a generalization
of Sreίder's representation of the Gelfand spectrum via generalized
characters. The homomorphisms from the measure algebra on a LCA
group, G, to that on the circle are analyzed in detail. If the torsion
subgroup of G is denumerable, one consequence is the following nec-
essary and sufficient condition that a positive finite Borel measure on
G be continuous: 3γa —• oo in G such that V« φ 0 μ(y") —• 0 .

1. Introduction. Given a measurable space X and a (bounded)
complex measure μ on X, the Banach space dual of Lι(μ) is com-
monly represented as L°°(μ). We shall call M an L-space on X if
M is a Banach space of complex measures on X (under the measure
norm) such that v<t:μeM=>veM [Sc]. Sreϊder [Sr] gave a rep-
resentation of the dual M* of M as a space of so-called generalized
functions, i.e., families of functions fμ e L°°(μ) satisfying

(1.1) u<^μ^fI/=fμ z/-a.e.,

(1.2) SUP \\fμ\\L~(μ) <OO.
μ€M

The representation of M*, like that of Lι(μ)*, is by integration:

fμdμ.I
Now, given two Banach spaces, B\ and Bι, we denote by L(B\, Bι)
the Banach space of bounded linear transformations from B\ to Bι.
Since M* = L(M, C), we may ask, in generalizing the above, for a
representation of L(M9 B), where B is an arbitrary Banach space.
Again, the case where M = Lι(μ) is classical [DS]; here, the hy-
pothesis that B has a separable predual is made. In §2, we ex-
tend this theorem to general L-spaces M in a manner similar to
Sreϊder's representation above. In essence, functions are replaced by

89
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5-valued functions. Our treatment will be entirely self contained,
thus giving an apparently new proof of [DS, Theorem VI.8.6]. How-
ever, another point of view could be adopted. Namely, if we use the
Radon-Nikodym theorem to identify L(μ) = {v < μ : abounded}
with Lι(μ), then we may regard an L-space M as the direct limit
limμeMLι(μ), where M is directed by <C and for v < μ, Lx{y) is
included in Lι (μ). Now L( , B) is a functor from the category of Ba-
nach spaces to its opposite category and, furthermore, is easily checked
to be a left adjoint. Since left adjoints preserve direct limits and in-
verse limits are dual to direct limits, it follows that L(M, B) is the
inverse limit \imμeM L(Lι (μ), B), where, for v < μ, L(Lι(μ), B) is
mapped by restriction to L(Lι(v), B). Hence, given a representation
of L(Lι(μ), B) (as in [DS]) and a construction of inverse limits, we
may obtain a representation of L(M, B). This amounts to the same
as our Theorem 2.1.

Now Sreϊder was actually interested in representing AM, the mul-
tiplicative linear functionals on M, when M was a convolution mea-
sure algebra on a locally compact abelian group. He showed that in
addition to (1.1) and (1.2), the following property was necessary and
sufficient for fμ to define an element of AM:

( 1 . 3 ) V/i, v > 0 f μ * u ( x y ) = f μ { x ) f M μ x i/-a.e. [(x,y)].
We, too, are mainly interested in the subset of homomorphisms
Hom(Λf,i?) c L(M,B) when B is a Banach algebra. A simi-
lar condition to (1.3) is found in Theorem 3.2. In particular, when
M = M{G), the complex Borel measures on a locally compact abelian
group, G, and B = Λf(T), T the circle, Hom(M(G), M(Ί)) con-
tains in a natural way Hom(G, T) = G. The closure of G in a
certain weak topology is related to the behavior of Fourier transforms
at infinity and contains much information about a measure μ when
regarded locally, i.e., when restricted to L(μ), or, what is the same,
when viewed via the Sreϊder representation. For example, this analy-
sis will lead to the following surprising result: if the torsion subgroup
of G is denumerable, then a positive measure μ e M(G) is contin-
uous iff there is a net {γa} c G tending to infinity such that for all
n Φ 0, \imaμ{γ%) = 0. Characterizations of certain other classes of
measures are found in §4; these have proved useful in [KL] and [L4]
Other analyses of the local structure of the closure of G for certain μ
can be found in [L3], [L4], and [L5]. The local structure of G is also
related to asymptotic distribution; this relationship, described here,
has been used in [KL] and [L4].
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The Sreϊder representation, Theorem 3.2, has been given before in
[IgK] for the case Hom(M, Af(T)), M being an L-subalgebra of
M(Ύ), though in slightly different notation. An alternative represen-
tation for Hom(M, M(G))9 where M is a semisimple commutative
convolution measure algebra in the sense of Taylor and G is a com-
pact abelian group, analogous to Taylor's representation of AM via a
structure semigroup, has been given in [InK].

2. The Sreϊder representation of linear transformations. Suppose
that M is an L-space on a measurable space X and that B is a
Banach space with a separable predual, B*. Let 3B{X > B) denote the
set of maps / : X -> B which are bounded in 2?-norm and measurable
when B is given the weak* topology from 2?*. If / €&(X, B) and
μ G M, there is a unique element / fdμeB defined by the relation

VZ>* e B* (b.,

If D is a countable dense set in the unit ball of B*, then the equation

\\f(x)\\B=SUp\(b*,f(x))\
b^eD

shows that | |/( )||# is measurable. It is clear that

The set of equivalence classes of 3S{X9 B) under equality μ-a.e. will
be denoted 3S{X, B)μ, although this distinction will often be ignored.

The following theorem, which we shall term the Sreϊder representa-
tion, associates to each element of L(M, B) a certain family of maps
in 3B{X> B). We denote the image of μ e M under Σ e L(M9 B)
by Σμ.

THEOREM 2.1. Let M be an L-space and B a Banach space with a
separable predual There is a bijection between L(M, B) and the set
of elements {b^μ}μeM € YlμeM^(X> B)μ which satisfy

() |
μeM

and

(ϋ) Vi/ < μ e M bXtU = bXjβ v-a.e.[x]
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such that ifΣ corresponds to {b.,μ}μβM (written Σ ~ b.r), then

(iii) Vμ G M Σ^

and

(iy) \\Σ\\L(M.B) = S U P

μ = jbx,μdμ(x)

. Given {b.,μ} satisfying (i) and (ii), define Σ by (iii). If
μ, v G M , then by (ii), we have bXfμ = bX9\μ\+\v\ μ-a.e., whence
Σμ = fbX9\μ\+\u\ rf//(x). In conjunction with similar equations for Σv

and Σμ+v , this equation shows that Σμ + Σy = Σμ+jy. Similarly, for
a G C, Σαμ = αΣ^, whence Σ is linear. Let K denote the quantity
in (i). Then

||Σ|| = sup
IMI

= sup / bx,μdμ(x)

< sup ί||^^||J|//|(x)<^.
ιijMiι<i y

To show that | |Σ|| = K, choose any nonzero μ e M and ε > 0. Let
OφveL(μ) be such that || | | έ . ^ | | 5 - || Ĥ  ./έlUIL^^I^oe.x < e. Let
S be the unit sphere of B . Since the unit ball of B is weak* compact,
there exists a finite number of elements, b\, . . . , b" , of the unit ball
of B* such that

S={J{beS:\(bi,b)-l\<ε}.

Therefore 30 < ω e L(u) 3/ | |<#, bx,μ/\\bx,μ\\B)- l\\L-{ω) < ε. We
have

> *ω| 1

\co\\ ω
•\(bί,Σω)\ =

1

ω
J(bi,bx,μ)dω(x)

Thus | |Σ|| = K.
Conversely, let Σ e L(M, B). Fix μ € M. For 6* € 5*, we denote

by έ* oΣ the map v ι-+ φ*,Σv). Restricted to L(μ), this map is a
bounded linear functional and hence can be represented by a function
gb € L°°(μ). Choose a countable linearly independent set D whose
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linear span over Q, Df, is dense in 5*. If b* = £ ? = 1 α; d?i, d[ e D,
α / E Q , define

ί = l

Then £* h-> A# (x) is rational-linear on Df for every x e X. Further-
more, A^ = gb^ μ-a.e., whence by countability of D1,

(2.1) Vό*e/)Ί\WI<ll^oΣ| |< | |6* | | . | |Σ | |

for μ-a.e. x . Now for every x such that (2.1) holds, b* »-• Â  (x)
extends from Z>' to all of if* as a bounded linear functional, hence
element of B, call it f(x). This defines f(x) μ-a.e. and shows that,
given any b* e B*, if Z>* = lim -̂̂ oo ^ (fej e D1), then

(2.2) (b., /(x)) = Jim ( ^ , /(x)) = 6 ; ( )

for every x where / is defined. Write b.,μ for the equivalence class
of / . From Equation (2.1), we see that | |/(x)| | < | |Σ|| for every
x where / is defined. Together with (2.2), this shows that b.,μ e
33 (X, B)μ and gives (i). Now for v e L(μ) and b* e Df, we have

v^i = J(b*,f(x))dv(x) = Jhbm(x)dv(x)

= / gbSχ)dv(χ)= ( ό * ' Σ ^)

Since Df is dense, (iii) follows. We claim that b.ijU is uniquely deter-
mined by the property just established:

Vi/ eL{μ) Σu= bX9μdv(x).

Indeed, if we also have that Mv e L(μ) Σu = ί b'xμdv(x) for some

Vό* eD'Vve L(μ) j(b*, bx,μ) du(x) =

whence for //-a.e. x VZ>* e 2)' (fe*, bXtμ) = (b*, br

xμ), i.e., bx,μ =
ĵc,// /^"a e Thus (ii) follows. The same argument shows that if Σ ~

b.\ and Σ ~ έ ί . , then b.9. = *;> β. D

We define the weak* operator topology (W*OT) on L(M, B) as
the weakest topology such that Vμ e M V6* E 5 * Σ I-> (έ*, Σμ) is
continuous. It is an elementary exercise to show that the unit ball of
L{M,B) is W*OT compact.
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For μ e M, let L(M, 1?)^ denote the set of Sreϊder representa-
tions b.,μ of elements of L(M, B). We give L(Af, 2?)μ the weak
topology generated by the maps b.9μ ι-> f(b*, fc*,!/) rfi/(.x) (£* e 5*,
z/ G L(μ)). Thus, the W* OT is the inverse limit of these topologies,
i.e., it is the weak topology generated by the maps Σ*-+ b.,μ (μ e M)
from L(M, B) -+ L(M, B)μ, where Σ ~ b.r .

Every decomposition M = / Θ / of M as a direct sum of closed
subspaces yields an addition on L(M, B) as follows: if Π 1 , Π2 e
L(M, B), then we may define

(2.3) Σμ = n ι

μ i + n 2

μ j ,

where μ = μi + μj, μj e /, μj e J. If Σ ~ ό. 5., Π̂  ~ 6/ ., and
/±/,then ^ 5 / , = ̂ > / / + δ 2 ^ μ-a.e.

The case where B = M(Y), the space of complex regular Borel
measures on a locally compact metric space, Y, is of interest. A
predual of 5 is the separable space Co(Y) of continuous functions
vanishing at infinity. We shall denote the Sreϊder representation of Σ
by σXyμ in this case; thus, if / e CQ(Y) and μ e M,

(2.4)

(If Y is separable and a countable union of complete subspaces, then
(2.4) holds for / e 3&{Y, C) since it is preserved under bounded
pointwise limits. In particular, for Borel sets £ C Γ ,

Σμ(E) = / σx,μ(E)dμ(x).)
Jx

Let M+ denote the nonnegative elements of M and likewise for
M+(Y). We say that Σ e L(M, M[Y)) is positive if it carries Af+
into M+(Y). It is easy to see from (2.4) applied to \μ\ that Σ > 0 iff
VμeM Ψx[μ] σx,μ > 0 (u\/ex[μ]» means "for //-a.e. x"-see [LI]).
It is also easy to show that if Σ > 0, then v < μ =» Σv < Σ|μ | and

3. The Sreϊder representation of homomorphisms. Let G be a locally
compact semigroup with separately continuous multiplication. Then
M(G) is a Banach algebra under convolution [W]. Let M be an L-
subalgebra of M{G), i.e., a subalgebra which is also an L-subspace,
and let B be a Banach algebra with a separable predual such that
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multiplication is separately weak* measurable and

(3.1) Vfe^(G,B)VbeBVμeM

f(x) bdμ(x)=(J

&Jb f(x)dμ(x) =

In order to state some sufficient conditions that (3.1) be true, we define
the following multiplication on B* x B. If b e B and b* eB*, then
b11-+ (bf -b, b*) is a bounded linear functional on B we denote it by

b* b. Let Tϊs™ be the smallest subspace of B* containing (canoni-
cally) B* which is closed under weak* sequential limits. Let ΔJ5 be
the subset of B* consisting of the multiplicative linear functionals.

PROPOSITION 3.1. Let B be a Banach algebra with a separable pre-
dual Right multiplication on B is weak* measurable and the first
equation o/(3.1) holds if any of the following conditions is satisfies:

(i) B.BCβf.
(ii) Right multiplication is weak* continuous,

(iii) Right multiplication is weak* measurable and Til™ nAB sep-
arates points in B.

Proof. The class of b* e B* such that b\-+ (b, b*) is weak* measur-
able contains 2?* and is closed under weak* sequential limits. Thus,
all elements of "Bs™ are weak* measurable. Now right multiplication
is weak* measurable iff V6 e B V&* e 5 * V *-> {b*, b' b) is weak*
measurable. But φ*, V b) = φf, b* b), whence this condition is
equivalent to all elements of B* B being weak* measurable. The
sufficiency of (i) for measurability is now obvious. Also, the class of
weak* measurable b* eB* such that

is closed under weak* sequential limits by the bounded convergence
*

theorem, hence contains ~BS™ . Thus, if (i) holds, then Vδ* € 5*
VbeB

*, Jf bdμ^= J(b*,f b)dμ = f(f,Kb)dμ

dμ,b. b} = (b., (Jfd

whence the first equation of (3.1).
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Now (ii) is equivalent to B* B C B* since B* is the set of weak*
continuous linear functionals on B. Thus, sufficiency follows from
that of (i). Finally, if (iii) holds, then for / € &{β, B), b e B,

μ e M, and b* € B~s™ n AB, we have

(Jfbdμ,b^ = J(f b,b*)dμ = J{f,b*)(b,b*)dμ

= J(f, b*)dμ • (b, b*) = (ffdμ, bή • φ,b*)

= ((Jfdμ).b,bή,

from which the first equation of (3.1) follows. D

Let &Q(G9 B) denote the Baire-measurable functions from G to
B, where B is given the weak* topology. For μ, v e M(G), let μ x v
denote, besides the usual product measure, also its unique extension
to a regular Borel measure in M(G x G). If / e £&Q(G, B) and
μ, v e M(G), then

/ fdμ *u= f(xy) dμ x v{x, y)

= fff(xy)dμ(x)dv(y),

as can be seen by applying any 6* e B* [W].
The Sreϊder representation of Hom(M, B), the continuous homo-

morphisms from M to B, satisfies one property additional to those
in Theorem 2.1.

THEOREM 3.2. Let G be a locally compact semigroup with separately
continuous multiplication and M an L-subalgebra of M(G). Let B
be a Banach algebra with a separable predual and separately weak*
measurable multiplication satisfying (3.1). Let Σ € L(M\ B) and
choose b.,μ e &0(G,B) (μ e M) so that Σ - £.,.. Then Σ e
Hom(M,'£) iff

(3.2) Vμ, v e M+ bxy^μ*v = bXiμ byiU for μ x v-a.e. {x, y).
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Proof. Suppose first that (3.2) is satisfied. Then for μ, v e M,

Zμ*v = I bίAμμWldμ*v(t) = // bxyΛμ\*\v\dμ{x)dv{y)

= JJ bxλμVbyMdμ{x)dv{y)

= J (j bxMdμ(x)J -byMdv(y)

= j bxΛμ\dμ(x) J byM dv{y) = Σμ-Σv.

Conversely, if Σ e Hom(Λf, B), then given μ, v e M+, we have for

all μ1 e L(μ) and v1 e L(v) 9

I bXyiμ*udμf xvf(x,y) = / bt,μ^dμr * i/(ί) = Σ^^/

= Σ /̂ Σu> = y 6 X , A <///'(*) y fcy>1/ έ/i/;(y)

= JJbx,μ.by9Udμ\x)dv'(y)

= / bx^-by^dμ1 xv'(x,y).

Since the span of L(μ) x L(y) is dense in L(μ x i/), (3.2) follows. D

If multiplication in B is jointly weak* continuous (for example, if
B* ΠAB separates points in B), then the unit ball in Hom(M, B) is
easily shown to be W* OT compact. An example where compactness
fails is Hom(Af(R), Af(R)): define Tn (n > 1) in the unit ball by

/ f{x) d(Tn)μ(x) = f f(nx) dμ(x) (/ G C0(R))
JR JR

and let Σ : / / H μ({0})δ(Q), where (J(0) is the Dirac measure at 0.
Then Tn -> Σ in W* OT, but

Σ e L(M(R), M(R))\ Hom(M(R), M(R)).

We define the following multiplication on L(M, B): if Σ - 6.,.
and Π ~ b.f., then Σ Π is defined by its Sreϊder representation
bχ,μ'bxμ. When B is commutative, Hom(Λf, B) is closed under
multiplication. It is easily verified that if multiplication in B is sepa-
rately weak* continuous, then multiplication in L(M, B) is separately
W*OT continuous.
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Suppose that M = / φ / , where / is a closed ideal and / is a
closed subalgebra. If Π 1 , Π2 e Hom(M, B) satisfy

(3.3) V μ e / V ι / e / Π ^ = Π j . Π 2 & Π ^ = Π 2 Π j ,

then the "sum" Σ of Π1 and Π2 defined in (2.3) is a homomorphism.

4. Limit points of group homomorphisms. If H is a locally compact
group, then convolution is separately weak* continuous in M(H).

Indeed, if μa, μ, v e M{H) with μa - ί C μ, then for / € C0(H),

the map x ι-> / f(xy) dv{y) lies in Co(H), whence

y /rf/έα * v = ί[f(χy) du(y) d^(χ)

- ff f{xy)dv{y)dμ{x) = f fdμ*v,

which is to say that μa*v -^-> μ*u. A similar argument applies

to v * μα. Thus, if G is a locally compact semigroup with sepa-
rately continuous multiplication and if is a locally compact metriz-
able group, then the preceding section applied to Hom(M, M(H)) for
any L-subalgebra M of M(G). Every continuous homomorphism
φ: G —• H yields an element of Hom(M, M(H))9 which we also
denote by φ, defined by (/, φμ) = (/ o φ, μ) for / e CQ(H) . The
δreϊder representation of such a #> is particularly simple: φ ~ <J(p(x))
(independent of μ), where <J(ί) denotes the Dirac measure at /.

We identify Hom((z, H) with a subset of Hom(Af((?), M(H)) in
the above manner. Our aim is to study the set

Λ = Hom(G, H)\ Hom(G, H)

and its local structure

A(μ) = {Σμ:ΣeA}, A(μ) = {σ.,μ : σ.9. e A},

where Λ consists of the Sreϊder representations of elements of Λ.
Since all elements of Hom(G, H) are positive and lie in the unit ball,
the same holds for Λ. (In fact, every positive homomorphism lies in
the unit ball: if 0 < Σ € Hom(M(Cr), M{H)), then for μ e M(G)
and n > 1, we have

I W < | |ΣW | |» = HΣjy = | | Σ M . | | < ||Σ|| \\μ\n\\ = ||Σ|| \\μ\\n,
whence ||Σ|| < 1.)

We are particularly interested in the case where G is a locally
compact abelian group and H is a circle group, T. In this case,



STRUCTURE OF SOME MEASURE-ALGEBRA HOMOMORPHISMS 99

Hom((r, T) = (J, the dual of G, and the identification of G as a
subset of Hom(Af ((?), Af (T)) preserves the usual topology of G (of
uniform convergence on compact subsets). Furthermo£e, as G lies in

the unit ball of Hom(Af(G), Af(T)), it follows that G = GuA is a
compactification of G.

Recall that a sequence {XkJ^Li Q G is said to have an asymptotic
distribution σ, written {x^} ~ σ, if

ir) -^-^ <τ a s AT —• e x ) .

For n e Z and^ Σ G Hom(M(G), M(T)), define Σ(Λ) €
by (μ, Σ(n)) = Σ^(«). We write the Sreϊder representation of χ e
AM(G) as χμ(x). Thus, if Σ ~ σ.r and χ = Σ(n), then

Note that for all n, the map Σ *-+ Σ{n) from (Hom(M(G), Af (T)),
W* OT) to AM(G) (with its usual Gelfand topology) is continuous.
We regard the Fourier transform as a restriction of the Gelfand trans-
form; thus, in accordance with the Sreϊder representation, we have
μ(γ) = Jγdμ for γeG.

PROPOSITION 4.1. Let G be a locally compact abelian group and

A = G\G in Hom(M(G), M(Ί)). Then

JX) A is closed topologically and under multiplication by elements

ofG;

(ii) if σx,τxe A(μ), then σx*τxe A(μ) ^
(iii) A(μ) = {v e M(T): 3 net {γa} C G (γa -> oo&V« e Z

(iv) A(μ) = {σ. G&{G, M(Ί))μ: 3 net {γa} c G (γa-+ oo&Vn e
Z γ^σ.(n) weak* in L°°(μ))}\

(v) if G is metrizable, then the nets in (iii) and (iv) can be

replaced by sequences and A(μ) = {σ. e 3§{G, M(Ί))μ: 3y; e G
{γj -> oc& for every subsequence γjk, Ψx[μ] {Vjk(x)}kLι ~ °χ)}

. Suppose that Σ G Λ is the limit of a net {γa} c G. Then
Σ(Λ) = limy£ in ΔΛ/(G) for all n e Z. Now if yα -> y G G, then
7α —• 7n> whence Σ = y. But since Λ n G = 0 , this is impossible,
and so γa —• oc in (?. In particular, Σ(l) is 0 on Lι(G) [HMP,
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p. 136, Proposition 4] and consequently Λ is closed. It is clear that
Λ G C Λ , from which (i) now follows. Statement (ii) ensues as well.
Now if v G Λ(μ), then let G 3 γa —• Σ e Λ be such that v = Σμ.

Then 7Q ~> oc and (γa)μ -̂ —• Σμ = v, which gives the inclusion C of

(iii). On the other hand, if γa —• oc and VΛ £(?") —> v(n) > ^en by

compactness of G, we can choose a subnet {y«} of {yα} converging

to some Σ. Since γ'o —> oo, it follows that Σ G Λ and u = Σμe Λ(μ).

This completes the proof of (iii). The proof of (iv) is analogous.

Finally, if G is metrizable, then Lι(μ) is separable for μ e M(G)

and so L{M(G), M(Ύ))μ is metrizable. Thus, if μ e M(G) and

γa -* Σ ~ σ.,., pick any non-zero p E Lι(G) and a subsequence

{δ(Vaj('))} converging to σ.M+\pl in L(M(G), M(Ί))\μMp\. Then

— (Σ(l)) = 0 in L°°(p)9 whence yβy - oc

in G, and y .̂ - ^ (Σ(n))μ = σ.ϊiI£(/ι) in L°°(μ). This shows the
sufficiency of sequences for (iii) and (iv). Furthermore, if Vn yn —•
σ.(n) weak* in L°°(μ), then by [L2, Lemma 5], there is a subsequence
{ŷ  } of {γj} such that every further subsequence {y'j } satisfies

(4.1) V°x[μ]{yjk(
χ)}kLi~σχ

Conversely, if {γj} is a sequence, every subsequence of which satisfies
(4.1), then we claim yn —• σ.(«) weak* for every n . If not, then for
some n there would be a subsequence {γf} converging to a different
limit χ . Then also

1 K

n W*

k=\

and by (4.1),

±
A : = l

Therefore χ = σ.(n), a contradiction. Thus (v) follows from (iv). D

When G is regarded as a subset of AM(G), we shall use the no-
tation Γ rather than G to avoid confusion. Let Tn e Hom(G!, G)
denote the map x »-> xn (n e Z), as well as the corresponding map
induced in Hom(M(G), M(G)). Thus, for Σ e Hom(M(G), M(T)),
we obtain Σ o Tn e Hom(M(G), M{Ί)) note that if Σ = γ e G, then
7 o Tn = γ» .
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PROPOSITION 4.2. Let G be a LCA group and

Σ e Hom(Af(G), Af (T)).

Then Σ e 6 iff Σ(l) e T and V n j Z Σ(n) = Σ(l) o Tn. The map

Σκ->Σ(1) is an isomorphism from G onto Γ sending G to Γ.

. If Σ G G, let G 3 yα

 W ^ O T ) Σ. Since γa(n) = 72, we have

> Σ(n) for all n. In particular, Σ(l) € Γ. Also, Σ(n) = l i m ^ =
'β o Γrt = (limyα) o Γ Λ = Σ(l) o Γ* . Conversely, if Σ(l) € Γ and

Vn Σ(n) = Σ(l)o ΓΛ, then let yα -+ Σ ( l ) . Choose a convergent subnet
y'β -> Π in Hom(Af(G), Af (T)). Then from the above, Π(π) = Π(l)o

ΓΛ = Σ(l) oΓ n = Σ(/i) for all n, whence Σ = Π e G .
It follows from this that the map Σ H+ Σ(l) is injective. Surjectivity

onto Γ is proved by a compactness argument similar to the above. D

We write M(G) = Mc(G)®Md{G) for the decomposition of a mea-
sure into its continuous and discrete parts. Then hd: μ »-> JG dμd =
μd(0) is in Γ\Γ [HMP, pp. 136-7, (4.1.4)]. We denote the element
of Λ corresponding to hd by Πd . If G has at most countably many
torsion elements, then we claim that

*w -' °
hd

whence

where λ is Lebesgue measure on T. To see this, note first that

Second, if « ^ 0 , then for all g € G, there are, by the supposition,
denumerably many x eG such that xn = g. Therefore

χn=g

whence

ftd(n): μ ~ J2^oTn')({£))
geG

= Σ Σ (̂W) = Σ MW) = A*(0).
" = ^ xeG

This proves the claim.
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Related elements of Λ are Σ Πd for Σ G G if, as above, the
torsion subgroup of G is denumerable, then

(Σ π% = A:(oμ + Σμd.

Thus, if we set Π://«-> μ(0)λ, then Σ IT* is the sum of Π and Σ
defined by (2.3) and (3.3) from the decomposition M = Mc®Md. An
interesting example is G = T and Σ: μ t-+ μ in this case, (Σ Πd)μ =
μc(0)λ + μd.

Provided still that G has a denumerable torsion subgroup, the
Sreϊder representation π?9. of Π^ is given by

(4 2) π"

Let λ e &{βt M{Ί))μ be defined by λ(x) = λ. Then from [HMP, p.
70, Corollaire 2] and Proposition 4.2 (or from (4.2) and the following
proposition),

(4.3) μ € MC(G) <ϊλe A(μ).

This yields other characterizations of MC(G) when combined with
Proposition 4.1 (iv), (v). For example,

μ e MC(G) &3γa-+ooVue L(μ) Vn φ 0 u(γ%) -+ 0

<* 3γa -+ oo Vy € G Vn φ 0 /έ(yj£) -» 0.

Our next proposition describes A(μ) completely when μ is discrete
(cf. [HMP, pp. 67-68]).

PROPOSITION 4.3. Let G_be a LCA group. Let G denote the

Srelder representations of G c YLom(M(G), Af(T)) am/, for μ e

M(G), G(μ) = {σ.iμ:σ.).eG}. Let Gd denote G with the discrete
topology and, for μ e Md{G), let Gμ

d denote the discrete subgroup
generated by the mass-points of μ.

(i) VΣ G G 3φeGd Vμ G Md(G) Σμ = Σ*^MW)<%W)
and σXίβ = δ(φ(x))> where Σ ~ σ.r.

(ii) VμeMd(G) d(μ)^G^

(iii) μ G Md(G) <& G(μ) is a group (under the multiplication
in L(M(G),M(Ί))).
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Proof, (i) Let G 3 γa

 W * O T > Σ . Then for x e G,

•)) - σ.9δ{x) e L(M(G),

i.e., <$(yα(*)) = ^JC,^(X) eventually. Thus, γa(x) stabilizes at some
point φ(x) and σXίδ{X) = δ(φ(x)). The assertions now follow from
linearity and properties of the Sreϊder representation.

(ii) The fact that G(μ) can be identified as a compact subgroup

of Gμ

d follows from (i). If it were not the whole group, then there

would be a nonzero X G G J such that φ[x) = 1 for all φ e G(μ). In

particular, γ(x) = 1 for all γ eG, whence x = 0, a contradiction.

(iii) This follows from [HMP, p. 68, Proposition 10] and (ii).D

We now arrive at the characterization of positive continuous mea-
sures mentioned in the introduction.

THEOREM 4.4. Let G be a LCA group whose torsion subgroup is
denumerable and let μ e M+(G) be positive. Then μ e M+(G) iff
there is a net G 3 γa -• oo such that for all nφO, μ(γ%) -• 0.

Proof. By Proposition 4.1 (iii), this is equivalent to μ e M+(G) <»

μ(0)λ e A(μ). For μ e M+(G)9 this follows from λ e Λ(μ) (see
(4.3)). If μ £ Af+(G) and Σ e Λ, then Σμ = Σβc + Σ ^ > Σβd since
μc > 0 and Σ > 0. However, by Proposition 4.3(i), Σμd is nonzero
and discrete; hence Σμ cannot equal μ(0)λ. D

Because of the interest this theorem may present, we provide the
following "elementary" proof and strengthening for the case G = T.
If μ E MC(Ί), then by Wiener's theorem [K, p. 42], there is a sequence
{raj^} of density one in N such that μ(m^) -+ 0. Likewise, there is

a sequence {m[w)} of density one such that μ(nm^) = (Tn)μ(m^) ->
0 since {Tn)μ e Mc, for nφ§. By an elementary intersection argu-
ment, we obtain a sequence {mk}, still of density one, such that for all
nφO, μ{nm^)—• 0. (A similar argument produces a sequence {m^}
of density one such that for n Φ 0 and all r, #(r + /im*) -• 0, i.e.,
δ{mkx) -> λ in L(Λ/(T), Af(T))^, thereby strengthening (4.3).) For
the converse, we use the following proof due to Jean-Franςois Mela.
Let Kι(x) be the Fejer kernel of order /. Then if μ > 0 and if for
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all nφO, μ[nm^) —• 0, then

) dμ(x) -

by hypothesis. Since this is true for all /, it follows that μ({0}) = 0.
Now apply this result to μ * μ, where μ(E) = μ(-E).

The local structure of Λ can be used to characterize other classes
of measures besides Mc and Mj . If W is a class of subsets of G, let

= {μ e M(G):\/Ee& \μ\(E) = 0}.

Thus, if 2J is the class of singletons, 2^ — MC(G).

DEFINITION. A set E c G is called an Hset if there is a sequence
G 3 γfc —• oc such that {^(x): A: > 1, Λ: € E} is not dense in T. A
set E c G is called a Dirichlet set if there is a sequence G 3 γ^ —• oc
such that lim^_^oosupXG£ |y^(x) — 11 = 0. A measure μ G Af(G) is
called a Dirichlet measure if lim^oo | |//|(y)| = | |μ| | .

For background on /ί-sets, see [Z, Chapters IX, XII]; on Dirichlet
sets and measures, see [HMP, pp. 34-35, 240-247]. The following
proposition is used in [KL].

PROPOSITION 4.5. Let G be a LCA group.

(i) If G is metrizable, then

H1 = {μ: Vσ. G A(μ) Yx[μ] supptr* = T}

= {μ: VΣ G Λ Vi/ G L(μ) supply = T} .

(ii) μ w a Dirichlet measure iff the constant function δ(0) G A(μ).

(iii) ^ = {μ: Vσ. G

Proof. Part (i) follows from Proposition 4.1(v) and a straightfor-
ward generalization of [L4, Theorem 13]. Part (ii) follows from Propo-
sition 4.2 and the fact that μ is a Dirichlet measure iff the constant
function 1 G (Γ\Γ)(μ) [HMP, p. 34, Lemma 6]. Part (iii) follows
from part (ii) and the fact that D1 consists of the measures orthogo-
nal to the Dirichlet measures [HMP, p. 243, Proposition 9]. D

Our final remarks concern the circle group.

DEFINITION. A positive measure μ G M+(Ύ) is called C'quasi-
symmetric if for all pairs of adjacent arcs, / and / , on T of equal
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length, μl <C μJ. We denote the class of C-quasisymmetric mea-
sures by QS(C).

Note that quasisymmetric measures are continuous.

PROPOSITION 4.6. The class QS{C) is weak* closed. IfμeQS(C),

then A(μ) C QS{C), A(μ) c QS(C) in the sense that if σ. e A(μ),
then Ψx[μ] σx G QS(C), and A(i/) C QS(C) for all 0 < v e L{μ).

Proof. Let QS(C) 3 μa -^-+ v. Given adjacent arcs /, / of equal

length and ε > 0, pick / , g e C(T) such that / < 1/, lj < g,

f(h-f)dv<ε,and f(g-lj)dv<e. We have

vl < / /rf̂  + ε = lim / /^//α + 6 < hmμal + ε

< C Π i n / / α / + ε < C l i m / ̂  ̂ //α + ε = Cgdv + ε

< C'vJ + {C+\)ε.

Since ε was arbitrary, we see that vl < C vJ, whence v G β5(C).
Choose μ e QS(C). Then ŷ  e QS(C) for any y G f. Since

A(μ) is contained in the weak* closure of {γμ} € - , it follows that
A(μ) c j2*S(C). Suppose that £ c T and μE > 0. If / and /
are adjacent arcs of equal length and ε > 0, then choose U, a finite
union of arcs, such that μ(UAE) < ε. By continuity of μ, we have
for all large γ,

<C-μ(Enγ-ι[J]) + (C + 2)ε.

Since ε was arbitrary, it follows that A(μ\E) C β5(C). As
is a positive cone, we deduce that A(v) c QS(C) for 0 < ι/ G L(μ).

Finally, let σ. G Λ(μ). Let P be the essential range of σ., i.e, the
smallest weak* closed set P such that σx e Pμ-a.e. Then P is con-
tained in the weak* closure of {/ σx dv{x): 0 < v G L(/ι), ||i/|| = 1} =
U(Λ(ι/): 0 < z/ G L(μ), ||i/|| = 1}, which, by the above, is contained
in QS(C). O

As an example of the pathology possible for A(μ), we present the
following observation.

PROPOSITION 4.7. There is a measure μ e M(Ύ) such that for any

probability measure v G M(Ύ), there exists σ. G A(μ) such that σx =
vμ-a.e.
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Proof, Let {Pk)k>\ be a set of trigonometric polynomials such that
{Pk-λ} is weak* dense in the set of probability measures. Let {n^} c
N satisfy n^+1 > 3rifc degi\. Form the generalized Riesz product
[HMP, Chapitre 5] μ = ΠA:>I ^k(nkx) Then given a probability v,

let Pkλ -^-> z/. For any r, m e Z, it is easy to see that μ(r+mnkι) -+

/i(r)z>(m), i e., δ(nkx) -> 1/ in L(Λf (T), AT(T))^. ' D
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ASYMPTOTIC BEHAVIOUR OF SUPERCUSPIDAL
CHARACTERS OF p-ADIC GL3 AND GL4:

THE GENERIC UNRAMIFIED CASE

FIONA MURNAGHAN

This paper describes the singular behaviour of the characters of ir-
reducible supercuspidal representations of π of G = GLn(F) around
1 in terms of the values at 1 of certain weighted orbital integrals.
The weighted orbital integrals are computed when n = 3 or 4 and π
is generic and unramified.

1. Introduction. Let π be an irreducible supercuspidal representa-
tion of G = GLn(F), where F is a p-adic field of characteristic 0.
The character θ π of π is a locally constant function on the regular
set Greg consisting of all x e G such that the coefficient of λn in
the polynomial det(λ + 1 - Aάx) is nonzero. It is well known that,
if d(π) is the formal degree of π and x e GτQ% is elliptic and close
to the identity, θπ(x) = cd{π) for some constant c depending only
on normalizations of Haar measures. For other x e GTQg near 1, the
value of θπ(x) is unknown. Kutzko [K] has given a formula for θ π

when n is prime, but it involves a sum over double cosets in G and
cannot easily be evaluated.

The two objects of this paper are as follows. The first is to describe
the singular behaviour of the character θ π of π around 1 in terms
of the values at 1 of certain weighted orbital integrals. To do this, we
compare results of Howe and Arthur giving asymptotic expansions for
θ π . The second is to compute the weighted orbital integrals required
to give a formula for θ π when n = 3 or 4 and π is generic and
unramified.

Howe showed that

θ π ( e x p X ) =

for X G & = Lie(G) close to zero and such that expX G GTQg. (Jfc)
denotes nilpotent AdG-orbits in 3?, c#(n) is a constant, and μ& is
the Fourier transform of the orbital integral over 0. In the case of
GLn(F), the functions μ<? are known. The behaviour of θπ(x) as
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x € Greg approaches 1 is determined by the homogeneity properties
of those μ# 's for which c#{π) Φ 0. These results are outlined in §2.

In §3 we state results of Arthur [A3], [A4] showing that a weighted
orbital integral has a germ expansion valid on a neighbourhood of 1,
and that θπ itself is a multiple of a weighted orbital integral of a sum
of matrix coefficients of π.

The equality of Howe's and Arthur's expansions for θπ yields one
of the main results of this paper—a formula for each constant c#{π)
as a multiple of a certain weighted orbital integral evaluated at 1. We
derive this formula in §4. It holds for all n and any supercuspidal
representation of GLn(F).

In §§5 and 7, we consider a generic, unramified, irreducible super-
cuspidal representation π of GL3(F) or G L 4 ( J F ) . Such a represen-
tation is known to be induced from a representation of some open
subgroup of G. The particular sum of matrix coefficients appearing
in the weighted orbital integrals is defined in §5 using results of Kutzko
which give the character of the inducing representation. §6 contains
a description of the normalizations of measures and the evaluation
of the weight factor for the weighted orbital integrals. In §7, we ob-
tain explicit expressions for the constants c<?(π) as polynomials in the
order q of the residue class field of F.

The equality of Arthur's expansion and Harish-Chandra's general-
ization of Howe's expansion to a reductive p-adic group can be ex-
pected to yield information about the character Θπ of any supercus-
pidal representation π. However, the functions μ&, which are not
known in general, may be difficult to compute, and the germ expan-
sion for weighted orbital integrals is more complicated than that for
GLn(F).

I would like to thank Paul Sally for helpful discussions and James
Arthur for explaining his results about weighted orbital integrals.

2. Fourier transforms and characters of admissible representations.
Throughout this section, G will be the F-points of a connected, re-
ductive F-group. Let π be an irreducible admissible representation
of G. θ π denotes the character of π . We summarize results of
Harish-Chandra and Howe relating the values of θπ near singular
points in G to certain Fourier transforms.

Recall the definition of the Fourier transform on the Lie algebra 9
of G. For / e Q°°(^), the function / e Q°(50 is given by:

ί ψ{B{X,Y))f{Y)dY,



SUPERCUSPIDAL CHARACTERS 109

where B is a nondegenerate symmetric G-invariant bilinear form on
& 9 ψ is a nontrivial character of F and dY is a Haar measure on
the additive group of &. The map f *-> f is a bijection of Cg°(&).
The Fourier transform of a distribution Γ on 9 is defined by i (/) =
T(f). Let ^ r e g be the set of semisimple elements X in 9 such that

^ 0, where & is a Cartan subalgebra containing X.

THEOREM 2.1 [HC2, Theorem 3]. Lei T be a G-invariant distri-
bution on & which is supported on the closure of Ad G(ω) for some
compact set ω c 9. ΓAen ίAere exists a locally integrable function φj
on & such that

2. φr is locally constant on ^ r e g .

Let Xo e & and 0 = AdG(X0). If G^ is the stabilizer of
G, let dx* be a G-invariant measure on Gχ\G. Then

converges for / e Cc°°(^) and / »-• μ*(f) is a G-invariant distribu-
tion on 9.

COROLLARY 2.2 [HC2]. There exists a locally integrable function
μ<?: & -> C wA/cA w /ααz/iy constant on &ΐQg and

= [ ib(X)f(X)dX,

for feC?{&).

Let (Λ£) be the set of nilpotent G-orbits in ^ . If q is the order
of the residue class field of F, | | denotes the norm on F which
satisfies |τz71 = q~ι for any prime element w of F. For y e G, let
G7 be the centralizer of γ in G, and let ^, be the Lie algebra of Gγ.

PROPOSITION 2.3 [HC2]. For 0 e (Λb)>X e ^ and t e F\

Proof. For / € CC°°(S?), define /r(JΓ) = f(ΓιX),X e 9. It is
well-known that M/,2) = | * | d i m ^ M / ) . This, together with X

) r i , proves the proposition.
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THEOREM 2.4 [HC2, Theorem 5]. Let y be a semisimple point in
G. For any irreducible admissible representation π of G, there exist
unique complex numbers c#(π), one for each nilpotent Grorbit (9 in
%, such that

for X G &y sufficiently near 0. Here v@ is the Gγ-invariant measure
on ff, and ύ& is the Fourier transform of v@ on ^y.

REMARK. The case G = GLn(F) and γ = 1 is due to Howe [H],

The functions {μ#\& G (Λfc)} are linearly independent on Kπ^reg ,
for any neighbourhood V of 0 in 9 [HC2, Theorem 4]. Therefore
the functions {β^\c^(π) φ 0} determine the singular behaviour of Θπ

near 1. Very little is known about the constants c<?(π) in general. If
π is supercuspidal with formal degree d(π), then, if {0} denotes the
trivial nilpotent orbit, £{o}(π) = cd(π) where c Φ 0 depends on the
normalization of measures. Howe [H] proved that, if π is a super-
cuspidal representation of GLn(F), then c#(π) = 1 for the regular
(maximal dimension) nilpotent orbit &. Moeglin and Waldspurger
[MW] have shown a relation between c<?(π), for π admissible and
some (9, and dimensions of certain Whittaker models. As far as the
functions μ# themselves are concerned, there is some information
available in [MW] for induced nilpotent classes, and for G = G L Λ ( J F )

the fa's are known due to Howe (see Lemma 4.1).

3. Weighted orbital integrals and characters of supercuspidal repre-
sentations. We state several results due to Arthur which will be used
in later sections. Theorem 3.4 relates the character Θπ of a super-
cuspidal representation π to a weighted orbital integral of a sum of
matrix coefficients of π. Theorem 3.5 gives a germ expansion for
weighted orbital integrals. A vanishing property for weighted orbital
integrals of cusp forms is stated in Proposition 3.9. In Proposition
3.7, we derive a formula for the weighted germ gjfr corresponding to
the trivial unipotent class in a Levi subgroup M.

Our notation follows that of Arthur [A2]-[A4] except in one re-
spect: the boldface letter G will be used to denote an algebraic group
defined over F, and G = G(F) will be the F-rational points of
G. By a Levi subgroup M of G, we mean M = M(i 7 ) , where
P = MN is a parabolic subgroup of G. If AM is the split com-
ponent of M, then AM = AM(F). Let &~(M), resp. &{M), be
the collection of parabolic, resp. Levi, subgroups of G which contain
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M. Given a parabolic subgroup P = P(F), MP and NP denote its
Levi component and unipotent radical, respectively. Let &(M) =
{P € &(M) I Mp = M}. The chambers in the real vector space
aM = Hom(X(M)ir, R) parametrize the set &>(M), where X(M)F

is the group of characters of M which are defined over F.
We now review the notation required in order to define the weights

VM occurring in the weighted orbital integrals. Given M, choose a
special maximal compact subgroup K of G which is in good position
relative to M. For P e &>(M) and x = πp(x)mp(x)k(x), with
np(x) e NP, mp(x) e MP, and k(x) e Λ:, set HP(x) = HM{mP(x)).
Here HM: M -• aM is given by:

e<HM(m),X) = | χ ( m ) | ? meM, χe X(M)F.

Let α ^ be the kernel of the canonical map from aM onto aG. There
is a compatible embedding of aG into d^ resulting from the embed-
dings of X(M)f and ^(G)^ into the character groups X(AM) and
X(AQ) of AM and 4̂G > respectively. Therefore, α M = a^ Θ α^.
Fix a Weyl-invariant norm || || on aM , where MQ c Λf is a mini-
mal Levi subgroup. The restriction of || || to each of the subspaces
aM, M e <£?(Mo), yields a measure on aM. We take the quotient
measure on a^ c* QLMI^G

Let P e &>(M). The roots of (P, AM) will be regarded as charac-
ters of AM or as elements of the dual space a*M of aM. Let Δp be
the set of simple roots of (P, AM) . If α G Δp, the co-root α v is de-
fined as follows. Choose a minimal Levi subgroup MQ C M. If β is a
reduced root of (G, ^^ o ) , the co-root βy is an element of the lattice
Hom(Z(^M0), Z) in α^ o . For Po € ^(Af0), with Po C P, there is
exactly one root β e APQ such that β\AMo = α. α v is defined to be the
projection of /?v onto a^. Set Δ^ = {α v |α G Δ P } . The lattice Z(Δ^)
in α ^ generated by Δ^ is independent of the choice of P e &(M)
[A4, p. 12]. For x e G, VM(X) is equal to the volume of the convex
hull of the projection of the points {-Hp(x)\P e &(M)} onto α ^ .
Set θP(λ) = vol(α^/Z(ΔV))-iΠα€Δp^(«v)5 A € ig*M. Then, [A2, p.
36]

and, [A2, p. 46]

(3.1) υM(x) = l/r\ X) (-λ(HP{x))γθP(λ)-1

where r = dim(AM/Ao).
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For γ e G, define D(γ) = DG(y) = det(l - Ad(σ))^/^ , where σ is
the semisimple part of γ. Let / e C™{G). For a Levi subgroup M ,
set ^4M,reg = {# Ξ ^4M I G Λ C M 0 } . The weighted orbital integral is
defined for γ e M. If Gγ c M, then [A3, p. 234]

(3.2) JM(y,f) = \D(γ)\ι/2 ί f{χ-ιyx)vM{x)dx.
JGy\G

More generally, for any γ e M [A3, §5],

(3.3) /M(y,/) = lim £ rfo(γ, a)JL(aγ, / ) , a

where rj^(γ9a)9 L e &(M) is a certain real-valued function. We
remark that f *-> JM(Ϊ , f) is not an invariant distribution on CC°°(G).
If γ{ and γ2 are conjugate in M , then JM{y\,f) = JM(Y2,f)>
so «/ji/(<f, /) is well-defined for any conjugacy class *f c Af. The
restriction of f *-* JM(Y > f) to the space of cusp forms is G-invariant.

Let MQH be the set of γ in Af which lie in some elliptic Cartan
subgroup of M. Recall that an admissible representation π of G is
super cuspidal \ϊ its matrix coefficients are compactly supported modulo
AG.

THEOREM 3.4 [A4]. Lei π be a supercuspidal representation of G.
Suppose f is a finite sum of matrix coefficients of π. For γ e Me l l n
G r e g > where M is a Levi subgroup,

(-l^^^θnif^Diγ^Θniγ) = JM(v,f).

REMARK. 1. Although / is not in CC°°(G), the weighted orbital
integrals of / still converge because supp / is compact modulo AQ .

2. The corresponding result for reductive Lie groups appears in
[Al].

3. In Theorem 3.4, and, with the exception of the proof of Propo-
sition 3.9, in the remainder of the paper, if γ e GTQg, the integral in
JM(Ϊ > f) is taken over AM\G instead of Gγ\G. The weight factor
VM is invariant under left translation by elements of M, so this is
equivalent to multiplying the original definition (3.2) by the measure
of AM\Gy.

The measures on AQ\G, AM\G, and aM/aG must be normalized
correctly in order for Theorem 3.4 to hold. Let KM = Aj^nK. Given
measures on aM, aG, and aM/aG defined using the restriction of
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a fixed Weyl-invariant metric on aM , as above, the compatibility
requirement for the measures is as follows [A4, p. 5]:

VO\ΛM{KM) = vol(aM/HM(AM)),

volAβ(κG) = yol(aG/HG(AG)).

The measures on AM\G and AG\G are the quotient measures in-
duced by the measures on G, AM and AG.

If γ e Greg Π M, the weighted orbital integral JM(V> f) has a
germ expansion on neighbourhoods of semisimple points in M. The
weighted germs are uniquely determined up to orbital integrals on
M. Suppose φ\ and φ2 are functions defined on an open subset Σ of
σMσ which contains an Mσ -invariant neighbourhood of the semisim-
ple element σ. φ\ is (M, cr)-equivalent to φι, φ\{y) ~ Φi{y) > if
Φ\{y) ~ ^2(7) = JΛ/(y> Λ) for 7 G Σ n ί/, where C/ is a neighbour-
hood of σ in M , and /z € Q°(Aί). Let (σ^Mσ) be the finite set of
orbits in σ%Mσ under conjugation by Af(σ) = M°(F)σ . Let 7 € Λf.
Generalizing the definition of Lusztig and Spaltenstein [LS], Arthur
[A3, p. 255] defines the induced space of orbits γ^ = γG in G as the
finite union of all G°(F)-orbits in G which intersect γNp in an open
set for any P e 3°{M).

THEOREM 3.5 [A3, Prop. 9.1, Prop. 10.2]. 1. There are uniquely
determined (M, σ)-equivalence classes of functions γ H-+ g^(γ9^),
γ G σMσ n Greg parametrized by the classes & e (O%L ) such that, for
any feC~(G),

{M) Σ

where JL{@, /) = f JL(σu, /) for any
2. Let teF* and w e (2fc). Set dG(w) = (l/2)(dimGu,-rankCr).

If x = exp(X), let xι = exp(ίZ).

Σ
where the c^{u, t) are certain real-valued functions and [uG : w] is 1
if w euG, 0 otherwise.

LEMMA 3.6. Let π be a supercuspidal representation of G and f
a matrix coefficient of π. Then Θπ(f) = d(π)~ιf(l), where d(π) is
the formal degree of π.
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Proof. Let ( , ) denote a (^-invariant inner product on the repre-
sentation space V of π. Let e\, e^, . . . be an orthonormal basis for
V. f(x) = (v, π(.x)u>), some υ ,w e V. We use the orthogonal-
ity relations for matrix coefficients of supercuspidal representations
[HC1, p. 5] to evaluate

= tr (7θn(f) = tτπ(f) = tr ( 7 /(*)*(*)dx*
J \

PROPOSITION 3.7. Assume G is connected. Let γ e AfeU Π G r e g .
w ί/ze F-rank of G and d^tg) is the formal degree of the Steinberg
representation of G, then

Proof. Let π be a supercuspidal representation of G. Choose a
matrix coefficient / of π such that / ( I ) ̂  0. By Lemma 3.6,

First, let γ e Gen Π Gτeg. From [R], the leading term in the Shalika
germ expansion of JG(γ9f) is ( « ( / d i ^ ) 1 / 2

We also have, by Theorem 3.4,

The leading term in Harish-Chandra's asymptotic expansion of
\D{y)\χl2eπ{y) is c{0}(π)\D(γ)\1/2, because μ{0} = 1. By {0}, we
mean the trivial nilpotent orbit in &. Thus the leading term in
JG(?9 S) is also equal to θπ{f)\D{y)\χl2c^{π), which means

c { 0 } (π) = ( - l ) (

which, by Lemma 3.6, equals (-
Now let γ e Λfell n G r e g . From Theorem 3.4 and Theorem 3.5(1),

, f)
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We will show that g^(γ9 1) is the only term occurring in the above
expansion having the same homogeneity as \D{γ)\1/2. Given this, we
then have

d(Stβ)

which, using Lemma 3.6, yields the desired expression for gj§ (y, 1).
Let L e &{M) and u e (%). Since [uG : 1] = 1 <*> L = G and

M = 1, and cG{\, t) = 1 (see [A3, §10] for the definition of cL(u, ί)),
Proposition 3.7(2) reduces to:

^ ^ 1).

Let w € (^G), w Φ 1. The power of \t\ in |ί| r f°(w)cL(M, t),ue
such that [« G : w] = 1, is less than ^ ( 1 ) . Therefore, all other terms
in the above weighted germ expansion for |Z>(7)|1/'2θπ(y) have smaller
homogeneity than gjfriγ, 1).

LEMMA 3.8 [A3, Cor. 6.3]. Let Lx € ^ (Af) . Then

rϊ(γ, a)JL(aγ, f),
1

REMARK. / L I (yLi, /) ά^ Σi M4, / ) , where yLi = (J,-

Recall that a locally constant function φ on G is a
if, for all x e G and all proper parabolic subgroups P = MN of
G, fN φ(xn) dn = 0. The following is a generalization of the well-
known fact that orbital integrals of cusp forms vanish at nonelliptic
semisimple points in G.

PROPOSITION 3.9. Let f be a cusp form on G such that supp/ is
compact modulo AG. Suppose γ is a semisimple element in a Levi
subgroup M and γ $ MQn. Then JM(Y, /) = 0.

Proof. This is due to Arthur. We give a rough outline of the proof.
Using results about products of (G, M)-families from §§6 and 10 of
[A2], it is possible to show that, for M\ c M,
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where v^(x) = \imλ^Σ,{Pe^Mx)\PcQ}^λ{Hp{x))θί{λ)-1 and aQ e

R. Here, θ$(λ) is defined in the same way as θp, but with respect

to the set Δ^ of simple roots of (PΠMQ , AP) and the associated set

{ α v | α £ Δ ? } .
Because y £ Λfell, there is a Levi subgroup Λfi propertly contained

in M with y e M\. Assume that Mγ = Gγ. Then

•My, /) = Mγ)\ι/2 / f(χ-ιγχ)vM(χ)dχ
JMγ\G

Note that Afy = M\ . By [A2, (8.1)], the integral corresponding to Q

in the sum above is equal to JM

Q(γ, / ρ ) , where JM

Q is the weighted
orbital integral for the Levi subgroup M\ of MQ , and ^ : MQ -+ C
is given by /ρ(w) = (Jρ(m)1/2 /^ fκf(k~ιmnk)dkdn. Since / is a

cusp form, / 2 = 0 for QφG. Therefore, JM(7, f) = 0.
For general y, and α e ^Af,reg close to 1, the element αy is not

elliptic in any L e ^ ( M ) , and Laγ = G α y . Thus the above argument
shows that JL(aγ, /) = 0. From (3.3), JM(γ, /) = 0.

4. Some results for G = GLΠ(-F). Assume π is an irreducible
supercuspidal representation of G = G L ^ i 7 ) . The main result of
this section, Theorem 4.4, expresses the constant c&(π), (9 G (Λ£), as
a multiple of a certain weighted orbital integral of a sum of matrix
coefficients of π. Because of the one-to-one correspondence between
the set (ΛQ) ofnilpotent G-orbitsin 9 and the set (2fc) of unipotent
conjugacy classes in G, we can view c<?(π) and fo as corresponding
to (9 e (%) We begin by defining some notation which allows us
to state our results in terms of unipotent conjugacy classes. For (9 e
(&G), let &>(<9) = {P = MTV | ^ = 1 ^ } . If P e &{<?), let τrP

be the admissible representation of G induced (unitarily) from the
character δp{^2 of P, and let θ p denote the character of πp. If
Pi , Pi G &{<9), then Pi and P2 are conjugate in G, and πp and
πp2 are equivalent, so θ/> = θp2. Let θ ^ denote the common valuep2

For a Levi subgroup M of G, set ̂ ( Λ f ) = { I e £
If L i , L2 € -^(Af) and AT is a special maximal compact subgroup in
good position relative to M , then L\ = kLιk~x for some k EK and
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[A3, p. 235] JLi{\, /) = JLχ{\, f k ) , where fk{x) = /(/ex/;"1). As-
sume / is a cusp form. Then 7^(1, /*) = /L (1, / ) , so /L (1, /) =
/L 2 (1 > /) We denote the common value by /^( l , / ) . Similarly, let
ί/(St(^f)) be the formal degree of the Steinberg representation of any
L G -2§p(Afo), where MQ is a minimal Levi subgroup. We note that
5fr(M0) φ 0 for any 0 e (2fc). Finally, we set w, = |Λfc(Λ)/Zσ(Λ)|,
for 4̂ equal to the split component of any P e &(0), and NQ{A)
(resp. ZQ{A)) the normalizer (resp. centralizer) of A in (?. Let
K = GLn(βp), where ^ is the ring of integers in F. AT is a special
maximal compact subgroup of G. For convenience, we consider only
those Levi subgroups M which are in J?(MQ) , where MQ is the sub-
group of diagonal matrices in G. For all such M, G = PΛΓ = ΛT if
P e

LEMMA 4.1 [H]. Measures can be normalized so that /v(logy) =
> f°r 7 Ξ Greg *Ή # sufficiently small neighbourhood of I.

REMARK. In §6, we normalize measures on G and its Levi sub-
groups. We will assume that the measure on the Lie algebra & has
been normalized so that Lemma 4.1 holds.

LEMMA 4.2. Let M be a Levi subgroup of G. If γ e Afeu Π K n Greg

Let Pi = LχN\ e &>{0) with ^ the split component of
L\. We have simply rewritten van Dijk's [D] formula for the induced
character:

/ 2 W

where FΓ(^!, AM) = {s: A{ ^ AM \ si - 1, as = a*, y £ G}, and
sδplβ(y) = δplll{y-χyy). δPχ\K = 1 and y can be taken in K, so
sδpV2{y) = 1. W{AX ,AM) = 0& &*{M) = 0 . Assume Sfr{M) φ
0 and L\ G oS^(M). Define a map i H I from W{A\, AM) to
&(M) by: L = L\ = yLxy~x. If L e S%,{M), then L = L\ for
some y € K and α ι-+ αy maps ^ i bijectively onto AL. Since
Λf C L, AL c ^ . Thus α >-> αy defines an 5 € W{A\, AM) which
maps to L. Suppose L = Z^2 f°Γ some 52 € W{A\, AM) Then
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AL = yAxy~ι = yiAxy^1, so y^ly e NG(Aχ). Clearly s = s2 &
y^y e ZG(Aι). Thus s ι-> L is onto and t^-to-one, which proves
the lemma.

LEMMA 4.3. Let f be a cusp form on G which is compactly sup-

ported modulo AQ.

1. Ifue{%M),anduφ\,then /j,(κ,/) = 0.
2. JM{\ , f ) = l i m β - i JM{a,f),ae

Proo/. 1. There exists a Levi subgroup Mx c M such that w =

By [A3, Corollary 6.3],

/7—M

Because a e AM ,reg and M\ φ L for each L e ^(Af) , α is not
elliptic in L. Therefore, by Proposition 3.9, JL(a, /) = 0.

2. For L e &(M)9 L φ M , we have JL{a, f) = 0, since α e
eg is not elliptic in L. By definition, [A3] r ^ ( l , α) = 1. Thus

Let π be a supercuspidal representation of G. We now express the
coefficients c#{π) in the asymptotic expansion about 1 of the charac-
ter Θπ in terms of the weighted orbital integrals at 1 of the matrix
coefficients of π.

THEOREM 4.4. Let f be a finite sum of matrix coefficients of the
supercuspidal representation π. Assume f(l)φθ. For (9 e

w,d(St(S))f{l)

Proof. Let γ € Af0>eu
 n ^reg. Recall [HC1] that the matrix coeffi-

cients of π are cusp forms. Applying Theorem 3.4, Theorem 3.5(1),
and Lemma 4.3(1),

( A^ 1 ) γ, \)Jg(1, /).
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Writing the sum over L <= J?(MQ) as a double sum over & € (^G) and
Le^f(Mo) and using Proposition 3.7 to substitute \DL(γ)\ι/2/d(StL)
for gMo(γ, 1), we obtain

For 7 G Λ/0>eii n Greg close to 1, we also have:

(4.6) θπ(γ)=

- Σ «#» ί Σ
V

The two expressions (4.5) and (4.6) differ by an orbital integral on
MQ = AM , that is, by c \ D(γ)\~ιl2, for some constant c. Let <^reg be
the regular unipotent class in G. By Lemma 4.3(2), JMJΛ, f) =
ί % ( l . f) = l i m « - i JM0{a,f),a e AMΰ>κ& Multiplying0 (4.5) by
(-l)n-ιθπ(f)\D(a)\1/2 and letting a -> 1, we get

which must equal J<? (l,f). Since Mo is abelian, the Steinberg
representation of Mo is just the trivial representation, so d(St((fτeg)) =
1. Therefore c = 0.

The functions Σz.6^ ( Λ/0) l ^ ( ? ) l 1 / 2 / I ^ W I 1 / 2 ^ e (2fe), are lin-
early independent on any neighbourhood of 1 intersected with AM κ%
Therefore, the equality of (4.5) and (4.6) implies:

From Lemma 3.6, θπ(f) = f{\)/d{π).

REMARK. 1. It follows from the definition of the Steinberg charac-
ter, that is, the character of StG (see [Ca]), that

where d{<9) = d im^ M , M e
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2. If π = Indp(τ® id), P = MN, τ a supercuspidal representation
of M, then, using van Dijk's formula in [D] which expresses θ π in
terms of θ τ , it is possible to write c&(π), (9 € (2fc), terms of the
constants <y (τ), 01 e (&M)

3. If π is in the discrete series of G and π is not supercuspidal or
a twist of St<7, there is no formula for c<y(π), & Φ {\}.

5. Characters of inducing representations. To find the constant c&(π)
for a supercuspidal representation π of G = GLn(F), we must eval-
uate Jj{\, /) for / equal to a sum of matrix coefficients of π such
that f(l) φθ (Theorem 4.4). Here, we outline how to produce such a
function / . It will be shown in Lemma 6.1 that only the values of /
on the unipotent set %Q are required to compute / ^ ( l , / ) . Lemma
5.2 gives a formula for the values of / on %Q for π generic and
unramified.

Carayol [C] has constructed an infinite family of irreducible uni-
tary representations of KAQ which are called very cuspidal. To each
such representation σ is attached a positive integer h, the level of
σ. Given any (unitary) character χ of F*, the representation π =
I n d ^ σ ® £ o det is irreducible and supercuspidal. We will say that
any such π is generic and unramified.

The reason for this terminology is as follows. Let p be the residual
characteristic of F. If (p, n) = 1, the irreducible supercuspidal rep-
resentations of G are parametrized by conjugacy classes of admissible
characters of extensions of degree n over F. For definitions and a
general description, see [CMS]. Let θ be such a character. In this
setting, those supercuspidal representations which correspond to the
case where θ is generic over F and the extension of F is unrami-
fied are precisely the generic and unramified representations defined
above. We remark that CarayoΓs construction is valid for arbitrary
p, and thus we do not place any restriction on p.

LEMMA 5.1 [C]. Let H be an open subgroup of G. Suppose φ is a
matrix coefficient of a representation σ of H. For x e G, define φ(x)
to be φ{x)f if x € H, and 0 otherwise. Then φ is a matrix coefficient
of Ind£σ.

Let π = Indf A σ ® / o det be generic and unramified. By Lemma
5.1, if χσ is the character of a, then χσ is a sum of matrix coefficients
of IndjiL σ, and we may take / = χσχ odet as a finite sum of matrix

G

coefficients of π. Note that /(I) = dimσ Φ 0. This particular /
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is chosen because fκf(k~ιuk)dk = f(ύ)9 for W E % 5 which will
simplify the computation of J&{\, /) (see Lemma 6.1).

Let w be a prime element in F, and let ^ p = VJ&F If 7 is a
positive integer, define Xj? = {A: E AT | k e I + M /

LEMMA 5.2. 7/1 α w a very cuspidal representation of KAQ having
level h, then, for ue%SGΓ)K,

XσW = <

0, otherwise.

For u e K^-\, s^(u) is the number of blocks in the Jordan form of
υjx~h{u- 1) viewed as a matrix over

Proof [K, Lemma 6.6]. The proof given by Kutzko is for n prime,
but in fact uses only the very cuspidal property of σ and therefore is
valid for arbitrary n .

6. Weights for GL 4 ( i 7 ) . To compute the coefficients c#{π), it is
necessary to evaluate J#{\, /) for / equal to a suitable sum of matrix
coefficients of π. Proposition 6.5 gives explicit integral formulas for
/Λ/(1 9 f) f° r non-minimal Levi subgroups M of GL 4 ( i 7 ) .

On G = GLn(F), we take the Haar measure with respect to which
K = GLni&p) has measure one. The Haar measure on K is the
restriction of this measure to K. If P = MN is a parabolic subgroup
with G = KP, the measures on M and N are normalized so that
the measures of MnK and NnK equal one. Then we have

f φ(x)dx= ί f [ φ(mnk)dkdmdn,
JG JKJMJN

LEMMA 6.1. Let f be a cusp form on G which is compactly sup-
ported modulo AG. Then, if G = KP and P = MN,

fκ(u)υM(n)du,

where n e N is defined by u = a~ιn~ιan and

fκ(x)= ί f(k-ιxk)dk,
JK

for x e G.
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Proof. From Lemma 4.3(2) and (3.2),

= lim|Z)(ύO|1/2 / f{x~ιax)vM{x)dx, a
a^1

 JM\G

The quotient measure on M\G is dx = dndk, and [A2] vM(mnk) =
) for m e M, n e N, and k e K. Therefore,

/ MrΓιan)υM{n)dn.

Since w »-• a~xn~xan, n e N, a e AM,τeg> is a n invertible poly-
nomial mapping from TV to TV, we can make the change of vari-
ables u = a~ιn~ιan. This introduces the factor \D(a)\~ι/2δp(a)1/2.
fx is locally constant on G, and therefore is invariant under left
and right translation by some open compact subgroup of G. Thus
fκ{au) = fκ(u) for all u e N if a is sufficiently close to the identity.
Also, δP\KnP= 1.

We now describe, for GL Π (F), the normalizations of measures
on aM, aG, a^, AM , ̂ G and AM/AQ required by the compatibility
conditions of §3. Fix the Weyl-invariant inner product {{x\, . . . , xn),
CVi, . . . ,yn)) = lo&~2<lΣι<i<nχiyi o n ^MQ

 τ h e corresponding
measure is log~w ή' dxi ίίxw , where dx\ denotes the standard Haar
measure on R. On aM we take the measure coming from the restric-
tion of the above inner product to aM. Suppose M is conjugate to
Π/=i GLΠ ( F ) . The embeddings of X{M)F and X{G)F into the
character groups X(AM) and X(AQ) result in the embedding x ι->
(xπi/n, . . . , xnr/n) of aG into α M . It is compatible with the canon-
ical projection (xx, . . . , xr) ι-+ ]£i</<r *i from α M onto ΛG , whose
kernel is denoted by q^. This results in the decomposition aM =

Let JC3/ = 4̂̂ / Π K. The function HM maps AM/KM bijectively
onto a lattice in α M . As stated in [A4, p. 5], the measure of KM
in AM must equal the volume of CIM/HM(AM) The measures on
AM\G, AG\G, and aMlίG — ̂ M a r e t h e o n e s induced by those on
G, AM, AG, aM, and α G .

The next lemma gives the measures of the KM 'S. We will use these
to determine the formal degree d(St(<f)) which appears in the formula
for c&{π). Note that, in order to be consistent, the measure of MQ n
K = AM0 Π K must equal one. This determined our choice of inner
product on aM .
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LEMMA 6.2. Let M be conjugate to Π/=i G L « C )̂ W i t h t h e a b o v e

normalizations, the measure of KM is \jn\- -nr.

Proof. For meM, HM(m) = (log|detmi|, . . . , log|detra r |). Thus
HM{AM) = fti log#Z x x nr\o%q2j. The measure on aM ~ Rr is
(log~rq/y/nι "-nr) dx\ dxr. The volume of UM/HM(AM) is there-
fore y/ni' nr.

In order to evaluate VM{X) > x G G, we need to compute
vol(α&/Z(Δ]0) for P G ̂ (Λf) . As noted in [A4, p. 12], Z(Δ^) is
independent of the choice of P e ^ ( M ) . Let ^

LEMMA 6.3. μji/ = \Jnj{n\ •• nr)log- r + l

. Let P = MN e &\M) be chosen so that N is upper trian-
gular. Then Δ)ί = {<*i, . . . , α r _i}, where α, has 1 in the zth position
and 0 elsewhere. Define variables y\, . . . , yr by

Then, since dy\ rf^r = dx\ dxr, the measure on <αM is

rf^r. The measure on aG is 1

and x £ aG embeds in aM as (xn\/n, . . . , xnr/n). The quotient
measure on ^ is given by {\o%~r^ιq^nl{n\ nr) dy\ dyr-\.

Let w G supp /jr. We want to compute the value of VM(K) , where u =
a~ιn-ιan, α e ^M,reg. If aeAM, then α = diag(α!/Wi, . . . , arln),
with α/Gi 7 *, and 7rt the /i/X/i/ identity matrix, 1 < i <r. Let J*p
be the maximal ideal in the ring of integers ^ . For each positive
integer d, define ^ M j ί / = {a e AM^% | αz G 1 + ^ / 5 |a; - aj\ =
q~d

 9 i Φ j}. We will compute VM(K) for a G AM^ for large values
of d, and to evaluate /Λ/(1 , / ) , we will let <ί —• oo. The next lemma
gives the values of VM{ΪI) for certain non-minimal Levi subgroups of
G L ^ i 7 ) . We take n in the corresponding upper triangular unipotent
subgroup. For x eF*, I/(JC) is defined by \x\ = ^ - I / ( χ ) .

LEMMA 6.4. Lef u e NnK, a e AMfd, and n be given by u =
1 1

1. Let M = GL 3(F) x GLi (F)

/ I

M =
0
0

. / /
0
1
0
0

0
0
1
0

xλ
y

z
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is such that max{|x|, \y\, \z\} φ 0, then

VM(H) — 75 (d - min{^(x), u(y), u(

for large d.

2. Let M = GL2(F) x GL 2 (F). //

/I 0 W Λ

u =
0 1 y z
0 0 1 0

{0 0 0 \J

such that wz - xy Φ 0 then

vM{n) = 2d-u(wz-xy),

for large d.

3. Let M = GL2(F) x GU(F) x GLi(F). Let

u =

(\ 0 JCI y\
0 1 x2 y2

0 0 1 z
V0 0 0 \ )

Define

Λ = min{i/(x1), u(x2)},

B = mm{p{xιy2 - x2y\), v{z) + A).

If AφO, B φθ, and d is large, then

vM(n) = 3Vϊd2 - d(2VΪA + 2V2u(z) + y/ΪB)

+ -±=B2 - V2(B - A)2 + V2Bv(z).
2

REMARK. Let Po = AMoNo be the Borel subgroup of GLn(F) such
that No is the subgroup of upper triangular unipotent matrices. For
x e GLn(F), we use the following fact to find Hpo(x). Suppose
x = nak, with n e iV0, a = diag(αi, ... ,an) e AMf), and k e K.
Then, for 1 < / < n, \a,•• • an\ is equal to the maximum of the set.
of norms of determinants of (n - i + 1) x (n - / + 1) matrices which
can be formed from the last n - i + 1 rows of x. For example,

\an-\an\ = τaaxι<iφj<ίn{\xn-χtixnj-Xn,iXn-\,j\}. If P = MN, Me
,NcN0, then HP(x) = (log|αi •••αn\,..., \og\αn _ + 1 αn\).
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Proof of Lemma 6.4. 1. Let P e 3°{M) be the opposite parabolic
subgroup. It is not hard to see that Hψ{ή) = -Hp(nt ), where t
denotes transpose. If a e AMjd = diag(αi, a\, aι, Λ2) then

n =

(\ 0 0 ( 1 - ,
0 1 0 ( 1 -
0 0 1 ( 1 - ,
0 0 0

xa2)^x\
1α2)~V

1

Using the above remark, we obtain

HP(nr) = logmaxO , qd\x\, qd\y\, qd\z\}{-\, 1)

= - logq(d - min{v(x), u{y), v(z)}){\, -1), d large.

By definition, VM(Π) is the volume in α ^ of the convex hull
of Hp(n) = 0 and Hj{ή), which is, by Lemma 6.3, equal to

2. We note that, if a = diag(αi,

/ 1
0

, a2, ai)

0
1

0 0Λ
0 0
0 0
0 0)

Then

Hj(n) = logmax{l, q2d\wz-xy\, qd\w\, qd\x\, qd\y\, qd\z\}(l, -1)

= logq(2d - u(wz - xy))(I, -1), d large.

To obtain 2, proceed as above for 1.

3. Let a = diag(αi, a\, aι, a^) € AMj. The characters a =
(1, - 1 , 0), β = (1, 0, -1) and γ = (0, l', -1) of AM are viewed
as elements of the dual space a*M. Given u as in the statement of
the lemma,

/I 0 xι pι
0 1 x2 h
0 0 1 zn =

\0 0 0 \ )

where

\-i-
W )

i = (l-aι

ιa3)
- i Λ ^-l-ax

ιa2)
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Define A = min{i/(x!, vfa)} and B = vcάn{u{x\y2 — xiy\), v{z) +
A). For u in an open dense subset of the unipotent radical, A and B
are nonzero. For d sufficiently large, the values Hp(ή), P e
are given by the table below.

ΔP log"1 qHp(n)

{a,γ}
{Id -

0
(2d - v(z) -

For the pairs {-α, -y}, {-α, β} and {β, -7}, //p(n) can easily be
computed using the remark preceding the lemma. We describe the
case {β, -γ}. If P G &>(M) has simple roots {β, -γ}, then

/ I 0 C13 C1 4λ

0 1 C23 ^24

0 0 1 0
[\0 0 C43 l y

NP =

Note that

n = rip

l z

/ I 0 0 0^
0 1 0 0
0 0 1 z
0 0 0 1

where nP eNP. Also, ( ι z ) is the product of Cw\) and

with a matrix in GLI^F)^ where |^i| = \δι\~ι = | i | ? for large d.
Therefore, 2fP(/ι) = log(^|z|)(0, 1,-1).

The values HP{ri) for {α, -^} and {-/?, 7} are determined by
the values for the other parabolic subgroups by using the following
property (see [A4, p. 5]): If P, Pf e &>(M) are adjacent, and τ is
the simple root of (P, AM) in AP n (-Δp/) which determines the
wall shared by the chambers of P and P1 in α M , then for any
x € C?, —Hp(x) + HP'(x) is a nonnegative multiple of τ v . That is,
{—Hp(x) I P G ^(M)} forms a positive orthogonal set for M.

To compute VAT(Λ) we use formula (3.1):

vM(x) = 1/r! (-λ(HP(x))γθp(λ) -1

α ^ , r =
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where θP(λ) = / / ^ Π α G Δ . V ) . Setting λ = (itΪ9 it2, it3) with

ί i , h, t^ distinct real numbers, βM = \/21og~2 q, and computing

V ^ Σ ^ e ^ M ) } ^ ^ ^ ) ) ) 2 ^ ^ ) ' 1 > a f t e r s o m e algebra, we obtain the

desired expression for vM{n).

PROPOSITION 6.5. Lei f be a cusp form on GL4(i7) w/ίλ supp/ c
KZ. G/V^Λ M, ίfe/me the variable ue N Γ)K as in Lemma 6.4.

1. If M = GL3{F) x GU(F),

JM(l, f) = -2/V3 / fκ(u)min{v(x),v(y),v(z)}du.
JN

2. If M = GL2(F) x

,/) = - / fκ(u)v(wz - xy) du.
JN

3. // M = GL2(i7) x GLi(F) x GLi(F), and A and B are as in
Lemma 6.4,

V f A)2
f) = V2 f fκ(u)(B2/2-(B-

JN

Proof. Let d > 1 and a G AMj. Forn e N such that u =
a~ιn~ιan, set ^ ( n ) equal to

2V2u(z) + V2B)

in cases 1, 2 and 3, respectively. By Lemma 6.4, for all u e N n
^00(^Λf(n) - Ojj/(n)) = 0. Results of Arthur [A3], imply that

fN fκ(u){vM(n) - ϋM(n))du = 0. Thus

, / ) = lim ( / fκ(u)ϋM(n)du+ / fκ{u){vM{n) - ϋM(n))du)

= lim / fκ(u)ϋM{n)du.

Because / , hence //^, is a cusp form, we have fNfκ(u)du = 0. In
the first two cases, VM(H) is a constant multiple of d plus a term
which is independent of d. Thus the lemma follows immediately in
these cases.
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To prove 3, we first observe that, for large values of d, VM1 («) is
a multiple of Id - A - v{z), where Mi = GL3(.F) x GLy(F). In the
notation used in the proof of the third part of Lemma 6.4,

n =

(\ 0 Jc, (Λ
0 1 Jc2 0
0 0 1 0

(\ 0 0 yi-
0 1 0 j) 2-Jc 2ί
0 0 1 z
0 0 0 1

x2i\).

\0 0 0 I

is therefore a multiple of logmax{l,

|2| = 0*1*1.
\fi - xιz\ = qd\yi - (1 - a2la3)-ιXiz\, i = 1, 2.

We assume that ΛΓ, Z ^ 0, / = 1, 2, and d is large. Then |j>, - xtz\ =

{(Λ > /) = 5p(α)1/2 fNfκ(au)vMl («) d«. This is obtained by the
same change of variables used in the proof of Lemma 6.1. a e AM^
is not elliptic in M\, so, by Proposition 3.9, /M,(^> /) = 0. By an
argument similar to the one above for JM(1 , f), we get:

lim/M(α,/)= lim / fκ{u)vM(n)du

= lim f fκ{u){2d-A-v{z))du
d-^ooJN

v(z))du.[
N

Thus JNfκ(u)(A + v
Similarly, if Mi = GLι(F) x GL2(JP) , we can show that VM2(K) is

a multiple of 2d - B for large d, so /^ fκ(u)Bdu = 0.
Looking at the formula for VM(K) given at the beginning of the

proof, we see that

ί fκ(u)ϋM(n)du= ί fκ(u)V2(B2/2-(B-A)2

JN JN

7. Calculation of c<?(π) for GL3(F) and GL4(F). We now conί
pute the coefficients c<?(π) for a generic unramified supercuspidal rep-
resentation π of GL$(F) or GL^F).

Let M = Πκ/<r £*Ln (F). Let StM be the Steinberg representation
of M. If G = GLΠ(F),' the formal degree d(StG) of StG is given by
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[CMS]:

d(StG) = l/n {T\{qk - I)) vo\Z\G(Z\KZyι.
\k=l /

Here Z = AQ is the centre of G. We are assuming that VOIZ\G(Z\KZ)

= VO\G(K)/VO\Z(K Π Z) . With the measures normalized as in §6, we
have

(7.1) d{S\M) = Y[\/y/niγ[{qk-\).
i=l k=\

If π — Ind# z σ, then, by [C, p. 211], the formal degree d{π) =
VO\Z\G(Z\KZ)~1 dimσ = v^dimσ.

THEOREM 7.2. Assume G = GL^F). Given any character χ of
F*, let n = Ind^zcr ® χ o det 6e α generic unramified supercuspidal
representation of G, where σ has level h. If M is a Levi subgroup,
let 0=1%.

1. // M = G, c&{π)
2.IfM = GL3(F) x
3.IfM = GL2(F) x
4.IfM = GL2(F) x GL!(F) x
5. If M is minimal, c&(π) = 1.

Proof. 1 and 5 are due to Howe [H]. Let χσ be defined as in §5.
The function / = χσ ® χ o det is a sum of matrix coefficients of
π. Note that /(«) = χσ{u) for any unipotent element u e G, so
/^(l, / ) , hence c#(π)9 is independent of / . Since dimσ = / ( I ) ,
and n = 4, rf(π) = 2/(1). Putting this together with Theorem 4.4,
we obtain c^(π) = —2/^(1, f)/(w^d(St((f))). In cases 1-4, tt;^ =
1,1,2 and 2, respectively. The values of / on the unipotent set are
given in Lemma 5.2. Substitution of these values into each formula for
J#{\, /) given in Proposition 6.5 (note that fκ = f), and evaluation
of the integral results in:

2. ( ^
3. -
4.

The calculations are fairly short in cases 2 and 3, and lengthy in case
4. We do not include them here. Using (7.1) to evaluate d(St(&))
completes the proof.
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REMARK. For arbitrary n, and π and / as in the theorem, if
M = GLn-\(F) x GL\(F), it is easy to compute

which results in c*(n) = {-\)n-2nq{n-\){n-2){h-\)/2 f o r <? =

PROPOSITION 7.3. Lfaofer ί/ze same assumptions as Theorem 12, ex-
cept that G = GL3(F), c<?(π) = 3q3(h~ι\ -lqh~x, and 1 for M =
G, GL2(i7) x GLι(F), and Mo, respectively.
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QUASI-ROTATION C*-ALGEBRAS

H . ROUHANI

The main result in this paper is to classify the isomorphism classes
of certain non-commutative 3-tori obtained by taking the crossed prod-
uct C*-algebra of continuous functions on the 2-torus T2 by the irra-
tional affine quasi-rotations. Each such quasi-rotation is represented
by a pair (a, A), where a e Ύ2 and A e GL(2, Z) , and its as-
sociated C* -algebra is shown to be determined (up to isomorphism)
by an analogue of the rotation angle, namely its primitive eigenvalue,
by its orientation άel(A) = ± 1 and a certain positive integer m(A)
which comes from the K\ -group of the algebra and which determines
the conjugacy class of A in GL(2, Z ) .

Introduction. In this paper we study the C*-crossed products of the
continuous functions on the 2-torus C(T2) by certain transformations
φ of T 2 which we call quasi-rotations. They are like rotations in
that they have an eigenvalue λ = e2πiθ and a unitary eigenfunction
/ € C(T2), and unlike rotations in that their degree matrix D(φ) e
GL(2, Z) does not equal the identity matrix I2 . Clearly they contain
the rotation C*-algebra s/θ .

Recall that an affine transformation of a group G is a mapping
σ: G —• G of the form σ(z) = aA(z), (for z e G), where a eG and
A e Aut(G).

Let sf(φ) denote the associated crossed product C*-algebra
C(T2) x α Z, (cf. [9, 7.6]) where aφ is the automorphism on C(T2)
associated with φ. We shall construct an integer-valued function m
defined on the 2 x 2 matrices A e GL(2, Z) which are of the form
D(φ), for some quasi-rotation φ , such that

(i) Zm(£(^)) is the torsion subgroup of Kι(sf(φ)),
(ii) m(A) and dtt(A) determine the conjugacy class of A in

GL(2,Z).

When this is combined with the computation of the tracial range
on K^{s/{φ)) (see §4) a classification of the isomorphism classes of
these algebras is obtained (Theorem 5.2) for the affine quasi-rotations
of T 2 associated with irrational θ. This is the main result, while for
the rational case a partial answer is given. The determination of the
strong Morita equivalence classes of these algebras has been studied
in [17].

131
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The Λ -̂groups of the crossed products of C(T2) by any transforma-
tion have been computed elsewhere ([6]; and independently in [15])
using the Pimsner-Voiculescu six-term exact sequence. Here we shall
merely state the results (§1).

Some results concerning the non-affine quasi-rotation algebras are
given in [16].

1. Λ>groups. Every continuous function /: T2 —> T has the form
/(.x, y) = χmyπe2πiF(x,y) for s o m e integers m, n and some contin-
uous real-valued function F on T 2. Call the 1 x 2 integral matrix
[m n] the bidegree of / and denote it by D(f). Let φ be a trans-
formation (i.e., a homeomorphism) of the 2-torus T 2. Write φ as
Ψ = (<P\ > ψi) Define the degree matrix of φ to be the 2 x 2 integral
matrix

It is easy to verify that D(φ o ψ) = D{φ)D{ψ) for any two transfor-
mations φ, ψ of T 2. Replacing ψ by φ~ι we see that D(φ) €
GL(2, Z), i.e. detD(^) = ± 1 . This latter determinant determines
whether φ is orientation preserving or reversing. Let I2 denote the
identity matrix in GL(2, Z).

THEOREM 1.1 ([6], Chapter 3; [15], Chapter 2). Let φ be a trans-
formation of T2.

{\) If άt\D{φ) = \, then

fZ4 ifD{φ)=I2,
K0(j/(φ)) = I Z3 if det(D(φ) -12) = 0 and D{φ) φ I2,

(Z2 if dct(D(φ)-I2)φ0.

(2)IfdetD(φ) = -l, then

2 ® Zl if det{D{φ) - h) = °'

(3) Write D(φ)~ι = (™ n

q) and let J denote the quotient group

Z φ Z Z 2

7

(m - 1, n)Z+ (p, q - 1)Z " Im(Z%-i)Γ - 72)'
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The proof of this theorem relies on the Pimsner-Voiculescu cyclic
six-term exact sequence for ^-theory [11]. A closer look at the proof
yields the following corollary.

COROLLARY 1.2. Let φ be a transformation ofΊ2 such that

and let P denote the Bott projection in Λ/2(C(T2)). In this case there
is an x such that δ(x) is a generator of ker(aφ-id*) in Kι(C(T2)),
where δ is the connecting homomorphism in the Pimsner-Voiculescu
sequence δ: K0(j/(φ)) ->#i(C(T 2 )) .

(i) // dctD(φ) = 1 and D(φ) φ I2, then K0(&(φ)) £ Z 3 is
generated by [1], [7>]-[l], and x.

(ii) // detD(φ) = - 1 , then K0(sf(φ)) = Z 2 θ Z 2 is generated by
[1], [P]-[l] {which has order 2 in this case) and x.

This corollary focuses only on transformations such that
det(D(φ) — 72) = 0 because these include the quasi-rotations.

2. Lemmas. In this section we shall construct the integer-valued
function m indicated in the introduction which classifies the con-
jugacy class of certain integral matrices in GL(2, Z) which arise as
D(φ) where φ is a quasi-rotation. As it turns out these are the ma-
trices A which have eigenvalue 1, i.e. dtt(A — 72) = 0 (cf. §3).

Two matrices A, B e GL(2, Z) are conjugate if there exists S e
GL(2, Z) such that SAS~1 = B. Let us express this by A ~ B . It will
be shown later that for quasi-rotations φ and ψ of T 2 , if sf(φ) =
stf{ψ), then D(φ) ~ D(ψ) (cf. Proposition 2.8). If, in addition, φ
and ψ are affine, it will follow that they are topologically conjugate
(i.e., there exists a transformation h of T 2 such that h o ψ = φ o h).

The construction of m is divided up into two cases.

LEMMA 2.1. Let A e GL(2, Z) be such that det(A - 72) = 0 and
dctA = 1, say

A=(U

c

 b'

Let e = gcd(α -\,b), when b Φ 0, and define

e1

\c\ ifb = 0.
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Then

\m(A) i;
Hence, A ~ B if and only if m(A) = m(B), for all matrices A, B
satisfying the hypotheses of this lemma.

Proof. From {a - \){d - 1) - be = 0 and ad -be = 1 one obtains
a + d = 2 and -(α - I) 2 = be. If 6 = 0, the lemma is clear. Suppose
that b Φ 0. Since e = gcd(α - 1, b), there exist integers 5, t such
that

so that

S =

a-\ b
e e ' €GL(2,Z).

s t
One then checks that

<

and

b

e e
s t

(a b \
\c 2-a)

( 1 0\ fa-_l_ b\
e e

1

sb +1(2 - a)

a-ί

-e2 (a-l

y b { e

e

•s t — e

These can be seen to be equal using the relations —{a - I ) 2 = be and
(a- l)t-bs = e. Thus

V m(A)

Henceforth we shall write m(φ) = m{D{φ)).
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COROLLARY 2.2. Let φ be a transformation of Ί2 with detD(φ) =
1 and det(D(φ) - h) = 0. Then φ is topologically conjugate to a
transformation ψ with

Proof. Since D{φ) satisfies the hypotheses of the previous lemma,
we have

SD(φ)S~ι = ( ! , °

for some S e GL(2, Z) . We can choose an automorphism σ of T 2

(as a group) with D(σ) = S. For example, if

s=(m n

\P d
let σ(x, y) = (xmyn, xpyq). Letting ^ = σ o ^ o σ ~ ι , we obtain

1 0"

COROLLARY 2.3. £eί 9? be a transformation ofΊ2 with detD(φ)
1 and det(D(φ) - 7 2 ) = 0. Then

Prao/. Since by the preceding corollary ψ is topologically conjugate
to φ, we can use Theorem 1.1 to obtain

Consequently, if 0? and ^ are transformations of T 2 satisfying the
hypotheses of the above corollary and if $/{φ) and s/(ψ) are isomor-
phic, strongly Morita equivalent, or, more generally, have isomorphic
^-groups, then m{φ) = m(ψ) so that D(φ) ~ D(ψ).

LEMMA 2.4. Let A e GL(2,Z) be such that del A = - 1 and
dt\(A -12) = 0, so that A has the form

= (k X)
\y ~k) '
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where k2 + xy = 1. Let e = gcά(k - 1, x), when x Φ 0, and consider
the integer-valued function

i gcd(2,y)

, 2},

(i) m(A)=loA~C>ι

0).
(ii) m(A) = 2 o A ~ (Q _°J ).

Consequently, for such matrices A and B one has A ~ B & m(A) =
m(B). (Hence there are two conjugacy classes in this case.)

Proof. Since (k - l)/e and x/e are relatively prime integers and
xy = (1 - fc)(l + k) or (x/e)y = ((1 - k)/e)(\ + k), it follows that
jc/e divides fc + 1 hence e(k + ί)/x is an integer (when x Φ 0), so
that m(i4) makes sense.

To see that m(A) e {1, 2}, note that

m(Λ)|έ?|(fc - 1) and m(A)\(e(k + l)/x)\(k + 1).

Hence m(A)\(k + 1) - (k - 1) or m(A)\2, as desired.
Now assume that w(-4) = 1 and suppose that k Φ ± 1 , so that

x ^ O . We shall seek an integral matrix

S= (a b

\c d

such that
(a b\(k x \ _ (0 1\fa b\
\ c d ) \ y - / c y — V 1 θ ) \ c d ) '

and ad - be = 1. This implies that
ka + yb = c, xa- kb = d, kc + yd = a, xc - kd = b,

and one easily checks that the last two of these equations follow from
the first two. Substituting the first two equations into ad -be = 1 we
get a(xa - kb) - b(ka + yb) = 1, or xa2 - Ikab - yb2 = 1, which
may be factored as

\x Λ k-\ Λ Γ , έry

where ey/(k - 1) = -e(k + \)/x is an integer (since k Φ 1). There*
fore, the existence of S is guaranteed provided the equations

- α 6 = 1, ea + -r^—rb = 1,
£ e k-\

have integer solutions a, δ .
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Multiplying the first of these equations by e and the second by
x/e and subtracting the two gives 2b = e - (x/e). Similarly, if we
multiply these equations by k + 1 and k - 1, respectively, we obtain
2a = (e(k + 1)1 x) - ((k - l)/e). To show that b exists we must show
that e and x/e have the same parity, i.e., either both are even or
odd. This may be shown as follows.

Assume that x/e is odd and e is even. Then x is even and k - 1
is even (since 2\e\(k - 1)). So k + 1 is even. But then 2\(e(k + \)/x)
since x/e is odd, and hence, 2\m(A) = 1, a contradiction. A similar
contradiction argument follows if x/e is even and e is odd.

To show that a exists one shows that e(k + l)/x and {k - \)/e
have the same parity. If (k - l)/e is even, then x/e is odd. Since
k - 1 is even, k + 1 is even and so e(k+l)/x is even since x/e is
odd. Conversely, if e(k+ l)/x is even then since 1 = m(A), e must
be odd. Now as k + 1 is even, so is k - 1, and so (k - ί)/e is even
since e is odd.

Now we assume that m(A) = 2 and k Φ ± 1 , so that x Φ 0. Then
e and e(k + l)/x are even so that the matrix

fe(k + \) e\
2x 2

k- 1 x_

e e
has integer entries and determinant 1. Using the relation xy =
(\ - k)(\ + k) one can easily check that

Now the cases when k = ±1 are easily handled by similar argu-
ments as above. D

The matrices satisfying the hypotheses of Lemma 2.4 are the "ori-
entation reversing" square roots of the identity matrix. Using this
lemma we can show that there is a quick way to find the conjugacy
class of A when its entries have known parity.

COROLLARY 2.5. Let A satisfy the hypotheses of Lemma 2.4.
(1) k even =» m(A) = 1.
(2) Suppose k is odd. Then

(i) x or y is odd => m(A) = 1,
(ii) x and y are even => m(A) = 2.
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Proof. If m(A) φ 1, then m(A) = 2 so that 2\e\{k - 1) and hence
k is odd. This proves (1). We now prove (2).

(i) Without loss of generality suppose x is odd. Since m{A)\e\x,
it follows that m(A) = 1.

(ii) Suppose that x and y are even. Since k - 1 is even, e is
even. We assert that e(k + l)/x is even, so that m(A) = 2. To see
this, write y = (e(k + \)/x)((l - k)/e) where we may assume x ψ 0
(if x = 0 then /: = ±1 so m(A) = 2). If x/e is even, then (1 - k)/e
is odd (being relatively prime), so y is even implies that e(k + l)/x
is even. Now if x/e is odd, then k + 1 being even it follows that
e(k + l)/x is even, and hence m(A) = 2. D

Setting m(li) = 0, we may now summarize the contents of Lemmas
2.1 and 2.4 as follows:

COROLLARY 2.6. Let A,B e GL(2, Z) fo>such that dεt(A -12) =
det(5 - I2) = 0. 77κw ^ ~ 5 if and only if άtiA = άtXB and
m(A) =

COROLLARY 2.7. Lei $ρ be a transformation of Ύ2 such that detD(φ)
det(D(φ) -12) = 0.

Proof. Arguing as in the proof of Corollary 2.2 φ is topologically
conjugate to a transformation ψ of T2 such that

On applying Theorem 1.1(3) to ^ we obtain

ZΘ((0)0)zf(0,-2)z) i f

Combining the results of this section together with those of the
previous one we arrive at the following result.
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PROPOSITION 2.8. Let ψ\ and φι be transformations of T 2 such
that det(D(<pi) - I2) = 0, / = 1,2. If sf(φ{) and stf(φ2) have
isomorphic Krgroups (/ = 0, 1), then dctD(φι) = dtXD{ψ2) and
m(φ{) = m{ψi), so that D(φ\) ~ D(φι).

Proof. Since they have isomorphic Λ^o-groups, Theorem 1.1 implies
that detJ5(^i) = detD(^2) Since they have isomorphic ΛVgroups,
we may combine Corollaries 2.3 and 2.7 to get m(φ\) = m{φi). By
Corollary 2.6 we deduce that D(ψ\) ~ D(<pi). •

REMARK. The quantity det(D(φ) -I2) turns out to be the so-called
Lefschetz number of φ, which is defined in algebraic topology as
the alternating sum of the traces of the induced maps of φ on the
cohomology groups of the underlying space (in our case T 2 ) . The
Lefschetz fixed point theorem states that if φ is a diίfeomorphism
on a smooth manifold which has no fixed points, then its Lefschetz
number is zero. In our case, for the 2-torus, the Lefschetz number is

dt\{D{φ) - I2) = 1 - trace(Z)(p)) + det(D(φ)).

(see Bott and Tu [1, Theorem 11.25].)

3. Quasi-rotations.

DEFINITION. A transformation φ of T 2 is said to be a quasi-
rotation if D(φ) Φ I2 and if φ has a "non-singular" eigenvalue λφ \.
That is, 5/ G C(T2) invertible such that / o φ = λf.

Taking the supremum on both sides of / o φ — λf yields \λ\ — 1.
Thus / / | / | is a unitary eigenfunction with eigenvalue λ. Hence we
will always assume, without loss of generality, that / is unitary. It
is easy to show that the affine quasi-rotations have eigenvalues which
are automatically non-singular.

Crossed products of C(Ύn) by affine rotations of Ύn , i.e. D{φ) =
I2, have been classified by Riedel [13, Corollary 3.7].

LEMMA 3.1. Let φ be a quasi-rotation with non-singular eigenvalue

λ Φ 1 so that foφ = λf, where f e C(T2) is unitary. Then

(i) D(f)φ [0 0],

( i i ) ( ( ) )

Proof. Assume that D(f) = [0 0] so that one can write f(x, y) =

e2πiF(x,y) ? for s o m e continuous real-valued function F on T 2 . The
relation foφ = λf then becomes

e2πi(F(φ(x,y))-F(x,y)) = χ
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Thus F(φ(x, y)) - F(x, y) = c, for all (x, y) € T2 , where c is a
real constant. By induction this becomes

for every positive integer k. But since the left-hand side is bounded,
it follows that c = 0 and so λ = 1, a contradiction.

Upon taking degrees on both sides of / o φ = λf we obtain
/>(/)/>(?) = D(f)9 or D(f)(D(φ) - 72) = 0, where £>(/) ^ [ 0 0].
Therefore, det(7)(p) - 72) = 0. D

DEFINITION. Let φ be a quasi-rotation of T 2 and A a non-singular
eigenvalue of #>. We call λ a "primitive" eigenvalue if it has an asso-
ciated unitary eigenfunction / e C(T2) such that D(f) has relatively
prime entries.

LEMMA 3.2. Every quasi-rotation φ of T 2 has a primitive non-
singular eigenvalue (Φ 1), which is unique up to complex conjugation.

Proof. Suppose that foφ=λf, λφ 1, and / € C(T2) is a unitary
with D(f) = [m n] Φ [0 0] (by Lemma 3.1). Let d = gcd(m, ή).
Choose a unitary g e C(T2) such that gd = / , where gd is the rf-
fold pointwise product of g. Thus gd oφ = Ag^, or [(g o ̂ ) ^ = λ.
By continuity, (g o φ)~g = λ0 for some Jth-root λ0 of A. Hence
goφ = Λo£ and AQ φ 1 is primitive since the entries of D(g) =
[(m/d) {n/d)] are relatively prime.

To prove the uniqueness part suppose that in addition to goφ = λog
(λo primitive) we have h o φ = μh, where μ is primitive and D{h)
has relatively prime entries. Taking degrees on both sides of these
two equations we get D(g)(D(φ) -12) = 0, and D(h)(D(φ) -12) = 0.
Since Z)(p) - h Φ 0, it follows that 7)(#) and 7)(Λ) are rationally
dependent, that is, there are non-zero integers a and b such that

aD(g) + bD(h) = [0 0].

But since D(g) and D(h) have relatively prime entries it follows
that D(g) = ±D(h), and so D(gh±ι) = [0 0]. From the above two
eigenvalue equations we have

Since gh±ι has zero bidegree, Lemma 3.1 (i) implies that λoβ±ι = 1
Hence, μ = λ$ 1 , as desired. D"

EXAMPLES. 1. Let λ = e2πiθ, 0 < θ < 1, and consider the Anzai
transformation <pe(x, y) = (λx, xy). Since D(φθ) Φ I2 and uoφθ =
λu where u(x, y) = x and A ̂  1, ψe is a quasi-rotation. In fact, it is
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clear that ψe is afϊine. If θ is irrational, then φθ is minimal on the 2-
torus (using the minimality criterion in [8, p. 84], or [15, Prop. 1.1.4]).
Hence the associated crossed product C*-algebra sf(ψe) is simple (cf.
Power [12]) and has a unique faithful tracial state since ψβ is uniquely
ergodic, i.e. has a unique invariant Borel probability measure (cf. [5,
Prop. 1.12] or [15, Lemma 1.3.4]). The isomorphism classes of these
algebras (for θ irrational) were studied by Packer [7], and also by Ji
[5] in his more general setting of Furstenberg transformations of n-
tori. Here we shall classify these crossed products within the slightly
broader family of those associated with affine quasi-rotations.

2. Furstenberg [4, p. 597] proved that a minimal transformation φ
of T 2 which is not homotopic to the identity, i.e. such that D(φ) Φ I2,
has an irrational eigenvalue λ, so that any (non-zero) eigenfunction
will automatically be invertible. Hence φ is a quasi-rotation.

3. There are only two orientation reversing affine quasi-rotations
of T 2 up to topological conjugation (by Lemma 2.4 above). The first
one is of the form (x,y)*-> (ay, bx), with degree matrix

0 1
1 0

having primitive eigenvalue λ = ab (say λ Φ 1) and eigenfunction
f{x 9 y) = xy. The second one has the form (x, y) *-* (λx, y), with
degree matrix

1 0
0 - 1

and has primitive eigenvalue λ (say λ Φ 1) and eigenfunction u(x, y)
= x.

4. In [16] certain techniques of Furstenberg have been used to con-
struct a (non-affine) quasi-rotation ψ which does not have topolog-
ically quasi-discrete spectrum. This settled a question of Ji [5, pp.
75-76] in the negative; namely, whether in general a transformation
of the form (x,y)*-+ (e2πiθx, f(x)y), where / : T -» T is continuous
with degree ± 1 , is topologically conjugate to the Anzai transforma-
tion φθ or to its inverse. The latter has topologically quasi-discrete
spectrum and so cannot be topologically conjugate to ψ. An interest-
ing question in this regard is whether the associated crossed product
C*-algebras are isomorphic. They have the same A^-groups, same tra-
cial range, have unique tracial states, and are both simple.

4. The range of the trace. In this section we wish to compute the
range of the trace for the algebras sf(φ) for any quasi-rotation φt.
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This computation follows closely that of the irrational rotation alge-
bras studied by Rieffel [14] and Pimsner and Voiculescu [11].

Let us note that almost every C*-crossed product of a commutative
unital C*-algebra by Z has a tracial state. If X is a compact metric
space and φ is a transformation of X, then a theorem of Krylov and
Bogolioubov (cf. [18, p. 132]) ensures that there is a Borel probability
measure μ on X which is ^-invariant, that is, μ(φ~ι(E)) = μ(E)
for every Borel subset E of X. The map

= / fdμ
Jx

is a tracial state on C(X) which is α-invariant, where a is the au-
tomorphism of C(X) associated with φ, i.e. α(/) = / o φ~ι. This
means that τ induces a tracial state τ on C(X) xα Z .

THEOREM 4.1. Let φ be a quasi-rotation of T 2 with primitive eigen-
value λ = e2πιθ. Then for any tracial state τ on srf{φ) we have

Note that we did not assume that θ is irrational, only that it is not
an integer.

Proof, Let / e C(T2) be a unitary such that foφ=λf and D(f)
has relatively prime entries. This / induces a C*-homomorphism
p: C(T) - C(T2) given by /?(#) = g o / .

If we let β denote the automorphism on C(T) associated with
rotation by A, namely, β(g)(x) = g(λx), for g e C(T) and X G T ,
then /? is an equivariant homomorphism between the C*-dynamical
systems (C(T), β, Z) and (C(T2) ,aφ,Z).Ύo see this we verify that
p o β — otφ o p as follows:

aφ(p(g))(z) = p{g){φ-\z)) = gofoφ-\z) = g(λf(z))

for all z € T2 and g e C(T).
Using the naturality of the Pimsner-Voiculescu sequence, this p

induces a morphism between their associated Pimsner-Voiculescu se-
quences yielding the commutative diagram

••• -> K0(C(Ί)) - ^ K0(C(Ύ)xβZ) Λ
ip. ip. t ip.

••• -H. K0{C{Ύ2)) -±+ κ(^''^ δ°-
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where p: C(T) x^ Z —• st(φ) is the induced homomorphism
from p.

If θ is irrational one can construct the Rieffel projection e in
C(T) xβ Z = sfθ having trace (9 (cf. [14, pp. 418f]). If (9 is rational
one can still construct the Rieffel projection in the same way and it can
be shown that τ'{e) = θ, for any tracial state τ' on sfθ (cf. Elliott [3,
Lemma 2.3, pp. 170-171]). In both cases one has δo[e] = [/0], which
is the generator of K\(C(Ύ))9 where /0(z) = z, z e T , Since the
diagram commutes, one has

δf

0[p(e)] = δ'op*[e] = pJ0[e] = pΛfo] = [/],

and since D(f) has relatively prime entries, [/] is generator of
ker((α^)* - id*) in K\(C(Ύ)). Hence the projection p(e) yields a
generator in Ko(s/(φ)) which, along with the two generators as in
Corollary 1.2 (having traces 0 and 1), gives the range of the trace as

= Z + 0 Z ,

where τ' = τ o p is a tracial state o n ^ . D

REMARK. One could use Pimsner's computation of the tracial range
[10] to prove the above theorem using the concept of the determinant
associated with a trace. But for our purposes the above short proof
suffices.

Now let us look at some of the consequences of this theorem and
the results of the preceding section.

COROLLARY 4.2. Let ψj be a quasi-rotation of T2 with primitive

eigenvalue λj = e2πiθj, j = 1, 2. //&(φι) =^{φ2), then

(1) Z + Θ1Z = Z+Θ2Z,
(2) detD(φι) = detZ)(p2).
(3) m(φι) = m(φ2).

Consequently, D(φ\) ~ D(φ2).

Proof. The preceding theorem yields (1), and Proposition 2.8 yields
(2) and (3). D

COROLLARY 4.3 (Packer [7, p. 49]; Ji [5, p. 39]). For each irrational
number 0 < θ < 1 and each non-zero integer k, let Hθ^ denote
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the crossed product C*-algebra of C(T2) by the Anzai transformation
φ(x,y) = (e2πiθx, xky). Then

Hθ9k^Hθ'9k'&\k\ = \k'\ and θ'e{θ,l-θ}.

Proof (Note that if k = 0, then Hθjk=s/Θ® C(T) and the con-
clusion easily holds.)

{•=>) In this case the tracial ranges being equal (by the preceding
corollary) implies that θ' e {0, 1 - #}, as the latter are irrational.
Since these algebras have isomorphic K\ -groups, Corollary 2.3 shows
that \k\ = \k'\. The converse easily follows. D

Let us recall that the natural action of the group GL(2, Z) on the
irrational numbers is given by:

a
d) cθ + d'

COROLLARY 4.4. Let ψj be an irrational quasi-rotation of T 2 with
primitive eigenvalue λj = e2πιθj , 7 = 1,2 (i.e. θj is irrational). If
sf(φ\) and $f((p2) are strongly Morita equivalent, then

(1) θ2 = Aθι, for some AeGL(2,Z),
(2) detD(φι) = dstD(φ2),
(3) m(φχ) = m(φ2).
Consequently, D(φ{) ~ D(φ2).

Proof. Conclusions (2) and (3) follow from Proposition 2.8 since
strongly Morita equivalent C*-algebras have isomorphic ίΓ-groups.
Theorem 4.1 allows one to apply RieffeΓs argument [14, Proposition
2.5] to derive (1). D

COROLLARY 4.5. No sfβ is isomorphic to any C(T2) xa Z. For θ
irrational, no stfe is strongly Morita equivalent to any C(T2) x α Z.

Proof. Assume that j/θ = C(T2) x α Z . Then K0(C(Ί2) xa Z) =
KQ(J^Θ) = Z 2 , and the proof of Theorem 1.1(1) shows that
A:0(C(T2) xα Z) is generated by the classes [1] and [P], where P
is the Bott projection. These, however, have traces equal to 1, and
so looking at their tracial ranges yields Z = Z + ΘZ. Thus θ e Z
and hence s/θ = C(T2) which is isomorphic to C(T2) xa Z , and
being therefore commutative implies that a = id. Thus, C(T2) =
C(T2) x i d Z = C(T2) ® C(T) = C(T 3 ), a contradiction. A similar
argument shows the second assertion of the corollary. D
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The second assertion of this corollary is still true for θ rational, but
it requires a little more work which we defer to a future paper [17].

Let us now extend Theorem 4.1 to matrix algebras over srf(φ).
If A is a unital C*-algebra, then any tracial state τ on Mn®A has

the form (l/n)tr <g> τ' for some tracial state τ' on A, where tr is the
usual trace on matrices (for instance see [5, Lemma 3.3]). Further-
more, if all tracial states on A induce the same map on K0(A), then
all tracial states on Mn ® A induce the same map on K0(Mn ®A) (cf.
[5, Lemma 3.5]). In fact one has in this case

for all tracial states τ, τ' on Mn®A and A, respectively. This yields
the following.

COROLLARY 4.6. Let φ be a quasi-rotation of T2 with primitive
eigenvalue λ = e2πiθ. Then

for any tracial state τ on Mn ®$/{φ).

COROLLARY 4.7. Let ψj be a quasi-rotation of T2 with primitive
eigenvalue λj = e2πiθj, j = 1, 2. // Mn ®$?(φ{) = Mk ®srf{φ2), then

(1) n = k,
(2)
(3)
(4) m(φι) = m(φ2).

Proof. It will suffice to prove (1) since the other conclusions will then
follow from Corollaries 4.2 and 4.6. For brevity denote Bj = &(<Pj),
j = 1,2. The proof of (1) is easy if θj is irrational, but requires
a little more work otherwise. To do so it suffices (by symmetry) to
prove that if Mk can be unitally embedded in Mn®Bχ, then k\n.

Recall that K0(Bι) is generated by a projection e e B\ of trace θ\,
and two other classes [1] and x = [P] - [1].

Let {^^}/,7=i,...,w be the standard matrix units for Mn, so that

Ko(Mn <g> 2?i) has independent generators [e[f ® e], [e[f ® 1], and
p(n) & x — |>(Ό to PI — \p^ 6δ 11

Suppose that σ:Mk -+ Mn® B\ is a unital embedding and σ*:
K0{Mk) ~+ K0{Mn ® 5 0 , where #o(Λ4) = Z [ ^ ] . Then
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for some integers a, b, c. Now since /^ = Σie^ *s ^e sum of
equivalent projections, we get from

that [In ® 1] = k[σ{e^])} e K0(Mn ®B{). Thus

and therefore n = kb. D

REMARK. The argument in the above elementary proof can also be
used to show a similar result for the rotation C*-algebras S/Q . Recall
that Rieffel [14] showed this for θ irrational, while in [3] and [19] it
was shown for rational θ and n = k = 1.

5. Main Theorem. Before embarking on the main result let us intro-
duce some notation and characterize the affine quasi-rotations. Later
a partial result is given for the rational affine quasi-rotation algebras.

If ^ G G L ( 2 , Z ) , s a y

A=(m n

then its action on T 2 is defined by A(x, y) = (xmyn, xpyq). This
actually gives the group isomorphism Aut(T2) = GL(2, Z) . It is easy
to check that

Aι(A2z) = (AιA2)(z),

for all Ax, A2 e GL(2, Z) and Z G T 2 .

Now if X = [m n] is a 1x2 integral matrix, it induces a continuous
function (actually a character) X: T 2 —> T given by X(x, y) = xmyn .
Clearly, X[Az) = (XA)(z) for any X, and A e GL(2,Z). Also,
since X is a homomorphism, X(zw) = X(z)X(w).

Let us suppose that A e GL(2, Z) is such that A Φ I2 and
det(^4 - I2) = 0. Then the proof of Lemma 3.2 (uniqueness part)
shows that there exists an integral matrix XA = [m n] having rela-
tively prime entries such that

XA(A-I2) = [0 0],

and that XA is unique up to sign. So XAA — XA.
Now let us determine the affine quasi-rotations of T 2 .
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LEMMA 5.1. Let φ(z) = aA(z) be an affine transformation of T 2 .
Then φ is a quasi-wtation if and only if the following conditions hold:

(i) Aφl2i

(ii) det(Λ-/2) = 0,
(iii) XΛ{a)φ\.

Proof. Suppose these three conditions hold. Then for z e T 2 one
has

XA o <p(z) = XA{aA{z)) = XA(a)XA(A(z)) = XA(a)XA(z),

so that XAoφ = XA(a)XA , where XA(a) Φ 1 is a non-singular eigen-
value which is primitive as XA has relatively prime entries. Since also
D(φ) = A, φ is a quasi-rotation.

Conversely, suppose that φ is a quasi-rotation. By definition (i)
holds, and by Lemma 3.1 condition (ii) holds. It remains to check
(iii). By Lemma 3.2 φ has a primitive eigenvalue λ Φ 1 so that
/ o ψ = λf, where / is unitary with D(f) having relatively prime
entries. Taking D on both sides gives D(f)(A — /2) = 0. By the
uniqueness of XA, we get that D(f) = ±XA. Replacing / by / , if
necessary, we may assume that D(f) = XA = [m n]. So let us then
write / as f(x, y) = χ^yne2mF(x9y) ? where F is real-valued. This
we may re-write as f(z) = XA(z)e2πιF^, where Z E T 2 , Thus the
equation foφ=λf becomes

XA(φ(z))e2πiFMz» = λXA{z)e2πiF^z\

Now since XAo φ = XA{μ)XA, as we computed above, this equation
reduces to

e2πi{F(φ(z))-F(z)} =

which, by arguing as in the proof of Lemma 3.1, implies that λXA(a) =
1. Hence XA(a)=λφ 1. D

Let 38 {a, A) denote the crossed product C*-algebra associated with
the affine quasi-rotation corresponding to the pair (a, A) satisfying
the conditions of the preceding lemma. The inverse of such a quasi-
rotation can easily be checked to correspond to the pair (A~ι (a), A~~x).

THEOREM 5.2 [15, Theorem 4.3.2]. Let (aj, Aj) be a pair corre-
sponding to the irrational affine quasi-rotation ψj of Ύ2, j = 1,2.
Then the following are equivalent:

(1)
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(2) ψ\ and φ2 are topologically conjugate via an affine transforma-
tion,

(3) The following conditions hold:

(i)

(ϋ)

(iii) m(Aχ) = m{A2).

Proof. By Lemma 5.1, Aj φ I2 and det(^7 - 72) = 0, so that
Xj = χA 9 with relatively prime entries, exists such that XJAJ = Xj,
7 = 1,2!

In view of Corollary 4.2 condition (1) implies (3), as Xjiflj) is
irrational. Clearly (2) implies (1). So we need to check that (3) implies

(2).
Assuming that (i), (ii), (iii) hold we shall construct an affine trans-

formation ψ(z) = kK(z) which intertwines ψ\ and φ2. By Corollary
2.6, A\ ~ A2 so choose K e GL(2, Z) such that KA{K~ι = A2 . The
equation X2A2 = X2 becomes (X2K)A\ = X2K. Since X2 has rel-
atively prime entries then so does X2K = ±X\. Replacing K by
-K, if necessary, we may choose the ± in X2K = ±X\ according to
whether X2{a2) = X\(a\)±ι, respectively.

We need to choose k so that ψ o φx = φ2 o ψ. The left-hand side
of this is

and the right side is

φ2 o ψ(z) = a2A2(kK(z)) = a2A2(k)A2K(z).

These expressions are equal if and only if

and it suffices to show that this equation has a solution k eΊ2

To do this, first extend the equation X2K = ±Xχ to

for some 1 x 2 integral matrices R\ and R2 such that



QUASI-ROTATION C* -ALGEBRAS 149

has determinant ±1 (which is possible since X2 has relatively prime
entries). Now apply T2 to both sides of (*) to get

where R!2 = R2A2. Note that R2 Φ R2 for otherwise R2(A2-I2) = 0
which implies that T2(A2 - I2) = 0 hence ^2 - h = 0 as Γ2 is
invertible. Thus the above equation becomes

(X2(k), R2{k))(Xi(aύ±ι> *i(* i)) = (X2(a2), R2(a2))(X2(k), R'2(k)).

By condition (i) the first coordinates of both sides of this equation
are equal for all k. The second coordinates become

or

and this clearly has a solution k since R2 - R!2 ^ [ 0 0]. D

Therefore, the irrational affine quasi-rotation algebras &(a , A) are
completely determined up to isomorphism by the triple (XA(a)9

det(A), m(A)), up to conjugacy of XA{O) , where XA{O) is the primi-
tive eigenvalue coming from the tracial range, det(^ί) = ±1 is known
from the ΛTo-group and m(A) is known from the K\-group.

COROLLARY 5.3. For irrational affine quasi-rotations ofΎ2, we have:
,A2) ifand only ifk = n, X

and m{Ax) = m(A2).

As a final remark let us note that an argument due to Yin [19]
for the rational rotation algebras can be used to show Theorem 5.2
(and hence Corollary 5.3) for the rational case for the orientation
reversing quasi-rotations. Condition (3) in Theorem 5.2 implies (2)
in exactly the same way as in the proof. It only remains to check (1) =>
(3). Let XAj(aj) = e2πiθj, j = 1 , 2 . Clearly, (ii) and (iii) follow as
before, so we need to check (i). An isomorphism o\3S(a\, A\) —•
3&{a2, A2) induces one on their #o-groups which on their generators
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(cf. Corollary 1.2(ii)) is of the form

<?*[!] = [1],

- [1]) = [̂ 2] - [1] > being elements of order two,

1 Z

for some integers r, s, t. Taking traces of the last of these equations
gives θ\ = r + tθi. Since the matrix of σ* is

and is invertible over Z one has that t = ±1 hence #i = r ± #2
which yields (1).

This argument however fails for the orientation preserving case
since the above gives us conditions on certain integers that do not
necessarily imply that θ\ = ±θι mod Z . This we do not know how
to prove since the role of the Bott projection here is not so clear.
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RANK-2 FANO BUNDLES OVER
A SMOOTH QUADRIC Q3

IGNACIO SOLS, MICHAL SZUREK, AND JAROSLAW A. WISNIEWSKI

In the present paper we examine rank-2 stable bundles over Q3
with c\ = 0 and c-i = 2 or 4 .

This paper is a continuation of [7] where rank- 2 Fano bundles over
P3 and <23 were studied. Let us recall that a bundle ί? is called Fano
if its projectivization P(l?) is a Fano manifold, i.e. a manifold with
ample first Chern class C\{Ψ{%)). In the present paper we examine
rank- 2 stable bundles over Q3 with C\ = 0 and Cι = 2 or 4. These
are the cases whose knowledge was necessary to complete the classifi-
cation of rank- 2 Fano bundles over Q3. They are very different: if
ί? is stable with c\ = 0, c-i = 2 then its first twist ί?(l) is spanned
by global sections (see Proposition 1), whereas if cι = 4 then for a
general ί? from a component in the moduli IP(1) has no section at
all (Proposition 3). We complete the classification of rank-2 Fano
bundles over Qι. The results of §3 from [7] and of the present paper
can be summarized in the following

THEOREM. Let % be a rank-2 Fano bundle over ζ?3. If c\% = - 1
then % is either @@@{—\) or the spinor bundle E_. Ifc\^ = 0 then
& is either & ©(9, or <f(-l)®<f(l), or any stable bundle with cι = 2
{see a corollary in §1 for a complete description of such bundles).

Let us recall that the spinor bundle E_ on an odd-dimensional
quadric ζ ^ + i is the restriction of the universal 2V -bundle on the
Grassmannian Gr(2 I /, 2Z / + 1). Then E_* = E{1). On an even-dimen-
sional quadric Qιv , v > 2, there are two spinor bundles, correspond-
ing to the two reguli of v-planes. The following characterization of
the bundles with no intermediate cohomology was proved in [1]:

THEOREM. For a vector bundle F on Qn, n>2, it is H*{F{1)) = 0
for all 0 < / < n, I e 2, if and only if F is a direct sum of line bundles
#{l) and of their tensor product with spinor bundles.

ll 0 < / < n, I e 2, if and only if F is a direct s
and of their tensor product with spinor bundles.
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1. Bundles with C\ = 0, Cι = 2. In this section we prove the
following

PROPOSITION 1. Let % be a stable bundle on Qι with c\ = 0,
cι = 2. Then l?(l) is globally generated {and therefore is Fano).

Then, in view of the Proposition (3.2) from [7] we have:

COROLLARY. Any stable rank- 2 bundle on Qz with C\ = 0, cι = 2
is the pullback of a null correlation bundle on P3 via some double cov-
ering (?3 —* P3 {see [5] for a definition of the null correlation bundle).

To prove the proposition we apply a technique of "killing Hι",
developed by Horrocks, see the final acknowledgments in [2]. Namely,
starting from a bundle & with, say, Hx{^{-\)) Φ 0, we take a non-
trivial extension of « (̂— 1) by (9 which corresponds to this element of
the cohomology. Then the middle bundle of the exact sequence that
forms the extension has "simpler" cohomology than the initial one.
Eventually, we obtain a bundle with no intermediate cohomology and
we use classification theorems of such bundles, see [1]. The proof will
be divided into several steps.

Step 1. Using the information on the spectrum of stable bundles,
[3], we calculate the cohomology of ί?(l) :

>

0
1
0
0

J

0
1
0
0

i = -2

0
0
1
0

0
0
1
0

j = o

Step 2. Let us take a nontrivial extension

(l) o - > r ( - i ) - > 5 - κ ? - + o

which corresponds to a non-zero element of Ext 1^, ί?(-l)) =
Hι(&(-1)). The extension is non-trivial; hence the connecting ho-
momorphism δ: H°(&) —> Hx(&{-\)) is a non-zero map. Then we
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may fill out the cohomology diagram for B(j) as follows:

155

>
0
1
0
0

0
1
0
0

r = - 2

0
0
0
0

0
0
a

hι

7 = 0
with a < 1.

Step 3. Let us take B' = B*(-l). The Chern classes of B' are the
following: C\ = - 1 , C2 = 2, C3 = - 2 . The cohomology of B' can be
easily derived from that of B and the result is

a
0
0

0
0
0
0

0
0
1
0

>

J

0
0
1
0

; = o

}

We see that timHι{B'{-\)) = dim Ext1

we consider an extension
(-l)) = 1, so that

(2) 0 0

corresponding to a non-zero element of Hι(B!(-\)).

Step 4. We then calculate that C is a rank-4 vector bundle with all
Chern classes zero and the cohomology

i

with a < 1, b<\.

Step 5. Let

(3)

a
0
0

0
0
0
0

j = -

0
0
0
0

2

0
0
b

7 = 0

0 -+ C 0

be a non-trivial extension (if 6 = 1) or the splitting one (if b = 0).
In both cases all Chern classes of D vanish and the cohomology of D
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IS

5 - α
a
0
0

0
0
0
0

; = -2

0
0
0
0

0
0
0
5

7 = 0

h'

Step 6. In a similar way we get rid of a (possibly) positive a. Let
us take

(4) o-+D*-+F->d?->O,

corresponding to a generator of Hι(D*) = H2(D(-3)). The bundle
F is uniquely determined up to proportionality in Ext 1 ^, D*) =
Hι(D*). It is a 6-bundle on Q$ with no intermediate cohomology,
with H°(F(-l)) vanishing and all Chern classes equal zero.

Claim. F is either (fβ or &1 Θ E_® E_*, where E_ is the spinor
bundle on Q3.

Proof. It follows easily from the characterization of bundles with
no intermediate cohomology.

Step 7. If F i s ^ 6 , then D and C in (4) and (3) must be trivial.
Dualizing (2) then gives the sequence
(5) 0 -+ <?(-l) -> ̂ f4 -+ 5(1) -* 0

whose second exterior power is

(6) 0 — B -+ ̂ 6 -+ 5* — 0

—notice that 5* = Λ2[^(!)] because B is of rank 3 and c\(B) = - 2 .
Therefore ί?( 1) is globally generated, because it is an image of B* (see

Step 8. We now want to exclude the case F = ̂ 2 ©£©£*• Assume
this is the case. Let us look at the epimorphism F —» ̂  in (4). Its

dual is an embedding 0 c ^ Θ ^ θ £ θ £ * . Because ΛΓ°(£) = 0
and £* has no non-vanishing sections, see [1], then the embedding
map sends & into ^ 0 ^ . Hence the bundle D* in (4) is equal to
i?®E_®E_*. In the same way we conclude that C = E_®E_*, so instead
of (5) we get

(7) 0 -* <?(-!) -+ E® E* -> B(l) -> 0.
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Raising this sequence to the second symmetric power, making use of
the identity B* = /\2[B(1)] again and recalling that

2 2 2

/\(E®E*)= f\(E)®(E®E*)®f\(E*)

= ^(-1) Θ «*/(£) Θ ^(1),

we obtain an analogue of (6):

(8) 0-+B -+ 0(1) ® %*t/(E) ® <?(-l) ->B* --•O,

whose twist by - 1 is

which contradicts the cohomology tables from Step 2 and Step 3—
namely that B(-l) and B*(-l) have no sections.

2. Bundles with C\ = 0, c2 = 4 . In view of the results of [7] the
following completes the proof of the theorem stated at the beginning
of the paper.

PROPOSITION 2. A vector bundle % on Q3 which has C\ = 0, c2 = 4
cannot be Fano.

Proof. First let us note that an unstable I? with c\ = 0, c2 = 4
cannot be Fano—this is proved at the beginning of §3 in [7]. So let
us assume that % is stable. Using the spectrum technique [3], we
calculate the cohomology of &(j) to be

0
4
0
0

0
2
0
0

/ = - :

0
0
2
0

>

0
0
4
0

7 = 0

Consider the natural bilinear map

ϋ: -1)) x #

We see that dimHι{%(-\)) = 2, dim/f°(^(l)) = 5 and moreover
dim Hι (&) = 4. The bilinear lemma [4] gives the existence of s and
h such that (s, h) = 0. Hence there is a section of S^C^ over a
(not necessarily smooth) hyperplane section of the quadric. The sec-
tion vanishes at four points. These points are not necessarily distinct,
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but they are not collinear since otherwise the splitting type of ί? on
this line would be (—c, c) with c > 2, contradicting the ampleness of
ί?(2). Let us take a conic C that passes through at least three of these
points, counted with multiplicities. Then g\C = @c{-d) Θ &c(d)
with rf > 3, because the section has at least triple zero. But this im-
plies that there exists an effective 1-cycle C associated to the section
of &(-3)\C; the cycle C is numerically equivalent to ίr(-3) P~ι (C),
where <^(-3) is the relative hyperplane divisor on ψ{β?) associated
to l?(-3) i.e. a class whose restriction to a fiber of the projection
p; p( r) —• Q3 is a hyperplane and /?*^(£ r (_3 )) = <T(-3). Then

H - O = 2, ξ#' = —d9 where // is the pullback of the hyperplane
divisor from Q3 and ξ? is equivalent to £r(-3) + 3//. Because the
anticanonical divisor of P(lf) is equivalent to 2ξg + 3H, we have

so that --Kp(r) cannot be ample. D

REMARK. Although ruled out from our Fano list, the investigation
of rank- 2 vector bundles & with c\ = 0, C2 = 4 on Qι seems to be
an interesting open problem. In particular:

does a general l?(l) have a section?

We believe that the answer is no. So far we can only show

PROPOSITION 3. In the moduli space of stable bundles with c\ = 0,
c2 = 4 ίAere w α component containing bundles with H°{%(\)) = 0.

Proof, Assume Z is the zero set of a section of such an
Because of stability, Z is not a surface while the indecomposability
of % shows that Z is not empty. Hence Z must be a curve. By the
adjunction formula we have

(10) tfz=*fe(-l)|Z;

hence no connected component of Z may be a single line.
Since C2(^(l)) = 6, we conclude that Z has at most three con-

nected components. Let us consider the bundles given as extensions

(11) 0 —<?-*«r( l) — /c(2) — 0

where C is the sum of three conies. Let us count how many bundles
can be obtained in this way. The conies in Q3 are in 1-1 corre-
spondence with 2-planes in P 4 , hence the dimension of the family of
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triples of conies is equal to 3 dim(Grass(2, 4)) = 18. The number of
non-isomorphic extensions of the form (11) is equal to the dimension
of

Ext1(/c(2), *)) = #°(&/(*b(2) > *) = #Vc)>
i.e., to 3, see [5], Ch. I, §5.1. Because proportional extensions give
rise to isomorphic bundles, altogether we have a bundle family of
dimension 18 + 3 - 1 = 20. On the other hand, using the obvious
relation g W ^ ) = % <g> <T* we calculate using (11) that

dxm(H° (»*/(?))) = 1, dimCJf1 («*/(«?))) = 21,
2 = 0, dim(H3(&u/(g))) = 0.

Therefore a local deformation of a bundle given by (11) need not be
such. The bundles that do not arise from deformations of those given
by (11) must then come from curves C's having at least four com-
ponents, which is not possible by (10). Hence έ?(l) has no section.
Because of the semicontinuity, the same holds for a generic bundle in
the same component. D
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RICCI CURVATURE AND VOLUME GROWTH

M. STRAKE AND G. WALSCHAP

We give an example of a complete manifold Mm of nonnegative
Ricci curvature for which the volume of distance tubes around a to-
tally geodesic submanifold Lι divided by the corresponding volume in
L x R m - / goes to infinity. Recall that in the case of nonnegative sec-
tional curvature, this quotient is nonincreasing and bounded by 1.

1. Introduction. One of the fundamental tools in the study of Ricci
curvature is the Bishop-Gromov volume inequality, which states that
in a complete manifold Mm of Ricci curvature > (m - \)κ, the map

Vθl(Dr,gκ)

is monotonically nonincreasing. Here, Br(p) is the ball of radius r
around p e M, and (Dr, gκ) is a ball of same radius in the simply
connected space of constant sectional curvature K . Under somewhat
different assumptions, this inequality still holds when p is replaced by
a compact, totally geodesic submanifold I) of M: The comparison
space now becomes (L x Dr, gκ), where for x = (XQ9X\) in the
tangent space o f L x Dr at (p,u), gκ(x, x) = c%(\u\)g(x0,

 x°] +

gκ{x\ ,x\). (Here g is the metric on L induced by the imbedding
L *-• M, and ĉ  is the solution of the equation c£ + κcκ = 0, with
^(0) = 1, 4(0) = 0.) The volume inequality now reads (cf. [4], [3],
[6]):

(*) If the radial sectional curvatures of M are > K , then

vol(LxZ>r, sic)

is a nonincreasing function of r, with #L(0) = 1 (A 2-plane
σ c Mq is said to be radial if it contains the tangent vector of
some minimal geodesic from ? to I . )

(**) If all sectional curvatures of M are > K , then <7L(Γ') = q^)
for some 0 < rf < r only if the normal bundle of L ^ M
is flat with respect to the induced connection, and Br(L) is
(locally) isometric to ( I x Dr, gκ).

161
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In this note, we show that (*) no longer holds in general if one only
assumes RICM > (m — 1)K (see also [1] for a related result): In fact,
the quotient #z,(r) may go to infinity as r —• oo. Moreover, even if
the radial sectional curvatures are > K—so that (*) must hold— (**)
is no longer true if one replaces KM > K by Ric^ > (m-l)κ. More
precisely, we have:

1.1. THEOREM. Let L = CP1, and M = CP2. Then

(a) The normal bundle E of L^-+ M admits a complete metric of
nonnegative Ricci curvature such that

vol(Lx/) r, g0)

goes monotonically to infinity as r —• oo.
(b) There is a complete metric on M with the following properties:

(1) L is totally geodesically imbedded in M.
(2) Ricjv/ > 3, and the radial sectional curvatures are > 1.

(3) qL(r) ̂  yo™l"r^gι) = 1 for r < β, provided ε is suffi-

ciently small.

2. Ricci curvature for connection metrics. Let L = C P 1 <-> CP2

with the standard metric of curvature 1 < K < 4. As in [5], we iden-
tify a distance tube Br(L) around L with [0, r] x S3/ ~ , where all
the Hopf fibers are collapsed to a point at {0} x S3. Consider the class
dσ2 of metrics on S3 obtained by multiplying the standard metric by
/ 2 (r) in the Hopf fiber direction, and by h2(r) on its orthogonal com-
plement. If / is an odd smooth function with /'(0) = 1, and h is
even and positive, then the metric dr2+dσ2 on (0, r]xS3 extends to
Br(L). The standard metric corresponds to f(r) = (l/2)sin2r and
h(r) = cosr. Using the same vector fields Xi, 0 < / < 3, as in [5]
(where Xo is radial, X\ is tangent to the Hopf fiber, and X2, X3 are
orthogonal to it), we obtain for ϋ y := Ric (Xi/\Xt\, Xj/\Xj\):

f" h"
(2-1) KOo = --γ-2-£,

(2-2) Rn = -±--2ij^ + 2^,

(2-3) R22 = R33 = - τ - 7 J - + w -

(2-4) Rij = 0, iφj.
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The proof is straightforward and will be omitted.

This class of metrics is actually a special case of the following con-
struction: Let (Lι, g) be a Riemannian manifold, and Rk —> E ^> L
a vector bundle with inner product ( , ) and Riemannian connec-
tion V. Fix 0 < ΓQ < oc, and consider the disk bundle Ero =
{ u G E I (u, u) < ΪQ }. If Ψ* denotes the vertical distribution de-
fined by π, and M? the horizontal distribution determined by the
connection, define

g{x, x) = h2(\u\) g{π*x, π*x) ( x G / ί l TUE),

where h is an even, smooth, positive function on (-ΓQ, ΓQ). The
fibers of Ero are endowed with a metric given in polar coordinates by

dr2 + f2(r)dσ2,

where dσ2 is the standard metric on the sphere, and / is an odd,
smooth function with /'(O) = 1. We then obtain a metric g on Ero
by declaring & and Ψ* to be mutually orthogonal. The fibers of
the bundle are totally geodesic submanifolds in this metric, and the
projection π restricted to a sphere bundle of radius r becomes a Rie-
mannian submersion with base (L, h2[r) g). One can easily compute
the Ricci curvatures by using O'Neill's formula for Riemannian sub-
mersions and the Gauss equations (cf. also [2]): If dr denotes the unit
radial vector field (dual to dr), v a unit vertical vector orthogonal to
dr, and x a unit horizontal vector, then

(2-5) Ric(0r, dr) = - / y - (fc - l ) y ,

(2-6) Ric(<9r, x) = Ric(<9r, v) = 0,

f" 1 - fa

R i φ , t ; ) = _ ^ + ( f c - 2 ) - ^ -
(2-7) /

h" ha h! Γ
? x ) = - ^ - (/ - 1 ) ^ - - (/c - 1 ) ^

(2-8)
+ Ricv(π*x, π*x) - 2 Σ(AxXi, Axxt),

(2-9)
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Here, {XJ} is an orthonormal basis of %?, A is the O'Neill tensor
of the submersion with divergence δA = Σ j = 1 DxA{Xi, •) (D is the
Levi-Civita connection of (£7Ό, <g

r)), and Ricv is the Ricci tensor of

Moreover, if V is a Yang-Mills connection, then (cf. [2], p. 243):

(2-9') R i φ , x) = 0.

In the special case when E is the normal bundle of GP1 <-• CP2,
let V denote the connection on E induced by the Levi-Civita con-
nection of the symmetric space C P 2 . Then V is Yang-Mills since
the curvature tensor i ? v is parallel. In particular, (2-9') holds, and
it is straightforward to check that (2-5)-(2-9) reduce to (2-l)-(2-4).
Notice that the A -tensor can be expressed in terms of Rv, cf. [6].

3. Proof.

Proof of 1.1 (a). The volume of a distance tube Br{L) with respect
to the class of metrics described in §2 is given by:

γo\ Br{L)= ΓvόlSt(L)dt
Jo

= C vol(L) Λ"/(0) Γhl(t)fk-l(t)dt,
Jo

where St(L) is a distance sphere around L, vol (L) := vol (L, h2(0)g),
and C is the volume of the standard sphere S^"1 c R f c . It thus suf-
fices to find functions / and h such that (2-1)—(2-3) yield Ric > 0,
and hι(r)fk-ι(r)/rk-1 = h2(r)f(r)/r -> oo as r -> oo. Let f(r) :=
r/(l + r 2 ) 1 / 2 , and h(r) := (r/ f{r))a, where a is any constant in the
interval [1/2, 1]. Notice that 0z,(r) —• oo as r —• oo if a > 1/2, and
qL(r)=l for α = l / 2 .

A straightforward calculation shows that (2-1)—(2-3) become:

- 3 ( 2 α - l ) 2α /
+ ^2 - (α

( 1 + f 2 ) 2

where ??α(r) = (3(2α - 1) + 2α(α + l)r2) /α(l + r2). Since $?α is an
increasing function on [0, oo) with limr_+oo ̂ α(^) = 2(α + 1) < 4, we
conclude that JRO,O > 0.
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-3α a Λ r2

where ψa{r) := 2 r 2 / ( l + r 2 ) 1 + t * , and 0β(r) :=
One easily checks that the maximum of ψa equals

η(a) = 2/α(l + l / α ) 1 + α < ι/(l/2) = 4/3^3,

for a > 1/2. Moreover, θα is a decreasing function if α < 1, with
0a(O) = 3α. Thus:

thereby completing the proof of 1.1 (a).

Proof of l.l(b). When h = cos, (2-l)-(2-3) become:

(i) i?O)o = 2 - ^ ,

(m)

/COS COS4

/ ' sin 4 cos2 - 2 / 2 - sin2 cos2

,

We will choose / so that f(r) = sinr for r < ε, f(r) = sin r cos r
for r > π/4, and Rij>3. Define /: := // sin. (i) and (ii) transform
into:

(i) JR0>0 = 3 - τ - 2

() l l ^ 2 | f ^
A: A: \sin cos

If ε > 0 is sufficiently small, there exists a function k such that k = 1
on [0, ε], fe = cos on [π/4, π/2], and fe" < 0. Then i?o,o, ^?i, l >
3. To show that i?2,2 > 3, observe that, since / < sin,

F = f (4 cos2 - 2 / 2 - sin2 cos2)/ cos4

> (4 cos2 - 2 sin2 - sin2 cos2)/ cos4 = f G.
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Now, the minimum value of G = (5/ cos2) - (2/ cos4) + 1 on the inter-
val [0, π/4] is G(π/4) = 3. Since R2,2-F = 2+(&'sin)/(£cos) > 1,
the result follows.

We now proceed to show that the radial sectional curvatures are
> 1: Let x G TPL, and consider a unit-speed geodesic γ originating
at p and orthogonal to L. If E denotes the parallel field along γ with
E(0) = x, then / := hE is a Jacobi field along γ, cf. [3]. Therefore,
R(E, γ)γ = -(h"/h)E, so that (R(E, y)y, E) = 1. On the other
hand, if v is orthogonal to both γ(0) and TPL, and if F denotes
the parallel field along γ with F(0) = v , then R(F, γ)γ = -(f'/f)F,
and

This last expression is > 1 and identically 1 on [0, ε]. The same is
therefore true for all radial curvatures.

Finally, observe that the comparison space in [4] or [3] has the
same volume growth as (Lx Dr, gκ). It follows that #χ,(r) = 1 for
our choices of / and h when r < ε.

4. Remarks.
4.1. In 1.1 (a), the maximal growth rate for the volume of Br{L)

obtained by our method is of order r 3 .
4.2. The maximal distance from L with respect to the metric g

from 1.1 (b) is π/(2y/ic) = π/2, where K is the infimum of the radial
sectional curvatures and the Ricci curvature. Nevertheless, (M9 g) is
not symmetric, cf. the remark on p. 322 in [3].

4.3. As the general formulas of §2 show, one can produce similar ex-
amples on other vector bundles. It is, however, essential to have some
information about the divergence of the ^4-tensor, cf. (2-9), (2-9').
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A RIESZ THEORY IN VON NEUMANN ALGEBRAS

ANTON STROH AND JOHAN SWART

An operator T is called a Riesz operator relative to a von Neu-
mann algebra si if T — λl is Fredholm relative to si for each
1 ^ 0 . Properties of Riesz operators are studied and a geometrical
characterization of these operators are given. This characterization is
used to show that a Riesz type of decomposition holds.

Introduction. The main theme of this paper is to introduce Riesz
operators relative to a von Neumann algebra and to obtain a Riesz
type of decomposition for these operators.

The theory of compact and Fredholm operators relative to a von
Neumann algebra has been studied in detail by various authors (cf.
[3], [4], [7], [8], [10], etc.). In the present paper Riesz operators are
defined in a natural way via the Fredholm operators relative to a von
Neumann algebra si, i.e. T will be called Riesz relative to sf if
T - λl is Fredholm relative to si for every λφO.

After some preliminaries in § 1 we develop the basic results on Riesz
operators in §2. These results are similar to results known for the clas-
sical case and will be used in the sequel. Section 3 contains a geomet-
rical characterization of the Riesz operators. This may be considered
as the main result of this paper, since it allows one to use the tech-
niques of [4] and [5] to obtain the required Riesz decomposition in
§4.

Whereas in the classical case the theory of Riesz operators has an
intimate connection with spectral theory, it should be noted that in
our representation we do not use spectral theory at all. Actually one
cannot hope to obtain any results on the spectrum of a Riesz operator
relative to a von Neumann algebra. In finite von Neumann algebras
for instance all operators are Riesz. One can thus find Riesz operators
with spectral properties very different from the classical case.

1. Preliminaries. Let L(H) be the algebra of all bounded linear
operators on a Hubert space H. Throughout the paper si will denote
a concrete von Neumann algebra on H. We denote by & the ideal
generated by the projections which are finite relative to si (cf. [11],
Chapter V for properties of the projection lattice &>(si) o n ^ ) . The
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ideal of compact operators X relative to si is the uniform closure of
ί?. Let π: si —> si fX be the canonical quotient map. An operator
T G si is called a Fredholm operator (relative to J / ) if π(T) is
invertible. For any Γ G J / we shall denote by Nτ the null projection
and Rτ the range projection (cf. [3], (3.1) and (3.2)). It follows from
[4], Theorem 1 and [7], Theorem 2.2 that T is Fredholm iff Nτ is
finite and RT is cofinite relative to si (cf. §4 for the definition of
a cofinite range projection). The set of all Fredholm operators in si
will be denoted by Φ . We refer to [3] and [4] for the definition of the
index function on Φ with values in a partially ordered abelian group.
Let Φo denote the class of Fredholm operators T with index zero
(i.e. Nγ ~ Nτ*).

For Γ G J / we denote the spectral radius by r(T) and we shall call
the spectrum of π(T) in si jX the (Wolf) essential spectrum of T
and denote it by σe(T).

2. Riesz operators. An operator T G si will be called a Riesz
operator (relative to si) if λl - T G Φ for every λ φ 0. It is clear
that T is Riesz iff σe(T) = {0}, which is also equivalent to

/ \i/n

lim f inf IIΓ1 - AΓII ) = r(π(T)) = 0

(cf. [7], 3.10). Since SF is dense in JΓ we may replace X with !? in
the last characterization. We shall denote the set of all Riesz operators
by & and if the reference to si is necessary we denote this set by

REMARKS. 1. Since for a finite von Neumann algebra si we know
that Φ = si it is clear that then also 31 = si . The theory of Riesz
operators in this case is trivial.

2. For any compact K G sf one has r(π(K)) = 0 from which it
follows that X c 31. There are many cases where this inclusion is
strict.

3. In purely infinite von Neumann algebras the Riesz operators
coincide with the quasinilpotent operators (recall that in this case X =

{0}).
We denote by [5, T] the commutator of 5 and Γ, i.e. [5, T] =

ST— TS. By using the well-known property that in any Banach algebra
the relations r(TS) < r(T)r(S) and r(T + S) < r(T) + r(S) hold
for any two commuting S and Γ, one easily obtains the following
proposition.
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2.1. PROPOSITION, (a) // S e 31, T e sf and [S,T]eJί, then

(b) If S,T e3? and [S, T]e3? then T + aS e3ί for any α e C .
(c) If a sequence (Tn) ofRiesz operators is uniformly convergent to

Tesf and if [Tn ,T]eJT for all neN then Te3l.

It follows from 2.1 that the closed algebra generated by a Riesz
operator is contained in 3ί.

2.2. PROPOSITION. For T e sf we have that T e 31 iff Tn e 31
for any {and hence for all) neN.

Proof If T e 31 then Tn e 31 for any n e N follows trivially from
2.1. Conversely if Tn e 3? it follows by definition that

lim ml\\Tnk-K\\ι/nk = 0.

Since

r(π(T)) = l i m i n f

is finite one clearly has

lim inf 117* - K\\χ!k = 0.

From the fact that X is a two-sided *-ideal in si we have for any
T G si and K e X that r{π(T)) = r(π(Γ*)) and r(π(T + K)) =
r(π(T)). Hence we obtain:

2.3. PROPOSITION, (a) Let T e si and K e JΓ. Then T e 3? iff

(b) 3ί is stable under compact perturbations.

If T is a normal operator in si it follows that r(π(T)) = 11 (̂7 )̂11 /̂̂ .
Hence we have:

2.4. PROPOSITION. For a normal operator T e3l iff T e3?.

It seems that the following result is not known even for the classical
case.

2.5. PROPOSITION. If T e si, S e 31 and [5, T] € X then
σe(T + S) = σe(T).



172 ANTON STROH AND JOHAN SWART

Proof, For any two commuting elements a, b in a Banach algebra
one knows that σ{a+b) c σ(<z)+σ(Z>), in particular <τ(π(Γ)+π(S')) c
σ(π(Γ)) + σ(π(5)). By assumption σ(π(S)) = {0}. Hence σ*(Γ + S)
C σ'(Γ). Similarly σe(T) = σ*(Γ + S - S) C σ'(Γ + 5). D

The above-mentioned proposition may be used to prove a character-
ization of Riesz operators in von Neumann algebras which is similar
to a result due to Schechter (cf. [9], Theorem 12).

2.6. COROLLARY. T e 31 iff T + S eΦ for all S eΦ for which
[S, T]eJr.

Proof Let T e 31 and S e Φ with the property that [5\ Γ] e JT,
then we know that 0 $. σe(S) = σe(T + S), so T + S eΦ. Since
[λl, T] = 0 the converse is trivial. D

For Riesz operators one obtains the following functional calculus.

2.7. PROPOSITION. Let f be a holomorphic function on an open set
U containing σ(T) with /(0) = 0. Then

(a) IfTe^ then f(T) e31
(b) // f{T)e3l and f does not vanish on σ(T)\ {0} it follows

that Γ e J .

Proof, (a) From our assumptions it follows that f(T) = Tg(T)
where g is holomorphic on U and [Γ, g(T)] = 0. Then (a) follows
directly from 2.1 (a).

(b) Since σe(T) c σ(T) the functional calculus in s//& shows that
π(/(Γ)) = f{n{T)), and by the spectral mapping theorem f(σe(T)) =
σe(f(T)) = {0}. By hypothesis / does not vanish on σ(T) \ {0},
leaving σe{T) = {0} as the only possibility. D

In any unital ^*-algebra sf it is known that σ{xy) \ {0} =
σ(yx) \ {0} and σ(uxu*) \ {0} = σ(x) \ {0} hold for x, y e stf
and u G J / unitary. The following proposition therefore follows:

2.8. PROPOSITION, (a) TSe& if and only if ST e 31.
(b) // S and T are unitary equivalent, then Se3l iff T e3l.

One can easily see from the next proposition that if a von Neumann
algebra contains non-compact quasinilpotent operators, then X is
properly contained in 31.
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2.9. PROPOSITION. IfKeX and Q e si is quasinilpotent, then

Proof. This clearly follows from

\\π{Q + K)n\\χln = \\n{Q)n\\χln < \\Qn\\xln for all n e N. D

By the well-known West decomposition theorem (cf. [6], 3.33) the
converse of 2.9 holds in the case where si = L(H). It is an open
problem whether this is true in general von Neumann algebras. A
partial converse can be obtained by using a result of Akemann and
Pedersen [1]: If T e si with Tn e X for some n e N (note that in
this case T e & by 2.2), then T = K + Q where K eJ? and Q is
nilpotent. This follows from the fact that [1] 4.3 implies that there
exists a ί e l such that (T-K)n = 0.

2.10. PROPOSITION (Generalized Fredholm alternative). Let T e
^ . Then (/ - Γ) € Φ o .

Aw/. By definition (/ - AΓ) € Φ for all λ φ 0. Since the index
map on Φ is locally constant (cf. [4], Lemma 6), {/ - λT\λ e [0, 1]}
is contained in the same connected component of Fredholm operators
and the result follows. D

For any subset 5 C j / we define the perturbation class of B by

P(B) = {T e s*\T + S e B for all S e B}.

In 2.3(b) we have seen that 3ΐ is contained in the perturbation class
of &. The next proposition shows that one actually has equality:

2.11. PROPOSITION. The perturbation class of 31 is the ideal X of
compact operators.

Proof. Let Q{sί IX) be the class of quasinilpotent elements of
siIX. From a theorem due to Zemanek (cf. [2], BA2.8) we have:

nάisilX) = {π(T)\T e si and π(T) + Q{si/X) c Q{si/X)}

= {π(T)\T e si and T + S e 31 for all S e <&}.

Since si fX is a g^-algebra rad(j//Jf) = {0}, it then follows that

Se<& for all 5

= P{β). D
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2.12. THEOREM. The ideal 3? of compact operators is the largest
two-sided ideal consisting of Riesz operators only.

Proof. We first show that every Riesz projection is finite. Let E be
a Riesz projection. Then limn-+oo(infκejί \\E -K\\)ι/n = 0 and hence
E G X. Since any compact projection is finite we have E e &. Let
3Γ be any two-sided ideal contained in 31. From the first part of the
proof it then follows that F c F = , J . D

In the last two results of this section we show that the class of Riesz
operators behaves well under reduction with respect to central projec-
tions as well as under decompositions of the von Neumann algebra.
These results will be needed later in an important counterexample.

Similar results for the class of compact operators in s/ were ob-
tained by Kaftal (cf. [8], 2.1, 2.2).

Let E be a central projection in the von Neumann algebra sf . We
shall then use the following notation: S/E := <&E and 31 E .'= 3ίΈ.

2.13. LEMMA. With the above notation one has that &E = 31(S/E)

Proof. Let T G 31 E and λ φ 0 be given. There exists an S e 31
such that T = SE. Then Sλ := λl - S is invertible modulo 3?,
i.e. there exists an S'λ such that SλS'λ e I + 3? and S'λSλ e I + 5?
hence ESλES[ e E + 5?E and ES[ESλ e E + 3fE. We know that
3?[SUE) = 3?E and therefore λE - T (= ESχ) is invertible modulo
3Γ(J^E) Hence T e <9?($?E) - Conversely, suppose T e 31(S/E) and
λ Φ 0. Then Sλ := E - 1/λT e Φ{sfE). Thus there exists 5^ e srfE

such that

5^5^ G E + 3?E and S'λSλ eE + 3rE-

Let Aλ = Sλ +1 - E and Bλ = Sf

λ + I-E. Then Aλ, Bλesf and

AλBλeI + 3ί and BλAλeI + 3r.

T h u s / = ί/λT = A λ e Φ{sf) for all λ φ 0 a n d therefore Γ G J
a n d since T = TE, we have that T e

Let s/ = ΣfeI£?i be the direct sum of von Neumann algebras J^T
We may identify the identity of J*J with a central projection E\ G sf
and s/i with sfEi. Denote {Tex?: TEie3g(sή)} by ΣfeI3l(sή).

For L c / we may identify Σ ^ ^ ^ with a closed subalgebra of

Σ E / J ^ in an obvious way.
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2.14. PROPOSITION. Let srf = Σfei&i- τ h e n &{**) Q Σΐ
and equality holds if at most finitely many Et are infinite.

Proof. The inclusion follows directly by application of the previous
lemma. Suppose then that Et is finite for all i $ J, where / is
some finite subset J C I. LetΓ e Σfei&te) a n d λ Φ ° τ h e n i f

T = Σfei τi > si,λ := Ei - I/AT} € Φ(J*}) from which it follows that
there exist S\ λ and Kiλ, K\ λ ^X(sf\) such that

S M S ; A = £z + Kiiλ and Sj>AιSί>Λ = Et + K\ λ for every iel.

For i φ J we may choose 5? ̂  = 0 and K\ λ = - £ / .

Let Sλ = E/e/'S'i.λ a n d Sχ = Σ ^ / ^ U T h e l a s t s e r i e s i s a n

element of si since it actually reduces to a finite sum by our choice
o f siλ

Then clearly, SλS
f

λ e I + Σfei^W) = I + JΓ(JΪ) (cf. [8]5 2.2) and
similarly Sf

λSλ e I + <%r(x?). Since Sλ = I - 1/λT it follows that
D

3. Characterizations of Riesz operators relative to a von Neumann
algebra. Smyth obtained a geometric characterization for Riesz oper-
ators on a general Banach space (cf. [2], 0.3.5). In proving this result a
somewhat laborious machinery of vector sequence spaces was needed.
We shall prove a similar result for general von Neumann algebras
which gives an elegant proof of Smyth's result for the L(i/)-case.

For an operator T in a von Neumann algebra s/ the following
property (referred to as property A) will be used to characterize the
Riesz operators relative to tf .

A. For every ε > 0 there exists an n e N, a finite projection
Pεe^(j^) and a bounded set Nε c Pε(H) such that for each
xeUH there exists a y e Nε such that \\Tnx - y\\ < en.

(Here and in the following UH will denote the unit ball of H.)

3.1. LEMMA. If T es/ has property A then Tm also has property
A for all meN.

Proof. Without loss of generality we may assume Tm Φ 0. For
e > 0, put δ = ε/||Γm~1 | |. By assumption there exist an n e N,
a finite projection Pδ and a bounded set Nδ C P#(H) such that for
each w EUH there exists a z e Nδ such that \\Tnw - z|| < J w . Let
jVβ = || T™-1!!11^ and Pe = Pό. Then for c e C/# it follows that
| |Γw wx - y\\ < εn for some yeNε. o
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3.2. THEOREM. Let T e s/ . Then T e 31 if and only if T has
property A.

Proof. Let T e 31 and ε > 0. Then since

lim ( inf \\Tn-F\\) = 0

there is an n G N and an Fε E ̂  such that

(1) | | Γ Λ - F β | | < β Λ .

Let Pε = Rf and Λ̂ ε = F£(UH) , then Pε is a finite projection and
iVε is a bounded subset of Pε(H). By (1) | |ΓΛJC - Fex\\ < εn , for all
x eUπ. This proves property A.

Conversely let Γ have property A. We are going to show that there
exists a subsequence of {(inf^6t^ \\Tn - K\\)λln}n which converges to
zero, implying that the spectral radius of π(Γ) vanishes.

Let ε > 0. Then there exist an n e N, a finite projection Pε e
9°\sf) and a bounded set Nε c Pε(/ί) such that for every x e
there exists a y e Nε such that

Thus \\Tnx - PεT
nx\\ = wfwep9(H) \\τnx - 1̂1 < εn This holds for

every x EUH , hence

Since Pε is finite and therefore PeT
n
 E3Γ(J/), it follows that for any

ε > 0 there exists a n n E N such that (inf#G J r \\Tn - K\\)χln < ε.
We now find the zero converging subsequence recursively. There

exists an nx e N such that (infjce* l|3™2 - ^ | | ) 1 / W l < 1. Since Tn^1

has property A by 3.1, there exists an m\ e N such that

(2) ( jnjμKΓ^Γ.-iqiJ <(i/2))«.+ 1

Let «2 = (nι + l ) w i . Then clearly n\ < ni and from (2) it follows
that

\/n2

Repeating this argument one finds a monotone increasing sequence of
positive integers n\ < n^ < • •• < n^ < • • • such that

inf | |Γ n * -K\\) <l/k for every ik e N. D
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REMARK. It should be noted that in the case where sf = L{H),
property A coincides with the notion of a finite εw-net for Tn(UH)
(cf. [2], §0.3 for the definition of an ε-net).

From the proof of 3.2 we have:

3.3. COROLLARY. Γ G J if and only if for every ε > 0 there exist
an n e N and a projection Q e &>(s/) such that \\QTn\\ < en and
I - Q is finite.

Proof If T e & it has property A. Now if we put Q = I - Pε in
the converse part of the proof of 3.2 the condition holds. Clearly the
condition implies property A and the result follows. D

3.4. COROLLARY. Let S, T e srf be commuting. IfTe& and
S(H)CT(H) then 5 e J .

Proof. Let ε > 0 be given. Under the conditions of the theorem
there exists an a > 0 such that for any n e N one has

(1) S U

(cf. [2], 0.4.1, 0.4.3).
Since T e<9l there exist an n e N, a finite projection Pε e

and a bounded set Nε c Pε(H) such that for each x EUH there exists
a y e Nε with

(2) \\T"x-y\\<(ε/2ar.

Let x e UH, then it follows from (1) that there exists a z e UH such
that \\Snx-anTnz\\<en/2.

By(2) there exists a w e Nε such that \\αnTnz - αnw\\ < εn/2n.
Thus US71* - αntt;|| < ε n . By noting that the set αnNε c Pε(i/) is
bounded the corollary follows. D

4. Riesz decomposition. In [5] a Riesz type of decomposition was
obtained for compact operators in a von Neumann algebra. With our
characterization 3.2 and its Corollary 3.3 in hand we can now use the
techniques of [3] and [5] to obtain a Riesz type of decomposition for
Riesz operators. It should be noted that all proofs are similar to the
proofs in [3], [5]. Hence we shall only give attention to the essential
differences.

For Test let

N n : = N ( I _ τ r ; Fn := Nn+1 - Nn 9 Λ = 0 , 1 , 2 , . . . ,
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Note that (Nn) is non-decreasing (i.e. Nn+rNn = Nn for all r e N)
and (Rn) is non-increasing (i.e. RnRn+r = Rn+r for all r G N ) .

The range projection Rγ will be called (relatively) cofinite if I-Rτ

is finite and if there exists a projection Q e s/ such that Q(H) C
T{H) with Rγ - Q finite. In L(i/) this coincides with the classical
definition of cofiniteness.

4.1. LEMMA. With the above notation
(a)
(b) FnT

kFn =
(c) Rk

(d)
for /ι = 0, 1 , 2 , . . . ; r =

Proof, (a) and (b) follow by induction (on k) and by using the
relation (/ - Nn)TNn+χ = Fn which follows from the properties of
the projection Nn (cf. [3]). Similarly (c) and (d) follow by using the
relation (/ - Rn+\)TRn = Gn which follows from the properties of
the range projection. Q

4.2. THEOREM. Let Γ G f , Then the following hold:
(a) Nn is relatively finite and Rn relatively cofinite.
(b) If Noo = SUPΠ€N7VH and Roo = infneNRn then both Noo(H) and

Roo(H) are invariant under Tk for any k e N.
(c) iVoo is relatively finite and Noo ~ I - Roo -
(d) inf{7Voo, Roo} = 0 and sup{JVoo, Roo} = / .

Proof, (a) Clearly (/ - T) e Φ . By ([7], 2.2) Nx is relatively finite
and R\ is relatively cofinite. For « G N , n > 1 it follows from 2.1
that (/ - T)n = / - To where To e 31 and as before it follows that
Nn is relatively finite and Rn relatively cofinite.

(b) This follows from 4.1 (a) and (c) for r = 0 and taking the strong
operator limit on both sides.

(c) By using 3.3 and 4.1 the proof for the relative finiteness of JVΌo
for the compact case may be carried over virtually word for word by
only replacing T with Tn. From 2.10 and the fact that Φ o is a semi-
group, it follows that Nn ~ I - Rn and hence N^ ~ I - JROO follows
similarly as for the compact case, cf. [3], Theorem 2, (i).

(d) This again follows along the lines of [3], Theorem 2 (iv) and
[5], Theorem 3 (ii) by only noting that (I - T)k = I - T{k) where
T(k\ e 3Z . D
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It is well-known that both the sequences (Nn) and (Rn) eventually
become stationary in the classical case. The following example shows
that this is not always the case in general von Neumann algebras.

EXAMPLE. Let

where Hn = H is a separable Hubert space. Let Tk e L(H) be
defined by

( oo \ fc+1

1=1 / ί=2

where {φi\i e N} is any orthonormal basis for H. It is easy to see
that

- 7*)

for all fc,reN. Let
oo oo

7 = Yf In where /„ = / for all n e N and T := J ] Θ Γw.
72=1 « = 1

Then Γ is compact and hence Riesz relative to $/ . However

N(7-T)k § N(ϊ-T)k+r for all fc, r e N.
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THE CLASSIFICATION OF
FLAT COMPACT COMPLETE SPACE-FORMS

WITH METRIC OF SIGNATURE (2, 2)

MING WANG

Those flat compact complete space-forms with metric of signature
(2,2) are classified up to finite covers. The simply transitive subgroups
of R4 x SO( 2, 2) are classified up to conjugation.

1. Introduction.

(1.1) If Γ c R4 x SO(2, 2) and Γ acts on BP+« freely and prop-
erly discontinuously with compact quotient, then X = Rp+q /Γ is a
flat compact complete space-form with metric of signature (p, q).
Recently D. Fried [3] has classified those flat compact complete space-
forms with metric of signature (1,3) upto finite covers. Ravi S. Kul-
karni pointed out that Fried's method can be applied to the case
(p 5 q) = (2, 2). The basic idea of Fried's method is in the following
theorem:

(1.2) THEOREM. Suppose X is aflat compact complete space-form
with fundamental group Γ c R4 x SO(2, 2). Then there is a uniquely
determined subgroup H of i?4 x SO(2, 2) that acts simply transitively
on R4 and H n Γ = π has finite index in Γ.

(1.3) In §2 we classify those subgroups of R4 x SO(2, 2) that act on
R4 simply transitively, up to the conjugacy of R4 x 0(2, 2). Every
such subgroup, as a Lie group, is isomorphic to one of the following:

i ? \ ΛxNi l 3 , Nil4, i?

Rx{R2x S0(2)}.

All of them, except the last one, correspond to Γ 's. Their uniform
lattices are known, cf. [3] and [7].

(1.4) To prove Theorem (1.2), we first prove in §3 that Γ is virtually
solvable. This result confirms a conjecture by Milnor in a special case.
In [6], it is conjectured that the fundamental group of a complete
affinely flat manifold is virtually polycyclic. Our result, combined with
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Fried's result, shows that this conjecture is true for compact pseudo-
Riemannian 4-manifolds.

(1.5) In §4 we complete the proof of Theorem 1.2, using the theory
of crystallographic hull developed by Fried and Goldman, cf. [4]. In
§5, we give our classification. By comparing our list with Fried's, we
obtain an interesting fact: as differential manifolds, they are the same
coset spaces of the form H/Γ, where H is a Lie group isomorphic to
i? 4 , RxNil3, Nil4 or Rx {R2 x (*' ̂ , ) ί e R} and Γ is a uniform
lattice of H. These Lie groups have simply transitive representations
as affine motions and when the signature is (2,2) (resp. (3,1)), the
images of the representations are R4 x SO(2, 2) (resp. i?4xSO(3, 1)).

(1.6) Notations and some properties of SO(2, 2) and so(2, 2).
Throughout this paper we will call {eι}, 1 < / < 4, a standard basis
s.t. the metric Q, w.r.t. this basis, has the form

Q(V, V) = VιV3+V2V4,

where v = ]Γ)4

=1 v/^ . The full group of orientation-preserving isome-
tries is R4 x SO(2, 2) and

where / = ( Q ?) The infinitesimal isometries are R4 x so(2, 2) and

(1.6.1) 80(2,2)= JΛΓ 6

0 d \
fl21 «22 ~d 0

0 c -an -a2\
-c 0 -an -an)

(1.6.2) so(2, 2) = Li φ L2, where L, ~ sl2(i?), / = 1, 2 and

Γ / α b λ

—fl —c

-b a

a, b,ceR

f / α' 0 0 J' >
0 a' -d' 0
0 d -a! 0

Λ - c ' 0 0 -d

;a',d',c'eR

L{, Li are permuted by an element of O(2, 2).
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(1.6.3)
conjugate

(1)

(2)

(3)

It is easy to show that
under 0(2 , 2) to one

i

<

ζ

fa
b

V

/ 0 a
-a 0
0 b

\-b 0

f a b
-b a

V

-a

0
-b
0

-a

-a
-b

any <Cartan subalgebra of so(2, 2) is
of the following:

\

-b)

b\
0
a

oy

b

-a.

a, b, eR

j

\

;a,b,eR

J

\

;a,b,eR

J

> 9

5

\

J

An immediate corollary is

(1.6.4) If X is in a Cartan subalgebra of so(2, 2) and detX = 0,
then X must conjugate under 0(2, 2) to

ί (a \
0

-a(4)

or

(5)

Γ / 0 a 0 a\\
-a 0 -α 0
0 α 0 α

- α 0 -a 0 / J

(1.7) We identify Aff(n), resp. afF(n), with

resp.

w.r.t. a given basis. Let P/ be the natural homomorphism taking an
affine transformation (or an infinitesimal affine transformation) to its
linear part. Let L{G) be the Lie algebra of a Lie group G and A{G)
be the algebraic hull of G. We will need the following well-known
lemma.
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(1.7.1) LEMMA. IfGQAff(n) s.t. G acts freely on Rn, then every
Ae Pι(G) has 1 as an eigenvalue.

(1.7.2) LEMMA (Kostant and Sullivan, cf. [5]). // G is as in (1.7.1),
then every A e Pι(A(G)) has 1 as an eigenvalue.

(1.7.3) COROLLARY. If G is an in (1.7.1), then every X e
Pι{L{A{G)) or Xe L{A{Pι{G)) has 0 as an eigenvalue.

2. Simply transitive subgroups. We will classify subgroups of R4 x
SO(2, 2) that act simply transitively on R4. Our classification is up
to the conjugation under R4 xi 0(2 , 2). It is well known that a simply
transitive group of affine motions must be solvable, connected, simply
connected and of dimension 4, cf. [1]. We will start from a special case
when the groups are unipotent. The following lemma from Auslander
and Scheuneman plays the key role in this section.

(2.1) LEMMA. Let U be a nilpotent Lie group which has a faithful
representation p: U —• Aff(n), let p* be the induced monomorphism
of Lie algebras

and let Pj be as in (1.7), let Pt be the projection from an element in
aff(n) to its translation part. Then ρ{U) acts on Rn simply transitively
if and only if

(1) Pιop^{L(U)) is nilpotent, and
(2) Pt o p*(L(U)) is a linear isomorphism of L(U) onto Rn .

For a proof, cf. [1]. So unipotent simply transitive subgroups are
exactly the following U 's s.t.

(2.2)

where X{v) is a linear function of v and Pι(L{U)) = {^(i;) υ € Rn}
is nilpotent.

(2.3) LEMMA. There is a vector v0 e R4 such that

(i) P/(L(t/))(t;o) = O,
(ii)
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Proof. If V = {v G R4 Pι(L(U))v = 0}, then Kx is invariant. By
Engel's Theorem on V1, Vs- meets V. u

Let {̂ , } be our standard basis. Then we choose v$ = e\ since
0(2, 2) is transitive on {v Q(v ,v) = 0}/v ~ tυ, where teR-{0}.

(2.4) COROLLARY. W.r.t. the above standard basis, X e Pι(L(U))
has the form

/O a 0 y
0 0 -b 0
0 0 0 0

.0 0 -a OJ

where a = a(v) and b = b(v) are linear functions of v.

To find a(υ) and b{v), we compute the commutator of L(U).

\(X{v) υ\ (X{v>) v'\]_(X(v") υ"\
[Z :>) [\ o o y ' V o o y j ~ v o o / '
where v" = X{υ)υ' - X(v')v, X(v") = X(v)X(v') - X(v')X(v) = 0.
So

a(v") = b(υ") Ξ 0.

Write

(2.6)

Then we have

(2.7)

4

1=1

1=1

where v'( 's are linear functions of α, , 6/ and i /t j , 1 < /, j < 4,
and all coefficients of vtv'j must be zero. We obtain

(2.8) LEMMA.

(i)
(ii)

(iϋ)
(iv)

4 =

(v)
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(2.9)

(i)
(ϋ)

(iii)

COROLLARY.

(2.10) Now we can get some necessary conditions for the nontrans-
lation unipotent simply transitive subgroups. If b2 + a4 Φ 0, then
b4 = a2 = 0. By (2.8) (ii) and (v), b\ = a\ = 0 and we get a contra-
diction. So b2 + a4 = 0, and we have three subcases:

(2.10.1) b2 = a4 = b4 = a2 = 0, but

(2.10.2)
a2φ0, i.e.

Φ (0, 0), i.e.,

I b(v) = b3v3.

+ α4 = 0 but b2 φ 0, α4 7̂  0. Then by (2.8) 64 / 0,

= ^2^2 + (23^3 +

= b2v2

(2.10.3) b2 = = 0, (a2,b4)φ(0,0). By (2.8),

a(υ) =

b(υ) =

or

b4v4.

(2.11) THEOREM, t/p to conjugacy under R4 x 0(2 , 2), //*e «o«-
translation unipotent simply transitive groups U of R4 xi SO(2, 2),
Λαve the following Lie algebras:

where

X(υ) =

(0
0
0

a(v)
0
0
0

0
-b(v)

0
-a(v)

b(ι
0
0
0
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a(v) and b(υ) are listed in the following table:

187

Type of L(U)

1-1

1-2

1-3

II-1

Π-2

Π-3

a(v)

V3

V3

V3

v2 + v4 + ίυ3, (/ > 0)

-υ2 + v4 + tv3, (t > 0)

b(v)

V3

0

-v2 - v4

-v2 + v4

V3

isomorphism type as an
abstract Lie algebra

N3@R

N3®R

*4

^ 4

^ 4

The equivalence classes are uniquely determined by the type of L(U)
and the parameter t (in Type 11).

Proof. The discussion of the conjugacy under R4 x 0(2, 2) is long
and tedious. We will only write down a brief one for subcase (2.10.2).
We give the following lemma without proof.

(2.11.1) LEMMA. If a(υ) φ 0, b(υ) ψ 0, a'{v') φ 0, b'(y') ψ 0,
and if there is a matrix A = (α, 7 ) € 0(2, 2) such that

l - l

(0 a(υ)
0 0
0 0

yo o

0 b(υ)\
-b{υ) 0

0 0
-a(υ) 0 )

A =

{0
0
0
0

0
0
0

0
'{
0

0
0
0

then either

(1)

a'{v ) =
an

 4

a
n

-b2

b4 ,

an

} υ,J 3

aua22 a\λa22 ana22
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\ or

(2)

a {v ) = \ an a
u

011

b'ίv') = 2*-v',
an

-03 + a4\v'3

a4 TV4
011041

where 011̂ 42 φ 0.

Write a'{v') = γ$=2 a\v\ and b'{v') = £ 4

= 2 b\v\, then from (2.11.1)

0462

at

since 04 = —hi # 0. So we can choose 011 such that a'2b\ = a\b2 =
— 1, i.e. 04/011 = ± 1 . Next we use (1) (resp. (2)) if 04/011 = 1 (resp.
- 1 ) , and choose 022 (resp. 042) to reduce

4 *Λ
b'2 Vj

to

or
(_J J) if 0204 <0.

Now a'3, b3 have the form

0 3 =

K =

a11

1 or

0 3 = Z2 + ^

\ = ±z2

1

^11^22

where z\ (resp. Z2) depends on #23 > #43 (resp. ^ 3 , α43) and z\,
i = 1,2 can assume any real number. We can choose z, so that
bf

3 = 0 and we can choose the sign of #22 (resp. #42) so that af

3 > 0.
So we can find an A e 0 (2 , 2) such that

0
0\ (
l) \

X v
0 O

A 0
0 1
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is of Type II-1 or Type Π-2. We can replace (^ °) by ( ^ ) and
show that the translation part doesn't contribute to the classification.

We omit the rest of the proof. D

(2.12) To handle the general case, namely when the simply tran-
sitive group of affine motion is non-unipotent solvable, we need the
following lemma from Auslander, cf. [1].

(2.12.1) LEMMA. Let H bean n-dimensional, connected, simply
connected, solvable Lie group acting simply transitively as affine mo-
tions on Rn . Let A(H) be the algebraic hull of H and let U be the
unipotent radical of A(H). Then U operates simply transitively as
affine motions on Rn.

Now all such nontranslation U 's are known from (2.11), and we'll
study them first.

(2.12.2) LEMMA. Let H, U be as in (2.12.1) and assume that U
is not the translation group T. Then H = U.

Proof. W.r.t. the standard basis {eΐ}, 1 < i < 4, we know

( /0 a(v) 0 b(v)\

L{Pι{U)) = 0
0

o

0
0
0

-b(υ)
0

-a(v)

0
0
0 )

veR4

Notice that A(H) is contained in the normalizer of £/, we have

[L(A(H)), L(U)] C L(U), [L{Pt{A(H))), L(P/(C/))] C

Since for

fan an 0 rf \ /0 α(v) 0

X =Y =
a2\ β 2 2 —β? 0

0 c -flu -fl2 ]

V —C 0 —^12 ~~&22 J

we have

0
0

o

0
0
0

-b(υ)
0

-fl(v)

0
0
0

'-a(υ)a2\ + b(v)c a(υ)(an - a22) 0 b{v)(an+a22)
0 a(v)a2\ + b(υ)c -b(υ)(an + a22) 0
0 0 a{v)a2\ - b(υ)c 0
0 0 -a{v)(an - a22) -a{v)a2χ - b(v)c>
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So

i.e.

-a(v)a2ι+b(υ)c

a(v)a2ι+b(v)c =

(a(v)a2ϊ = 0

\b(υ)c = 0

for any a2\, c, fl(v) and fe(ι ), v e R4.
By (2.11), we can always find a f so that a(v) Φ 0, so we must

have #2i = 0 Similarly c = 0, unless ft(ι ) = 0. So we have two
cases.

Case 1. Type of L(U) is 1-1,1-2 or II.
L(Pι(A(H))) is contained in

flu, 012, a22, d eR
0
0

0

an
a22

0

0

0
-d

-an

-an

d ^
0
0

- < * 2 2 V

Case 2. Type of L(U) is 1-3.
L(Pj(A(H))) is contained in

fan
0
0

an
a22

c

0

0
0

-an

-an

0
0

-a22)

, 022? c eR

It's easy to show that matrices in Case 1 and Case 2 are conjugate
under O(2, 2). We will only write down a proof for Case 1; a proof
for Case 2 can be obtained similarly.

Againlet Y e L{Pι{A{H))). Then by (1.7.3) d e t 7 = 0, so ana22 =
0, i.e. 0ii = 0 or a22 = 0.

If a22 = 0, then an element in L(A(H)) has the form

o o

fau

0
0
0

^ 0

an
0
0
0
0

0
-d

-an

-aι2

0

d(v)
0
0
0
0

vΛ
v2

υ3

v4

o)

, for some v —

ί V\ \

v2

V3

\v4j
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By subtracting an element (χ^ Q) e L(U), we have

Ύ-X{v) 0'
0 0

(Y-X(v) 0\

V o o)
ίll

0
0
0
0

an-a(υ)
0
0
0
0

0
-d + b(υ)

-an

-ai2 + a(v)
0

d-b(v)
0
0
0
0

o^
0
0
0

eL(A(H)).

For any (*("') υ

Q ) e L(U), we have

ί ')]
0 ana(v') 0 aub(v') anυ[ + (an - a(v))v'2 + (d - b(υ))v'4
0 0 -aub(υ') 0 -(<* - b(v))v'3
0
0
0

0
0
0

0
-ana{v)

0

0
0
0

-aιΛ

- ( α 1 2 - a{υ))v'3
0

€ L(U).

But we know that
Ό aua(v') 0 aub(v') anv[\
0 0 -anb(v') 0 α n υ 2

βll«30
0
0

0
-ana(v')

0

0
0
0 o

eL(U).0
0

Vθ
So we have

(1) anυ[ = anv[ + {an - a(v))υ'2 + (d- b{v))v'4
(2)
(3)
(4) auv'4 = -(al2-a(υ))υ'3.

From (3) we get an = 0. Then (2), resp. (4), implies d = b(v), resp.
,i.e. Γ = X(υ). So (J«)€L(C/).

If an = 0, let (Jg) € L(A(H)). By subtracting an element

(
r(v)

(0
0
0
0

^o

0Λ

α -

\
)
\2-a(v)
an
0
0
0

0
-(d -b(υ))

0
-(α1 2-α(w))

0

d-b(v)
0
0

- α 2 2

0

0
0
0
0)

L{A{H)).
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Then for any (*£') V

Q ) e L{U), we have

Y-X(v)
0

/O -a22a{υf) 0 a22b{v') (an - a(v))v'2 + (d - b{υ))v'4\
0 0 -a22b(vf) 0 α2 2^2 - (^ - b(υ))vf

3

0\ (X{v') vf

o ; ' v o o

0
0

vo

0
0
0

0 0 0
a22a(v') 0 -(an - a{v))v'3 - #22^4

0 0 0 J

eL(U).

Let α(«) =
bx = 0) and let

i> b(v) = Σ M i , 2 < / < 4 as in (2.6) {a\ =

v" = 2 - {d - b(υ))υ'3
0

- a(υ))υ'3 - (I22V4 J

Then

r -α 2 2 α(^) = ^K) = 2 - (d - b(v))v'3)

Φ))V3 - CI22V4) ,

2 - (d - b(υ))υ'3)

- a(υ))v'3 - a22v4),

i.e.

i.e.

2 ~{d - b(υ))v'3)

- a(υ))υ'3 -

3 + b4v'4) = b2(a22V2 - (d - b{v))υ'3)

+b4(-(an - a(v))v'3 - a22v4),

- a4(aι2 - a(v)) -a2(d- b(υ)))υ'3 = 0

+ b4(an - a(v)) + b2(d - b{υ)))υ'3 = 0.

Letting v[ 's vary, we have
(1) α22«2 = 0;
(2) 022^4 = 0 ;

(3) α3β22 - ^4(012 - a{v)) - a2(d - b(v)) = 0
(4) b3a22 + b4{aι2 - a(υ)) + b2(d - b(v)) = 0.
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If a22 Φ 0, we must have a2 = b4 = 0 by (1) and (2). According to
(2.10), this implies b2 = α4 = b4 = a2 = 0. Then (3) and (4) lead to

( 3 2 2 ,

\b3a22 = 0,
i.e. a$ = bι = 0. So U = T, and we have a contradiction. So
α2 2 = 0. We always have an = a22 = 0, i.e. Λ(//) is unipotent;
so H is unipotent. But any unipotent connected Lie group is Zariski
closed, so H = Λ(H). U, as the unipotent radical of H must be H
itself. D

(2.12.3) Now consider the case when the unipotent radical A(H) is
precisely the group T of translations of R4. Suppose H ψT, i.e. H
is not unipotent.

(2.12.3.1) LEMMA. P,(H) is abelian.

Proof. Pι(H) a HI Ker(P/|#)) = H/(HnT) C A{H)/T, but A{H)/T
is abelian (cf. [2], A(H)/U(H) is abelian, since A(H) is solvable and
algebraic). D

(2.12.3.2) LEMMA. dimP/(i/) = 1 P^H) is diagnolizable in C.

Proof. Pι(H) is a connected abelian subgroup of SOo(2, 2), so
dimPι(H) < 2. By (1.7.3) d e t * = 0 for every X e L{Pt{H)), i.e. 0
is an eigenvalue of X. Since X e so(2, 2), so

fan an 0 d
y _ a2\ a22 —a u

0 c -an -a2i

\-c 0 -ai2 -a22

and

det(X - λl) =λ4 + (2dc - 2aί2a2ι - au - a

= λ4 + {-4ana2ι-(au-an)
2}λ2,

since 0 is an eigenvalue. So the eigenvalues of X are {0,0,0,0}
or {0,0, A, -λ}, λ φ 0, λ e R or \f=ΪR. If dimP/(if) = 2,
then by (1.6.2) so(2, 2) = Lx ®L2,Lι ~ sl2(R). So L(Pι(H)) =

+ ΛX2 where X, € L, , i = 1,2. But by (1.6.2)
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det(X! - λl) = λ4 + 2(a2 + bc)λ2 + (a2 + be)2, and

det(Z2 - λl) = λ4 + 2(b'c' - a'2)λ2 + (b'c' - a'2)2.

So zero is an eigenvalue of Xt•, / = 1, 2, if and only if all the eigen-
values of Xi are zero. This means Pj(H) is unipotent and leads to
a contradiction. So dimP^H) = 1, L(Pt(H)) = RX and X has
eigenvalues {0, 0, λ, —λ}, λφO, λ € R or v^Ti?. Since X is an
infinitesimal isometry, it is diagnolizable. •

(2.12.3.3) COROLLARY. L(Pι(H)) is contained in a Cartan subal-
gebra of so(2, 2) and is conjugate under 0 (2 , 2) to

(1)

(a
0

—a

0\

(2)

Proof. By (1.6.4).

0 a 0 a'
-α 0 -a 0
0 α 0 a

{-a 0 - α Oy

D

Since H is simply transitive, the map Pt: L(H) —> R4 is a linear
isomorphism, so in (2.12.3.3) we have a = ]£?=i α, Vj , where

is the corresponding translation part. Since T is the unipotent radical
of A(H),we have [L{H),L{H)} c L(Γ) = i? 4 . By computing the
commutator and using the fact that H is simply transitive, we must
have a{υ) = a^ + a^v^, (α 2, a^) ^ ( 0 , 0 ) in Case (1) and a(v) =
aι(vι - υy) + a2(v2 - v4), (a{, a2) φ (0, 0) in Case (2). Finally, by
considering the conjugation under R4 x O(2, 2), we get

(2.12.4) THEOREM. // H c R4 x SO(2, 2) acts simply transitively
on R4 and H is not unipotent, then H is conjugate under i ? 4 x0(2, 2)
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to one of the following:
(i) Type ΠI-1:

a(v)

\ 0

Oλ
0

-a(v)
V

V J

where a{v) = tv2 + υ4, t > 0 and L{H) ^ R ® { R 2 x R { ι

Q ^ ) } .
(ii) Type ffl-2:

0
a{v)
0

0

0

0
φ)
0

φ)

φ)\
0

φ)
o )

ί \
V

\ )

where a(v) = t(yx -v3), t > 0 α/κ/ L(H) = R®{R2 ^ ( f , J)}. The
type and the parameter t determine the equivalence classes uniquely.

(2.13) Combining (2.11) with (2.12.4) and denoting H = Γ4 as
Type 0, we complete the classification of simply transitive subgroups
of R4 x SO(2, 2). We summarize our result in the following table.
We denote

A(a,b,v) =

B(a,v) =

C(a,v) =

Ό a(υ) 0 b(v)\
0 0 -b(v) 0
0 0 0 0
0 0 -a(υ) 0 J

0

v

0)

r / ίΦ)
0

I o
o

-Φ)
oy

o oy
a(v) 0 α(ϋ)

0 -a{v) 0
0 α(w) 0 a(v)

\.-a(v) 0 -α(v) 0 J
0

v

OJ

V E R 4
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Table of equivalence classes of simply transitive subgroups of R4 x
SO(2, 2) (given in the form of subalgebras of aff(n) w.r.t. a standard
basis).

type of
L(H)

0

1-1

1-2

1-3

II-1

II-2

Π-3

ΠI-1

ΠI-2

affine form of L(H)

{ ( 8 8 ) ; * € * 4 } ;
At U \ ί a(V) = V*>

A(a,b9υ),\
{ b(v) = vι

A(a,b,υ),\
I b(v) = -v3Λ( u N ( a ( v ) = υ3,

A{a>b'V)'\b(v} = 0
At h A / a(v) = v2 + v4 + tv3,

A{a>b>V)Λblv) = -v2-v4, t > 0 ,

A{a,b,v),\a}V) = -V2 + V* + tVi>
' \ b(v) = -v2+υ4, t>0

.. , , ( a(v) = v2,

B{a, v), a(υ) = tv2 + υ4,teR

C(a,v),a(v) = t(Vi - υ 3 ) , t>0

isomorphism type
as abstract
Lie algebra

R4

R®N)

R®N3

R®N3

N4

N4

N4

i?Θ{JR
2xi?(i_°1)}

Aθ{i?2χi?(.°,J)}

The type of L(H) and the parameter t determine the equivalence
classes uniquely.

3. Γ is virtually solvable. A group with a solvable subgroup of finite
index is called virtually solvable.

(3.1) THEOREM. // Γ c R4 xi SO(2, 2) and Γ acts freely and prop-
erly discontinuously on R4 with compact quotient, then Γ is virtually
solvable.

Proof. Let π = P/(Γ) and A{π) be the algebraic hull of Γ. The
identity component A$ is of finite index in A(π). We will show AQ
is solvable. The following lemma is due to D. Fried.

(3.2) LEMMA. If AQ fixes a vector υ e R4 s.t. Q(υ, v) Φ 0, then
Ao is solvable.

For a proof, cf. [3].
Assume that AQ is not solvable. As in (1.7.2), for every g e A(π),

det(g - I) = 0. This shows det = 0 on L(A0) and d i m ^ 0 <
dimSO(2, 2). So AQ contains a semisimpleconnected subgroup S
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such that dim S = 3 and L(S) =s sl2(i?) By (1.6.2) det φ 0 on /,
so L(S) Φ Li, i = 1, 2. So L{S) must be a maximal subalgebra of
so(2, 2), so Λo = S. Let Pz: L(5) -*• L,., i = 1, 2 be the projection
map, then P, (L(5)) = L,, / = 1, 2.

(3.3) Claim. There is a nonzero vector v e i?4 such that

(i) β(v ,v )?έθ;
(ii) Ao(v)-υ.

To prove the claim, let 0 Φ X € I-(Λo) such that i?JSΓ is a split Car-
tan subalgebra of L(A0). Then h = P 1 ( i?X)©P 2 (^) is a split Cartan
subalgebra of so(2, 2). By (1.6.3) h is conjugate under 0 ( 2 , 2) to
{diag (α, b, -a, —b)\ a, b € R}. Since detX = 0 we can rescale
and permute coordinates s o l = diag ( 1 , 0 , - 1 , 0 ) . Let {X ,Y, Z}
be the basis of L(A) such that [X, Y] = 2Y, [X, Z] = - 2 Z , [Y, Z]
= X and X = diag (l , 0 , - 1 , 0 ) . Then adX has three real eigen-
values on so(2, 2): {2, 0, - 2 } . Let Ex be the corresponding eigen-
spaces, then

[E2,E_2] =

Ό
0
0

10
/ 0

d
0

c 0
0 -e
0 0
0 -c

0 0
0 0
/ 0

e\
0
0

c,e eR

\-f 0 0
(cd-ef

0
0

-d
0 y

d,f,€R

-cd - ef
-cd + ef

K \ 0

and

0 \

cd + efj

c,d,e,feR

So there are c, e, d, f ER such that

Y =

(0
0
0

ô

c
0
0
0

0
—e
0

-c

e\
0
0

o)
, z =

/ o
d
0

{-f

0
0
/
0

0
0
0
0

0 ϊ
0

-d
0 )
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and [X, Z] = X implies

( cd-ef=l,

i.e. cd = -ef = \, cdef ^0. Let υ = \e2 - \e^. It's easy to check

that Q(v9v) = ±?0, Ao(υ) = υ .
Combining (3.3) with Lemma (3.2), we have a contradiction, so AQ

must be solvable. D

4 Proof of Theorem (1.2). The principal tool is the following theo-
rem from [4].

(4.1) THEOREM (Fried and Goldman). Let Γ c AS(n) be virtually
polycyclic and suppose that Γ acts properly dίscontinuously on Rn.
Then there exists at least one subgroup H c Aff(n) containing Γ such
that:

(a) H has finitely many components and each component meets Γ;
(b) HjT is compact,
(c) H and Γ have the same algebraic hull in AS{ή)
(d) // Γ has a subgroup T\ of finite index such that every element

of Pι(T\) has all real eigenvalues, then H is uniquely determined by
the above conditions',

(e) the identity component HQ of H acts simply transitively on Rn

and HQΓ\T is a discrete cocompact subgroup of HQ and is of finite
index in Γ.

Such a subgroup H in (4.1) is called a crystallographic hull for Γ.
Since a discrete solvable subgroup of Lie with finitely many compo-
nents is polycyclic and we proved in §3 that Γ in (1.2) is virtually
solvable, by (4.1) we need only to check for the uniqueness of H.
By (4.1)-(d), we need only to show that P/(Γ) has a subgroup of fi-
nite index with real eigenvalues only. Since HQ must occur in our
table of simply transitive motions and all these simply transitive mo-
tions, except Type IΠ-2, have linear parts with only real eigenvalues,
we need only to check Type IΠ-2. By Bieberbach's theorem (cf. [8]),
any discrete subgroup of Type III-2 meets T in a subgroup of finite
index. D
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5. Classification of Γ.

(5.1) LEMMA. Let T be a uniform lattice in a simply transitive
group H CR4 xi SO(2, 2). Then H is the identity component of the
crystallographic hull of Γ if and only if H is not of Type III-2.

Proof. If H is of Type IΠ-2, then Γ has a subgroup of finite index,
say Γi , such that Γj c Γ. So Γ is virtually abelian. By [4], the
crystallographic hull of a virtually abelian affine polycyclic group is
itself virtually abelian, so H doesn't arise from any Γ.

In the unipotent cases, the algebraic hull of H is H itself. So
A(Γ)9 the algebraic hull of Γ, is contained in H. Since HQ, the
identity component of the crystallographic hull H' of Γ, acts simply
transitively on R4, the dimension of HQ must be four, and then by
(4.1)-(C) we have

H^CH'C A(H') = A(T) C H.

So # = flg;then H1 = H.
The only remaining case is Type III-1. Since Γ is not unipotent,

HQ , the identity component of the crystallographic hull H' of Γ, must
be nonunipotent solvable, i.e. HQ is of Type IΠ-1 and Γ C H n HQ .
Then it's easy to show that H'Q-H. U

(5.2) COROLLARY. Up to finite covers, every flat compact complete
space-form with metric of signature (2,2) is of the form H/Γ, where
H is a simply transitive subgroup of R4 x SO(2, 2) of Type 0, Type I,
Type II or Type IΠ-1 and Γ is a uniform lattice of H.

(5.3) Uniform lattices. The uniform lattices depend only on the
structure of AT as a Lie group and do not depend on its embedding in
R4 xSO(2, 2). Since Type0 ~ R4, T y p e I ~ R x N i l 3 , TypeII - Nil4

and Type III-1 ~ R x {R2 xi (^ o,) / e R}, as Lie groups, they are
exactly the same group as that listed in [8], and D. Fried gave a list of
their uniform lattices there. C. T. C. Wall also studied them, cf. [7].
Here we only write them down to complete our classification.

(5.3.1) The uniform lattices of H are semidirect products
where A e SL(Z) has a characteristic polynomial
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where b > 2 is an integer, and A and b satisfy:

(i) TypeO: A = I,b = 2;

(ii) Type I: (A - I)2 = 0, A φ I9b = 2;

(iii) Type II: (A - I)2 φ 0, (Λ - 1 ) 3 = 0, 6 = 2

(iv) Type III-1: Z>>3.

(Cf. [3] and [7] for a proof.)

Acknowledgment. The author wishes to thank Professor Ravi S.

Kulkarni whose guidance and encouragement made the work of this

paper possible.

REFERENCES

[1] L. Auslander, Simply transitive groups of affine motions, Amer. J. Math., 99
(1977), 809-821.

[2] A. Borel, Linear Algebraic Groups, Benjamin, New York, 1969.
[3] D. Fried, Flat spacetimes, J. Differential Geometry, 26 (1987), 385-396.
[4] D. Fried and W. Goldman, Three-dimensional affine crystallographic groups,

Adv. in Math., 47 (1983), 1-49.
[5] B. Kostant and D. Sullivan, The Euler characteristic of an affine space form is

zero, Bull. Amer. Math. Soc, 81 (1975), 937-938.
[6] J. Milnor, On fundamental groups of complete affinely flat manifolds, Adv. in

Math., 525(1977), 178-187.
[7] C. T. C. Wall, Geometric structures on compact complete analytic surfaces,

Topology, 25 No. 2, (1986), 119-153.
[8] H. Zassenhaus, Beweis eines Satzes uber diskrete Grupen, Abh. Math. Sem.

Hamb. Univ., 12 (1938), 289-312.

Received September 13, 1988 and in revised form February 27, 1989. Partially sup-
ported by the Max-Planck-Institut fur Mathematik, Bonn, West Germany and an NSF
grant.

QUEENS COLLEGE OF CUNY

FLUSHING, NY 11367-0904



PACIFIC JOURNAL OF MATHEMATICS
EDITORS

V. S. VARADARAJAN
(Managing Editor)

University of California
Los Angeles, CA 90024-1555-05

HERBERT CLEMENS
University of Utah
Salt Lake City, UT 84112

THOMAS ENRIGHT
University of California, San Diego
La Jolla, CA 92093

R. FINN
Stanford University
Stanford, CA 94305

HERMANN FLASCHKA
University of Arizona
Tucson, AZ 85721

VAUGHAN F. R. JONES
University of California
Berkeley, CA 94720

STEVEN KERCKHOFF
Stanford University
Stanford, CA 94305

C. C. MOORE
University of California
Berkeley, CA 94720

MARTIN SCHARLEMANN
University of California
Santa Barbara, CA 93106

HAROLD STARK
University of California, San Diego
La Jolla, CA 92093

ASSOCIATE EDITORS
R. ARENS E. F. BECKENBACH B. H. NEUMANN F. WOLF

(1906-1982) (1904-1989)

SUPPORTING INSTITUTIONS

K. YOSHIDA

UNIVERSITY OF ARIZONA
UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA, RENO
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY

UNIVERSITY OF OREGON
UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF HAWAII
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON



Pacific Journal of Mathematics
Vol. 148, No. 1 March, 1991

David Marion Arnold and Charles Irvin Vinsonhaler, Duality and
invariants for Butler groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Philippe Delanoë, Obstruction to prescribed positive Ricci curvature . . . . . . . . 11
María J. Druetta, Nonpositively curved homogeneous spaces of dimension

five . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Robert Fitzgerald, Combinatorial techniques and abstract Witt rings III . . . . . 39
Maria Girardi, Dentability, trees, and Dunford-Pettis operators on L1 . . . . . . . 59
Krzysztof Jarosz, Ultraproducts and small bound perturbations . . . . . . . . . . . . . 81
Russell David Lyons, The local structure of some measure-algebra

homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Fiona Anne Murnaghan, Asymptotic behaviour of supercuspidal characters

of p-adic GL3 and GL4: the generic unramified case . . . . . . . . . . . . . . . . . . 107
H. Rouhani, Quasi-rotation C∗-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Ignacio Sols Lucía, Michał Szurek and Jaroslaw Wisniewski, Rank-2

Fano bundles over a smooth quadric Q3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Martin Strake and Gerard Walschap, Ricci curvature and volume

growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Anton Ströh and Johan Swart, A Riesz theory in von Neumann algebras . . 169
Ming Wang, The classification of flat compact complete space-forms with

metric of signature (2, 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Pacific
JournalofM

athem
atics

1991
Vol.148,N

o.1


	 vol. 148, no. 1, 1991
	Masthead and Copyright
	David Marion Arnold and Charles Irvin Vinsonhaler
	Philippe Delanoë
	María J. Druetta
	Robert Fitzgerald
	Maria Girardi
	Krzysztof Jarosz
	Russell David Lyons
	Fiona Anne Murnaghan
	H. Rouhani
	Ignacio Sols Lucía and Michal Szurek and Jaroslaw Wisniewski
	Martin Strake and Gerard Walschap
	Anton Ströh and Johan Swart
	Ming Wang
	Guidelines for Authors
	Table of Contents

