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DUALITY AND INVARIANTS FOR BUTLER GROUPS

D. M. ArRNOLD AND C. I. VINSONHALER

A duality is used to develop a complete set of numerical quasi-
isomorphism invariants for the class of torsion-free abelian groups
consisting of strongly indecomposable cokernels of diagonal embed-
dings A4/N---NAy > A4, D---® A, for n-tuples (A4;,..., An) of
subgroups of the additive group of rational numbers.

A major theme in the theory of abelian groups is the classification
of groups by numerical invariants. For the special case of torsion-free
abelian groups of finite rank, one must first consider the decidedly
non-trivial problem of classification up to quasi-isomorphism. To this
end, we develop a contravariant duality on the quasi-homomorphism
category of T-groups for a finite distributive lattice 7' of types.

A Butler group is a finite rank torsion-free abelian group that is
isomorphic to a pure subgroup of a finite direct sum of subgroups of
Q, the additive group of rationals. Isomorphism classes of subgroups
of Q, called types, form an infinite distributive lattice. For a finite
distributive sublattice 7 of types, a T-group is a Butler group G
with each element of the typeset of G (the set of types of pure rank-1
subgroups of G) in T . Each Butler group is a 7-group for some 7,
since Butler groups have finite typesets [BU1), but T is not, in general,
unique. There are various characterizations of Butler groups, as found
in [AR2], [AR3], and [AV1], but a complete structure theory has yet to
be determined. As E. L. Lady has pointed out in [LA1] and [LA2], the
theory generalizes directly to Butler modules over Dedekind domains.

Define Br to be the category of T-groups with morphism sets
Q®zHomz(G, H). Isomorphism in By is called quasi-isomorphism
and an indecomposable in Br is called strongly indecomposable. B.
Jonisson in [JO] showed that direct sum decompositions in By are
unique up to order and quasi-isomorphism (see [AR1] for the categori-
cal version). Thus, classification of 7-groups up to quasi-isomorphism
depends only on the classification of strongly indecomposable T -
groups.

A complete set of numerical quasi-isomorphism invariants for
strongly indecomposable T-groups of the form G = G(A4,, ..., 4,),
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the kernel of the map A4, @ ---® 4, — Q given by (ay, ..., a,) —
ay+---+a, for (4, ..., A,) an n-tuple of subgroups of Q, is given
in [AV2]. Specifically, the invariants are {rg[M}|M C T}, where
r¢IM] = rank(({Glolloc € M}).

Given an anti-isomorphism « : T — T' of finite lattices of types,
there is a contravariant duality D(a) from By to By (Corollary 5).
The duality D(a) coincides with a duality on 7T-valuated Q-vector
spaces given by F. Richman in [RI1] and includes, as special cases, the
duality for quotient divisible Butler groups (all types are isomorphism
classes of subrings of Q) given in [ARS] and by E. L. Lady in [LA1],
and the duality given for certain self-dual 7" in [AV1]. The search
for lattices anti-isomorphic to a given lattice is simplified by an obser-
vation in [RI1] that each finite distributive lattice is isomorphic to a
sublattice of a Boolean algebra of subrings of Q.

Groups of the form G = G(4,, ..., A,) are sent by the duality
D(a) to groups of the form G = G[A4;, ..., A,], the cokernel of the
embedding ({4;]1 Li<n}— A;®---®A, givenby a — (a, ..., a).
This observation gives rise to an application of the duality D(a).

CorOLLARY 1. Let T be a finite distributive lattice of types. A com-
plete set of numerical quasi-isomorphism invariants for strongly inde-
composable T-groups of the form G = G[Ay, ..., A,] is given by
{r¢(M)|M a subset of T}, where rg(M) = rank(Z{G(t)|t € M}).
Each such group has quasi-endomorphism ring isomorphic to Q.

Despite other options, we develop duality in terms of representa-
tions of finite posets (partially ordered sets) over an arbitrary field k.
This choice is motivated by the fact that duality in this context is
an easy consequence of vector space duality. Moreover, the quasi-
isomorphism invariants given in Corollary I arise naturally when the
groups are viewed as representations. As an added bonus, this duality
is also applicable to classes of finite valuated p-groups. Specifically,
given any finite poset S and prime p, there is an embedding from
the category of Z/pZ-representations of S to the category of finite
valuated p-groups that preserves isomorphism and indecomposability
[AR4]. Implications of this embedding will be examined elsewhere.

Unexplained notation and terminology will be as in [AR1], [AR2]
[AR4], and [AV1].

If k is a field and S is a finite poset, then a k-representation of
S is X = (U, Ui € S), where U is a finite dimensional k-vector
space, each U, is a subspace of U, and i < j in S implies that
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U; CU;. Let Rep(k, S) denote the category of k-representations of
a finite poset S, where a morphism f: (U, Ujli € S) = (U', Uj|i € S)
is a k-linear transformation f: U — U’ with f(U;) € U] for each
i. This category is a pre-abelian category (as defined in [RIW]) with
finite direct sums defined by
(U, UlieS)o (U, UlieS)=Ua U, Ua Ui €S).
Direct sum decompositions into indecomposable representations ex-
ist and are unique, up to isomorphism and order, since endomor-
phism rings of indecomposable representations are local. A sequence
in Rep(k, S), 0 - (U, U;) — (U', U})) — (U", U") = 0, is exact if
andonlyif 0 - U -U"-U"-0ad 0-U; - U/ - U -0
are exact sequences of vector spaces for each i € S.
For a poset S, let S°° denote S with the reverse ordering.

ProposiTION 1 [DR]. Suppose that S is a finite poset. There is an
exact contravariant duality o: Rep(k, S) — Rep(k, S°?) defined by
o(U,U;:ieS)=(U*, Ut:ieSP), where U* = Homy (U, k) and
Ut = {f € U*: f(U) =0},

Proof. A routine exercise in finite dimensional vector spaces, noting
that if f: X — X’ is a morphism of representations, then o(f) =
f*:0(X') = o(X) is a morphism of representations and that ¢? is
naturally equivalent to the identity functor.

There are some extremal representations to be dealt with. A rep-
resentation of the form X = (U, U;|i € S) is called a simple repre-
sentation of S if U = k and U; = 0 for each i, and a co-simple
representation if U = k = U; for each i. Simple representations
are indecomposable projective and co-simple representations are inde-
composable injective relative to exact sequences in Rep(k, S). The
duality o carries simple representations into co-simple representa-
tions. It is easy to verify that a representation X = (U, Uj|li € §)
has no simple summands if and only if U = Z{U;|i € S} and no
co-simple summands if and only if N{U;|li € S} =0.

Recall that types are ordered by [X] < [Y] if and only if X is
isomorphic to a subgroup of Y, where [X] denotes the isomorphism
class of a subgroup X of Q. The join of [X] and [Y] is [X + Y],
and the meet is [X NY].

Let G bea T-group and 0 # x € G. Then types(x) is the type of
the pure rank-1 subgroup of G generated by x. Define G(7) = {x €
G|typeg(x) > 1}, the 1-socle of G. Let QG = Q ®z G denote the
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divisible hull of G, regard G as a subgroup of QG, and write QG(1)
for the Q-subspace of QG generated by G(7).

Define JI(T) to be the set of join-irreducible elements of a finite
lattice T of types. That is, JI(T) = {t € T|if t = 6 join y for
0, yeT,then 1=y or 1t =0}. The poset JI(T)°P has a great-
est element, namely the least element of 7. In the correspondence of
the following lemma, the simple indecomposables in Rep(Q, JI(T)°P)
have no non-zero group analogs. Thus, define Repy(Q, JI(T)°P) to be
Rep(Q, JI(T)°P) subject to identifying a simple indecomposable rep-
resentation with the indecomposable projective representation (U, U;|t
€ JI(T)°P) defined by U = Q, U, = Q if 7 is the greatest element
of JI(T)°?, and U, = 0 otherwise. This guarantees that a simple
indecomposable representation corresponds to a rank-1 group in Br
with type equal to the least element of 7.

LeMMA 2 (a) [BU2, BU3]. There is a category equivalence Fr: By —
Repo(Q, JI(T)P) given by Fr(G) = (QG, QG(7)|t € J(T)P).
(b) Fr is an exact functor.

Proof. (a) We observe only that the inverse of Fr sends (U, U;|t €
JI(T)°P) to the subgroup of U generated by {G.|t € JI(T)°P}, where
G is a subgroup of torsion index in U, that is t-homogeneous com-
pletely decomposable (isomorphic to a direct sum of rank-1 groups
with types in 7). The proof is outlined in [BU3] with details in [BU2].

(b) Note that By is also a pre-abelian category and that a sequence

0-GLHEK 0 of T-groups is exact in By if and only if

f is monic, (kernel g + image f)/(kernel g N image f) is finite, and
(image g + K)/(image g N K) is finite. In particular, 0 — QG —
QH — QK — 0 is exact. Recall that, since we are working in a
quasi-homomorphism category, equality in B7 is to be interpreted as
quasi-equality of groups (G and H are quasi-equal if QG = QH and
there is a non-zero integer n with nG C H and nH C G) and purity
in Bt as quasi-purity (quasi-equal to a pure subgroup).

Let 0 - G EA H % K — 0 be an exact sequence in Br. It is

sufficient to show that if 7 € JI(T)°P, then QH(1) % QK (1) — 0 is
exact. In this case, 0 — QG(1) —» QH(1) —» QK(1) — 0 is exact and
0 — Fr(G) » Fr(H) — Fp(K) — 0 is exact in Rep(Q, JI(T)°P).

If X is a pure rank-1 subgroup of K of type > 7, then g~1(X)
is generated in By by a finite set L of pure rank-1 subgroups of
H whose types are in 7" [BU1]. Thus, type(X) is the join of the
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elements in a set L' of types of groups in L with nonzero image
under g in QX. Also, 7 is the join of the elements in
{o meet 17|c € L'}. But 7 join irreducible in 7 implies that g > 7
for some o € L', whence QX is in the image of QH(7) % QK(1).
Consequently, QH(t) % QK (1) — 0 is exact, as desired.

At this stage, it is tempting to try to define a duality from Br — By,
for anti-isomorphic lattices 77 and 7’ by using Lemma 2 and Propo-
sition 1. This would require, however, that JI(7")°P be lattice isomor-
phic to JI(T), a rare occurrence as JI(7")°P has a greatest element but
JI(T) need not. To overcome this difficulty, we need a functor from
Br to Rep(Q, S) for some other partially ordered set S. A candidate
for S is the opposite of MI(T'), the set of meet irreducible elements
of T.

Note that MI(T)°P has a least element, the greatest element of 7 .
Define Rep®(Q, MI(T)°) to be Rep(Q, MI(T)°) with a co-simple
indecomposable representation identified with the indecomposable in-
jective representation (U = Q, U;|li € S), where U; = 0 if i is the
least element of MI(7")°° and U; = Q otherwise.

For a Butler group G and a type t the t-radical of G, G[1], is
defined to be ({kernel f|f: G — Q, type(image ) < 7}.

LeMMA 3 [LA2). Let T be a finite lattice of types, G a T-group,
and 1€ T.

(a) QGIt]=Z{QG(Y)lve T,y £ 1}.

(b) QG(7) = M{QGIY]lt £y T}.

(¢) If 7 is the meet of y and J, then QG[1] = QG[y] + QG[d].
(d) If t is the join of y and &, then QG(t) = QG(y) N QG(J).

Proof. Proofs of (a) and (b) are given in [AV1, Proposition 1.9]. (c)
and (d) then follow.

THEOREM 4. Assume that T is a finite lattice of types. There is
an exact category equivalence Er: By — Rep’(Q, MI(T)°P) given by
Er(G) = (QG, QG][t]|]t € MI(T)?).

Proof. Clearly, E7 is a functor where if ¢® f € Q® Homz(G, H),
then Er(¢® f) = q(1® f): QG — QH . Also, Er is well defined,
since y <71 in MI(7T)°? implies that G[y] C G[1].
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The fact that E7: QHom(G, H) — Hom(Er(G), E7(H)) is an
isomorphism is proved in [LA2, Theorem 1.5]. Also E7 has a well
defined inverse, since G can be recovered, up to quasi-isomorphism,
from (QG, QG(1)|t € JI(T)°?) by Lemma 2 and the QG(7)’s can be
recovered from (QG, QG[y]ly € MI(T)°?) by Lemma 3.

It remains to show exactness of E7. Assume that 0 —» G — H 5
K — 0 is exact in By, and let X be a pure rank-1 subgroup of K
in By of type not less than or equal to y. As noted in the proof
of Lemma 2, g~!(X) is generated in Br by a finite number of pure
rank-1 subgroups of H in Br such that type(X) is the join of the
types of those groups having non-zero image under g in QX . There-
fore, at least one of these types is not less than or equal to y. It
follows from Lemma 3.a that QX is contained in g(QH[y]). Thus,
QH[y] & QK[y] — 0 is exact, since g(QH[y]) C QK[y] is immedi-
ate. Note that this part of the proof does not require y to be meet
irreducible.

Next, QG N QH[y] 2 QG]Jy] for each y. To show that QG[y] 2
QOGN QH[y] for y e MI(T), let X be a pure rank-1 subgroup of G
in By and assume that X NG[y] = 0. Then type(X) < y, by Lemma
3.a. As H is a pure subgroup in By of a finite rank completely
decomposable 7-group, type(X) is the meet of the elements in a
subset L of types of rank-1 torsion-free quotients of H in By such
that the image of X in each of these quotients is non-zero [AV1].
In view of the distributivity of 7', y is the meet of the elements in
{y join ala € L}. Since y is meet irreducible, o < y forsome a € L.
Hence, X N H[y] =0, as X is not in the kernel of a homomorphism
from H to a rank-1 torsion-free quotient of H with type=a <7y.
Consequently, if X is a pure rank-1 subgroup of G N H[y], then
X C GIy], since X NG[y] =0 implies that X N H[y] = 0, as desired.

An exact sequence 0 - G — H — K — 0 in By is balanced if
0 — G(1) — H(t) — K(1) — 0 is exact in By for each type 1€ T
and cobalanced if 0 — G/G[1] — H/H[t] — K/K[1] — 0 is exact in
By foreachtype 1€ T.

COROLLARY 5. Let a: T — T' be a lattice anti-isomorphism of fi-
nite distributive lattices of types. There is a contravariant exact cat-
egory equivalence D = D(a): By — By defined by D(G) = H,
QH = QG* = Homy(QG, Q), and QHla(1)] = QG(1)* for each
1€ T, with the following properties:.
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(a) D(a~')D(a) is naturally equivalent to the identity functor on
Br, rank(D(G)) = rank(G), and QH(a(t)) = QG[t]* for each
teT.

(b) D(G(t)) is quasi-isomorphic to D(G)/D(G)la(r)] and
D(G/G(7)) is quasi-isomorphic to D(G)[a(7)] for each 1€ T.

(¢) If X is a rank-1 T-group with type(X) = the join of the
elements in a subset {1y, ..., Ty} of J(T), then type(D(X)) is the
meet of the elements in {a(ty), ..., a(t,)} C MI(T").

(d) D sends balanced sequences to cobalanced sequences and con-
versely.

(e) D(G(Ay, ...,Ay)) is quasi-isomorphic to G[D(A4,), ... ,D(Ay)]
for each n-tuple (A, ..., A,) of subgroups of Q with typesin T .

Proof. (a) Define D = D(a) = E}, oaFr, where Fr and Ep,
are as defined in Lemma 2 and Theorem 4, respectively;

a: Repy(Q, JI(T)°) — Repy(Q, MI(T"))
is a relabelling; and
o : Repo(Q, MI(T")) — Repo(Q@, MI(T")°P)

is as given in Proposition 1. Note that D is contravariant, since o
is, and that D is exact since each of the defining functors are ex-
act. Unravelling the definition of D shows that D(G) = H, where
QH = (QG)* and QH[a(r)] = (QG(1))* for 7 € JI(T). In fact,
QHJa(1)] = QG(t)* for each 7 € T. To see this, note that 7 is the
join of elements in a subset M of JI(T). Therefore,

0G(r) =[{QG(6)l6 € M},
by Lemma 3.d, and
QG(1)* = Z{QG(d)*|6 € M}
= Z{QH[a(9)]|d € M} = QH[a(7)],

by Lemma 3.c, since a(7) is the meet of the elements in {a(d)]
0eM}.

Now G is naturally quasi-isomorphic to D(a~!)D(a)(G), via the
natural vector space isomorphism QG — QG**, as a consequence
of Lemma 3. Clearly, rank(D(G)) = rank(G). An argument using
Lemma 3, analogous to that of the preceding paragraph, shows that if
H = D(G), then QH(a(t)) = QG[7]* foreach teT.

(a) is now clear; (c) and (e) follow from (a) and the exactness of
D; and (d) is a consequence of (b).
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As for (b), observe that QD(G/G(1)) = Hom(QGQG(t), Q) can
be identified with QG(7)* = QD(G)[a(7)]. Under this identification,
OD(G/G(1))[e(d)] = Q(G/G(1))(d)* corresponds to QG(1)*[a(d)] =
OD(G)[a(1)][a(d)] for each 6 € JI(T). Therefore, D(G/G(t)) is
quasi-isomorphic to D(G)[«a(7)], as desired. The other part of (b)
now follows from the fact that D is a contravariant exact duality.

The proof of Corollary 5 shows that if G has rank one with type
7, then D(G) is rank one with type «(7). This observation, together
with Corollary 5.c, shows that D = D(«) is the duality induced by
the duality of T-valuated vector spaces given in [RI1]. In case T is a
locally free lattice, as defined in [AV1], then 7”7 and D may be chosen
with D representable as Hom(x, X) for X a rank-1 group with
type equal to the greatest element in 7" . This special case of Corollary
5 follows from Warfield duality [WA].

As noted earlier, given a finite lattice T of types, there is a quotient
divisible 7’ anti-isomorphic to 7' [RI1]. If, for example, T is quo-
tient divisible, then 7’ and o : T — 7' may be chosen by «(7) = 7/,
where the p-component of 7' is O if and only if the p-component
of 7 is oo and the p-component of 7/ is oo if and only if the p-
component of 7 is 0. Thus, D induces a duality, independent of
T, on the quasi-homomorphism category of quotient divisible Butler
groups. This duality coincides with the duality functor 4 on quo-
tient divisible Butler groups given in [LA1] and the restriction of the
functor F given in [ARS5] to quotient divisible Butler groups.

For a T-group G and a subset M of T, define

G(M)=Z{G(1)lte M} and G[M]=[{G[t]|ze M}.

Then rg(M) = rank(G(M)) and rg[M] = rank(G[M]), as defined in
the introduction. Lemma 3 can be applied to see that the rg(M)’s or
the rg[M]’s appear as the dimensions of associated subspaces of QG
generated by {QG(7)|t € JI(T)°P} or {QG][t]|t € MI(T)°P}.

Proof of Corollary 1. Since T is a finite distributive lattice of types
there is a (quotient divisible) lattice 7" of types and an anti-isomor-
phism a: T — T'. Let D = D(a) be as defined in Corollary 5. If G
and H are T-groups both of the form G[B;, ..., B,] and rg(M) =
ry(M), then QG(M)+ and QH(M)' have the same Q-dimension.
But D(G)[a(M)]=QG(M)* and D(H)[a(M)] = QH(M)* via Corol-
lary 5 and Lemma 3. Consequently, if rg(M) = ryg(M) for each
subset M of T, then rp)[M'] = rp)[M'] for each subset M’ of
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T'. Now D(G) and D(H) are both of the form G(4,, ..., 4,), by
Corollary 5.e, so that D(G) and D(H) are quasi-isomorphic [AV2].
This implies that, by applying the duality D(a~!), G and H are
quasi-isomorphic as desired. Finally, each strongly indecomposable
group of the form G(A4y, ..., A,) has endomorphism ring isomor-
phic to Q in By [AV2], and D is a category equivalence. The last
statement of the corollary follows.

Corollary I includes a complete set of quasi-isomorphism invari-
ants for the proper-subclass, co-CT-groups, of T-groups of the form
Gl[Ay, ..., Ay] studied by W. Y. Lee in [LE].
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OBSTRUCTION TO PRESCRIBED
POSITIVE RICCI CURVATURE

PH. DELANOE

Obstruction to positive curvature is a phenomenon currently ex-
plored in global Riemannian geometry; the strongest resuits bear
of course on the scalar curvature. Hereafter we consider the Ricci
curvature and we adapt DeTurck and Koiso’s device to non-compact
manifolds. We also record a simple non-existence result on Kihler
manifolds.

1. Statement of results. Let X be a connected non-compact C3 n-
manifold, n > 2, and h be a fixed C? Riemannian metricon X . We
are interested in finding conditions on h which prevent it from being
the Ricci tensor of any Riemannian metric on X . Following [5] we
consider the largest eigenvalue A(h) of the curvature operator acting
on covariant symmetric 2-tensors (see [1]). Given any C? metric g
on X, welet e(g) denote the energy density of the identity map from
(X,g) to (X, h).

THEOREM 1. Assume A(h) < 1 —¢ on X, for some positive real ¢.
Then there is no complete C> metric g on X which admits h as Ricci
curvature.

THEOREM 2. Assume A(h) <1 on X and h complete. Then there is
no C* metric g on X, with e(g) assuming a local maximum, which
admits h as Ricci curvature.

THEOREM 3. Assume A(h) <1 on X. Then there is no C? metric
g on X, with e(g) vanishing at infinity, which admits h as Ricci
curvature.

2. Remarks and examples. Our results and methods of proof extend
[5] from compact to non-compact manifolds. Related, though weaker,
results, obtained by different techniques, are those of [0] (a reference
kindly pointed out to us by the referee).

Theorem 1 may be viewed as the “true” extension of [S, Theo-
rem 3.2-b]. Interestingly, Theorem 2 looks somewhat stronger than

11
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[S, Theorem 3.2-b] due to the non-compactness of X ; an example
here for (X, h) is the Poincaré disk, since constant curvature —1
implies at once A(h) =1 by [1, Proposition 4.3]. Theorem 3 typically
applies when (X, g) is asymptotically flat; as such, it generalizes [8].

It is not possible to drop the completeness of both metrics and
just assume A(h) < 1, as the following example shows: X is the
euclidean n-space, h the conformal metric 4(n—1)c~*E, E denoting
the standard euclidean metric and ¢ := /1 + |x|2. h satisfies A(h) =
1 and Ricci(h) = h because it is constructed in the following way:
start with the round n-sphere (S”, gg) of radius r =+/n —1 so that
Ricci(gg) = go. By [1, Proposition 4.3] we see at once that A(gy) =
1. Now h is obtained as the pull-forward of gy by a stereographic
projection composed with the dilation of ratio 1/r.

From the identity A(ch) = lA(h) valid for any positive constant
¢, one would like to infer that, given any C? metric h on X, the
preceding theorems hold with ch for suitable ¢ > 1. This is what
DeTurck and Koiso do on compact X . However, this cannot be done
on non-compact X without assuming that A(h) is uniformly bounded
from above (a mistake to be corrected in [8]). Keeping this in mind,
one can formulate in an obvious way corollaries of our three theorems
analogous to those of [5].

3. Proofs. For each theorem we argue by contradiction and assume
the existence of a metric g with the asserted properties. As observed in
[5], the Bianchi identity thus satisfied by h with respect to the metric
g means that the identity map from (X, g) to (X, h) is harmonic.
Hence the energy density e(g) satisfies on X the elliptic differential
inequality

(1) Ale(®)] < =2|IT|1* - [1 - A(h)]h?

deduced in [5] from an identity discovered by R. Hamilton [6]. Here
A stands for the Laplacian (with negative symbol) of g, T for the
(3)-tensor difference between the Christoffel symbols of g and h, ||
for the norm in the metric g, || - || for another norm (see [5]). Under
the assumption A(h) < 1, made in all three theorems, e(g) is thus C?
positive subharmonic on (X, g).

Proof of Theorem 1. By Schwarz inequality e(g) < /n|h|; so (1)
implies that e(g) solves on X the inequality

(2) Au < —f(u)
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where

f(t) := (2¢/n)¢2.
The function f is positive strictly increasing on (0, oo) and it readily
satisfies the following condition: for all a < b in (0, o0),

(3) /bw (/: 70 dt)_l/z ds < oo,

Assume provisionally that (X, g) is of class C3. Since h = Ricci(g)
is non-negative, (X, g) and f fulfill all the conditions required for the
proof of Calabi’s extension of Hopf’s maximum principle [2] (Theo-
rem 4). Fixing a € (0, miny[e(g)]) in (3) and arguing as in [2] yields
an impossibility for e(g) to satisfy (2) on X . So we get the desired
contradiction.

We are left with the C3 regularity of (X, g). It follows basically
from local elliptic regularity, as a repeated use of [4] now shows. Fix
a in (0, 1). Since g is C1>®, X admits a C%:@ atlas of coordinates
harmonic for g [4] (Lemma 1.2). Being C!-® in the original atlas, h
remains so in the harmonic atlas [4] (Corollary 1.4). Since Ricci(g) =
h, g is C3: in the harmonic atlas [4] (Theorem 4.5-b) and the atlas
itself actually is C4-* [4] (Lemma 1.2). ]

Proof of Theorem 2. By Hopf’s maximum principle [7], e(g) is
necessarily constant on X . It follows from (1) that 7 = O hence
Ricci(h) = h on X. Moreover, the regularity argument above, now
applied to h, combined with a bootstrap argument, provides a har-
monic atlas in which (X, h) is a C*° Riemannian manifold. So
Myers’ theorem [10] holds for (X, h), contradicting the noncompact-
ness of X . O

Proof of Theorem 3. Since e(g) vanishes at infinity, it assumes a
positive global maximum M. Fix u in (0, M) and let K be a
compact subdomain of X outside which e(g) < x#. Hopf’s maximum
principle [7] applied to e(g) inside K implies that either e(g) is
constant on K, or e(g) < u on K. In both cases it contradicts
u<M. o

4. A non-existence result on Kihler manifolds. Let X be a con-
nected complex manifold, of complex dimension # > 1, admitting a
C? Kihler metric h. Denote by |h| the Riemannian density of h.

THEOREM 4. Assume that the scalar curvature of h is bounded above
by n, but not identical to n. Then there exists no C* Kihler metric g
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on X, with relative density |g|/|h| assuming a local minimum, which
admits h as Ricci curvature.

Proof. Again by contradiction; let g be such a metric. Then the C?
function f := Log(|g|/|h|) satisfies on X the equation Af =n-S, §
standing for the scalar curvature of h, A for its (complex) Laplacian.
From the assumption, f is superharmonic on (X, h); moreover, it
assumes a local minimum, so it must be constant according to Hopf’s
maximum principle {7]. It implies that S = n, contradicting the
assumption. O

For non-compact X, Theorem 4 typically applies when (X, g) is
Kahler asymptotically C” [3]. For compact X, recalling that S(ch) =
S(h)/c for any positive constant ¢, we obtain a simple proof of the
following

COROLLARY. Let (X, h) bea C? compact Kihler manifold. Then
there exists a positive real c(h) such that, for any real ¢ > c(h), no
C? Kihler metric on X admits ch as Ricci curvature.

Of course, as emphasized by J.-P. Bourguignon (in a letter to us), the
classical cohomological constraint bearing on Ricci tensors of compact
Kihler manifolds makes Theorem 4 rather relevant for non-compact
simply connected X .

Acknowledgment. This work originated from a question posed to
me by Albert Jeune, about the contradiction between [3] and Jeune’s
Corollary 1 in [8]; as pointed out in §2, the latter turns out to be
incorrect without a boundedness assumption on A(h).
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NONPOSITIVELY CURVED HOMOGENEOUS SPACES
OF DIMENSION FIVE

MARIA J. DRUETTA

In this paper we classify, in terms of the rank, the simply connected
homogeneous spaces of nonpositive curvature and dimension five. In
particular, an affirmative answer is given to the conjecture “An irre-
ducible homogeneous space of nonpositive curvature and rank k£ > 2
is a symmetric space of rankk ”.

We exhibit examples in dimension five of rank one homogeneous
spaces of nonpositive curvature having totally geodesic two-flats iso-
metrically imbedded. Moreover, these examples show that the rank in
a Lie group is not invariant under the change of left invariant metrics
of nonpositive curvature

Introduction. In this paper we study, in terms of the rank, the simply
connected Lie groups G of dimension five with left invariant metrics
of nonpositive curvature (K < 0). The results obtained are then used
to get a classification of the simply connected homogeneous spaces of
nonpositive curvature of rank two and dimension five. We exhibit on
G, the Lie group of 3 x 3 upper triangular real matrices of determi-
nant one, many different left invariant metrics of X < 0 and rank
one. We remark that G also has a unique, up to a positive constant
factor, left invariant metric of K < 0 and rank two which turns it
into a symmetric space. Thus we obtain examples of rank one homo-
geneous spaces of nonpositive curvature having two-flats isometrically
embedded. Moreover, we show that a Lie group (of dimension five)
may admit different left invariant metrics of nonpositive curvature of
different ranks.

In §1 we classify the simply connected five-dimensional homoge-
neous spaces H of nonpositive curvature with no flat de Rham factor
and rank two. We show that, either H = H? x T3 where H? is a two-
dimensional space of constant negative curvature and 73 is a rank
one homogeneous space of KX <0, or H = SL(3, R)/SO(3) the irre-
ducible symmetric space of noncompact type and rank two, provided
that we multiply the metric by a suitable positive constant.

Section 2 is an auxiliary section needed to complete the classification
given in §1. Here, we study a particular example in dimension five that

17
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corresponds to studying all the left invariant metrics of K < 0 on the
group G of 3 x 3-upper triangular real matrices of determinant one.

In §3 we exhibit many different metrics turning G into rank one
homogeneous spaces having 2-flats isometrically imbedded. Further-
more, a comparison result between the symmetric metric on G and
non-symmetric ones is obtained.

Preliminaries. Let H be a complete simply connected Riemannian
manifold of nonpositive curvature (K < 0). If y is a unit speed
geodesic in H, rank(y) is defined to be the dimension of the vec-
tor space of all parallel Jacobi fields along y. The minimum of
rank(y) over all geodesics y of H is called rank of H and denoted
by rank(H). This definition was introduced in [3] and coincides with
the usual one if H is a symmetric space.

Assume that H is a homogeneous space. Then rank(H) is the
minimum of rank(y) over all geodesics y of H such that y(0) = p
for some p in H. In this case, H admits a simply transitive and
solvable group of isometries (see [1]) and hence, H can be represented
as a solvable Lie group G with a left invariant metric of nonpositive
curvature.

Given a Lie group G with Lie algebra g and left invariant metric
(, ), werecall thatif X, Y, Z € g then the Riemannian connection
V is given by

2VxY, Z)=(X, Y], Z) - (Y, Z]) +([Z, X], Y).

If R(X,Y)=[Vx, Vy]—=V|x,y) is the curvature tensor associated
to V, the sectional curvature K is given by

X AYPK(X,Y)=(R(X,Y)Y, X)
= %IU(X’ Y),2 - %(U(X, X)s U(Y’ Y)) - % [Xs Y:”2
- %([[Xa Y]’ Y]: X> - %([[Ya X]a X]’ Y)

where U(X, Y) = (adyx)*Y + (ady)*X, and (ady)* denotes the ad-
joint of ady.

Let G be a solvable simply connected Lie group with a left invariant
metric of nonpositive curvature. If a is the orthogonal complement
of [g, g] in g with respect to the metric, it follows from [1, Theorem
5.2] that it is an abelian subalgebra of g which is also totally geodesic
(VxY € a forall X,Y € a). Moreover, A = expa, the connected
Lie subgroup of G with Lie algebra a, is a dima-flat in G.

In general, a k-flat in H is defined to be the image of a totally
geodesic isometric imbedding of R into H.
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1. Homogeneous spaces of K < 0 and dimension five. In this section
we characterize, in terms of rank, the simply connected homogeneous
spaces of nonpositive curvature (K < 0) and dimension five.

Let G be a solvable and simply connected Lie group with a left
invariant metric of nonpositive curvature. If g is the Lie algebra of
G, then g = [g, g]®a where a, the orthogonal complement of [g, g]
with respect to the metric, is an abelian subalgebra of g.

If g’® is the complexification of g’ = [g, g] then we have a direct
sum decomposition g =}, g%, where

gt = {U e g (ady —A(H))kU = 0
for some k > 1 and for all H € a}

is the associated root space for the root A € (a*)¢ under the abelian
actionof a on g'. If A=a+if isarootof a in g (thatls gy #0),
the generalized root space is defined by g/, 8= g, p= gn (g,1 @ g;c)
and ¢ is the direct sum of the ada-mvarlant subspaces g,

We assume that G has no de Rham flat factor. Then, it follows from
[2, Theorem 4.6] that the above condition is equivalent to gy = 3
and ap = {H € a:a(H) = 0 for all roots o+ if} are zero.

The following formulas about sectional curvatures will be used fre-
quently; we include the proofs for the sake of completeness. In the
sequel, if H € a we will denote by Dy and Sy the symmetric and
skew-symmetric part of ady respectively with respect to the metric

(s

LEMMA 1.1. Assume g abelian.

(i) Let {H;}*_, be an orthonormal basis for a and set D; = Dy,
i=1,...,k. Then,

LU

k
(R(X, Y)Y, X)=> ({DiX,Y)> = (DX, X)(D;Y, Y))
i=1
forall X,Y eg.

(i) (R(X, Y+H)Y+H), X)=(R(X, Y)Y, X)+(R(X, H)H, X)
forall X,Y e€g and H € a.

In general, we have (R(X, H)H, X) = |SgX|* - |[H, X]* ([1,
Lemma 3.4)).

Proof.Let X,Y €g and He€a.
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(i) We note that since g’ is abelian, U(X, Y) €a and (U(X, Y),
H) = =2(DyX,Y). Hence, U(X,Y) = 25X (D;X, Y)H;; the
assertion follows from the curvature formula.

(ii) Since VyX € ¢’ and VxY € a we have R(X, Y)H € a; from
this (ii) follows easily.

REMARK 1.2. If there exists an orthonormal basis {H;}%, of
such that D; (i = 1,..., k) are all positive semidefinite, we have
K(X,Y) <0 for all X,Y independent in g'. Moreover, we get
K(X,Y)<0 if forsome j=1,..., k, D; is positive definite.

THEOREM 1.3. Let H be a simply connected homogeneous space of
nonpositive curvature and dimH = 5. If H has no de Rham flat
factor then, either rank(H) = 1 or rank(H) = 2 and it is one of the
following spaces

(i) H = H* x T3, where H? is a two-dimensional space of con-
stant negative curvature and T is a rank one homogeneous space of
nonpositive curvature.

(ii) H =SL(3, R)/SO(3), the irreducible symmetric space of non-
compact type and rank two, up to multiplying the metric by a positive
constant.

We recall that in a three dimensional homogeneous space of non-
positive curvature, rank one and the visibility axiom are equivalent.
These spaces were completely characterized in [6] (see Corollary 2.5
and Remark 4.3).

Proof. Let G be a solvable Lie group that acts simply and transi-
tively on H. Then, we may assume that H = G is a solvable and
simply connected Lie group of dimension five with a left invariant
metric of K <0 with no flat de Rham factor.

Let g = g’ ® a, a the orthogonal complement of g’ with respect
to the metric ( , ). We only need to consider the case dima =
2. In fact, in the case dima = 1 it follows from [7, Theorem 1.5]
that G has rank one. If dima = 3, there exist at most two roots
of a in ¢’ (dimg’ = 2) and consequently we may choose H € a
satisfying a(H) = 0 forall o with a+if root; this implies that G has
de Rham flat factor (see the remark at the beginning of this section).
If dima = 4, g is the example given in [6, Example 3.4] and G is
isometric to R3 x HZ.
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Henceforth we assume that dima = 2. Note that counting accord-
ing to multiplicities, there are three roots of a on g'. Their real parts
span the dual space a* (otherwise ag would be nonzero). Thus there
are two cases: either

(1) two real parts are proportional and the third is independent of
them, or

(2) the three real parts (necessarily roots) are pairwise independent.

We first show the following lemma.

LeMMA. If ¢’ is not abelian, then o has three real roots A, A, and
Az on g such that A, and A, are independent and A3 = Ay + Ay.
Moreover the center 3 of g is the root space of 3.

Proof. Note that 3 # 0 because g is solvable and hence g’ is nilpo-
tent. Since 3 is one-dimensional and ad,-invariant we have 3 = g},
the root space associated to a nonzero real root A (g = 0). We ob-
serve that there is no complex root y = a+ iff, a # 0; if this is the
case, g° = gf ©gy gy with 0 # [gy, g7] C g;f+7 = g5, . Thus A = 20,
implying that G has de Rham flat factor. Hence, since g’ is not
abelian we have real roots 4;, 4 and 4; +4; (0 # [gfll , 9;12] C gﬁ, +,12)

where A; and A, are independent.

Case 1. The lemma shows that ¢’ is abelian. It follows from the
direct sum decomposition of g’ in generalized root spaces that there
is an ad, invariant orthogonal direct sum decomposition g’ = g} @ g}
(see [1, §5.3]) in which

(i) g} has dimension i (i=1, 2).

(ii) There is a basis {y, a} of a* such that y is the (necessarily
real) root of a on g| and the real part of every root of a on g) is
proportional to a.

We define H,, H, € a by y(H) = (H, Hy) and o(H) = (H, H,)
for all H € a. It follows from Lemma 5.4 (iv) of [1] that (H;, Hy) >
0. Thus, there are two cases to consider: either

(ll) <Hl’H2>=0
or
(12) <H1 s Hz) > 0.

Case 1.1. In this case it turns out that G is isometric to a Riemann-
ian product. Let t = g) @ RH, and h = g| ® RH;. Then t is an
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ideal of g, b is a subalgebra, and g is the orthogonal direct sum of
t and g. Note that adHl , 1is almost normal and has purely imag-
inary eigenvalues because a(HI) = (Hy, Hy) = 0. It follows from
Lemma 4.4 of [1] that adHI|g; is skew symmetric. Since g’ and a are
abelian, it now follows that ady); is skew symmetric for every X € .
Hence, G is isometric to the Riemannian product 73 x H? where
T3 and H? are the connected Lie subgroups of G with Lie algebras
t and b respectively, and left invariant metric induced by the one
of g (see [6, Lemma 4.1]). Moreover, H? has sectional curvature
K =K(ey, Hy) = —|H;|? (e; is a unit vector in g|) and 7 is a rank
one homogeneous space of K < 0 since it has no flat de Rham factor
(see [7, Theorem 1.5]).

Case 1.2. In this case it turns out that G has rank one. We will
prove this in the two following steps:

(1) (R(X, Y)Y, X) <0 whenever X, Y € ¢ are independent.

(2) There is X € g’ with (R(X, H)H, X) < 0 for all nonzero
Hea.

Hence, applying Lemma 1.1-(ii) we get K(X,Y + H) < 0 for all
Y independent of X in g’ and all H € a; consequently the geodesic
y in G satisfying y(0) = e, »'(0) = X has rank one and therefore
rank(G) = 1.

Step 1. This will be done by showing that Dp, is positive definite
and the unit vector Hy € a with (Hy, H,) = 0 and (Hp, H;) >
0 gives Dy positive semidefinite. Then by applying Remark 1.2,
assertion (1) follows.

Note that the choice of Hy means that ady has a positive eigen-
value on the one-dimensional space g) and has purely imaginary
eigenvalues on g, (y(Hy) = (Hp, H;) > 0 and o(Hy) = (Hy, H,) =
0). By the argument explained above in Case 1.1, one sees that ady,
is skew symmetric on g. Thus, Dy vanishes on g, and hence it is
positive semidefinite on g’.

Since (H,, H,) > 0, it follows that Dy, is positive definite on gf .
It remains to show that Dy _is positive definite on g5 . We observe first
that if ca is the real part of a root of a on g’ it follows from Lemma
5.4 (iv) of [1] that ¢ > O (¢’ is abelian). Hence, both eigenvalues of
ady AT have positive real part and since Tr(Dy 16, ) =Tr(ady g, ) >0,
we have that Dy |y, cannot be negative definite. Thus, it suffices to
prove that Dy .- is definite. If this is not the case, then there is
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X e g, with Dy X = 0. Since Dpg, vanishes on g}, it follows that
Dy X =0 for all H € a, which is impossible because the only one-
parameter subgroups which are geodesics are exptH, H € a (see [8,
Theorem 3.6]).

Step 2. Since Dy, is positive definite, we can choose a nonzero
vector e; € g, such that Dy e; is a nonzero multiple of e, (DHZIg; is
symmetric). Let e; be a nonzero vector in g} and let X =¢; +e;.
For any H € a, Dye; and Dye, are orthogonal, and Dye; = 0,
Dye, =0 if and only if H is orthogonal to H;, and H is a multiple
of Hj respectively (Hj is the same as in Step 1). Since (Hy, H;) =0
and H;, H, are independent, it follows that Dy X # 0 for all nonzero
Hea.

Now, we observe that (DyX, SyX) = 0 for all H € a (Sye; =
0, DHQIQ; =0, Dpe; isa multiple of e;).

Hence K(X, H) = |SygX|? - |[H, X1 = —|DyX|? < 0 for all
nonzero H € a.

Case 2. We will show that either G has rank one or G is an irre-
ducible symmetric space of rank two.

Case 2.1. g abelian with three pairwise independent real roots
/11 N 12 and ).3 .

We prove next that G has rank one. By permuting 4;, 4, and A3,
one can assume that A; = ad; + bAd, with both a and b positive.
In fact, we define H; € a by A4;(H) = (H, H;)) (i = 1,2,3) for
all H € a. Then the H;’s are three nonzero vectors in the two-
dimensional space a and since (H;, H;) > 0 (see [1, Lemma 5.4(iv)])
the angle between any two of them is at most #/2. We assign the
indices so that H; and H, are the two outer vectors and H; lies in
between.

Since g, (i = 1,2, 3), the root space associated to A;, is one-
dimensional and the roots A; are pairwise independent, we have an
orthonormal basis {e;, e;, e3} of g’ (see [1, §5.3 (iii)]) such that:

[H,ell=A(H)ey, [H,el=Ah(H)e, [H,e]=A3(H)es
for all H € a. Hence ady is symmetric for all H € a and its matrix
with respect to the basis {e;, e;, e3} is given by

(Ha Hl) 0 0
ady = 0 (H, Hy) 0
0 0 (H, aH; + bH>)
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Let Hy be a unit vector in a such that (Hy, H;) =0 and (Hy, H;)
> 0. Observe that Dy = ady is positive semidefinite and restricted
to g 3 = gﬁz @ 9:13 is positive definite. Also, D; = adg is posi-
tive semidefinite and restricted to g} ; = gﬁl @ g’13 is positive defi-
nite. Hence, if X = ce; + de; + ee; is a unit vector and Y € ¢,
it follows from the curvature formula given in Lemma 1.1-(i) that,
(R(X, Y)Y, X) =0 ifand only if P|; Y isproportional to de;+ees
and p|g/1 3Y is proportional to ce; + ee; , where p denotes the orthog-
onal projection onto the indicated subspaces.

By a simple computation we deduce that if e # 0, (R(X, Y)Y, X)
= 0 if and only if Y is proportional to X. Hence, choosing d #
0, e #0 (or ¢ # 0) for any Y independent of X in g’ we get
(R(X, Y)Y, X) <0. Moreover, for any nonzero vector H € a,

(R(X, H)H, X) = -|[H, X]|?
= —C?A(H)? —d?*Ay(H)? — e?A3(H)? < 0

since A,(H) and A3(H) (or A4,(H)) cannot be simultaneously zero.
Therefore, if y is the geodesic in G with y(0) =e, y'(0) = X, y has
rank one and hence rank(G) =1.

Case 2.2. Assume g’ nonabelian. It turns out that either G has
rank one or G 1is an irreducible symmetric space of rank two.

It follows from the lemma that there are three real roots 4;, A,
and A3 = A; + 4, with 4; and A, independent. Moreover, 3 is the
eigenspace associated to A;. By the same argument as in Case 2.1
we get an orthonormal basis {e;, e;, e3} of g such that [H, ¢;] =
Ai(H)e; (i=1,2,3) forall He€a.

Let H; be defined by A;(H) = (H,H;) (i =1,2), He€ a. We
consider a unit vector Hy in a such that (Hy, H; + H) = 0 and
(Hy, H)) > 0. If H=(H;+H,)/|H, + H,|, the matrices of adg and
ady with respect to the orthonormal basis {e;, e;, e3} are given by

P(HOa H1> 0
adHo = 0 (HO, H2) 0 s
i 0 0 0
[(H,H) 0 0
adﬁ = 0 (H, Hp) 0
L 0 0 (Ha Hl +H2>

Since g’ is nonabelian, [e;, e;] = ee. ([gj11 , gjlz] - gjll i, = 3) and we
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may assume that ¢ >~0 (otherwise we change e; to —e;). Set e4 =
Ho, es =H, a= (H,H]), ﬂ = (H,Hz) and Y = <H0,H1> > 0.
Then, {e;, e,, €3, €4, €5} is an orthonormal basis of g satisfying:

[e1, 2] =¢e3, [er, e3] =0=]ez, e3],
[643 el] =vyeé, [84, e2] = —Yey, [94, €3] =0= [e4, 35],
[es, ei] = e, [es, e2] = Pey, [es, e3] = (a + B)e;

with ¢ >0, >0 and a+ 8 > 0. Moreover, > 0 and S > 0 since
K(ey, e3) = &2 —ala+ B), K(ey, e3) = 362 — B(a + B) (see §2, (3))
and the sectional curvature K < 0. This special case will be studied in
detail in §2. As we will see, G is isomorphic to the Lie group of 3x 3
upper triangular real matrices of determinant one, and it follows from
Corollary 2.8 that G has rank one or two. In the latter case, provided
that one multiplies the metric by a suitable positive constant, G is
isometric to the irreducible symmetric space of noncompact type and
rank two SL(3, R)/SO(3) (see Remark 2.8).

By examining all the cases, Theorem 1.3 follows. Note that G sat-
isfies visibility or not depending on whether dima =1 or 2.

COROLLARY 1.4. The simply connected homogeneous spaces H of
nonpositive curvature, with no flat de Rham factor, with dim(H) <
5 and rank(H) = 2 are H* x T?, H?> x T3 or H an irreducible
symmetric space of noncompact type.

Proof. It is immediate by Theorem 1.3 and Corollary 4.4 of [6].
H?, T? and T? are as in the statement of Theorem 1.3.

2. Example. Let g be the Lie algebra of dimension five generated
by {e;};_, and Lie bracket given by

[e1, el =¢ce3, [e1,e3]=0=][er, €3],
[e4 ’ el] =7é, [e4 ’ e2] =—=7Yé, [e4 s e3] =0= [e4a e5] ’
les,ei]l=cae;, [es, e] = pey, [es, e3] = (a+ B)e;

where a, B, y, € are positive real numbers. (Note that g’ is spanned
by {ei, e, e3}.) We will say that such a g is associated to (a, S,
Y, €).

Let (, ) be the inner product in g with respect to which {e;};_,
is an orthonormal basis of g, and let G be the simply connected Lie
group with Lie algebra g and left invariant metric associated to ( , ).
By a straightforward computation, using the connection formula and
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the definitions of R, K we get:

(1) V, e = e, +aes, Velezz%seg, Ve =—3te,
Vezez = —ye, + fes, Ve2e3 = %gel , V83e3 =(a+ Bes,
Vele4 = —vye,, Ve1 es = —ae,, VE,2€4 =7e;,
Ve85 = —Be,, Ve3e4 =0, Ve, = —(a+ Bes.
(2) Riey, e))e, = (%32 +af - y2> e, R(e,, e,)e, = (y2 -af - %82) e,
R(e,, e))ey = —Le(a+ e, R(ey, ey)e, = 2e(ye, + aey),
R(e,, e)e, = (—4e* + Bla+§)) e, Rle, ey)es = (3e* = Bla+ ) ey,
R(e, , ey)e, = (—-%ez + oo+ B)) ey, Rley, ey)e, = Ye(ve, — Bes),
R(e,ey)e, = (%82 —ala+ ﬁ)) e
(3) K(e,,e,)=—36"+7" —aB, Kle,e;) =1 —ala+p),
K(ey, )= 16" = Bla+8), Kle,,e,) =Kle,, e) =7,
K(e,, e5) =0, K(eg, e) = —a’,
K(eg, e,) = -5, K(es, e5) = —(a+ B)%.

We note that in all computations above, «, f, y and ¢ may be arbi-
trary.

(4) We remark that it will be shown in §3.1 thatif a = f =¢/2 =
v/y/3 then G is a symmetric space.

Conversely, assuming G symmetric (i.e., VR = 0) we get a =
B =¢/2 =7y//3. This follows by a straightforward computation of
Ve (R(ey, e2)er), Ve, (R(er, ex)e3) and Ve (R(ey, e2)es) using VR =
0 and (1) and (2) above.

The following lemma is proved in [7]. We state it here since it
is applied in Lemma 2.2 to obtain an expression for the sectional
curvature that will be used repeatedly.

LEMMA 2.1. Let g be a solvable Lie algebra with an inner product
(, ) such that a, the orthogonal complement of ¢ is abelian. If
ady |, is symmetric with respect to ( , ) for all H € a, then

(RX+H,Y+T)YY+T),X+H)
=(R(X, Y)Y, X)-|[H, Y]-[T, X]]?
—(H, Y]-[T, X],[X, Y))+(l[H, Y] - [T, X], X], Y)
—(llH, Y]-[T, X], Y], X)
forall X,Yeg and H,T € a.
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LEMMA 2.2. Let a,b,c,r,s,t be real numbers and H, T ele-
ments in a; then

(R(aey + be, +ce; + H, re; + sey + tes+ T)(re; +sey +tes+ T),
ae, + bey + ces + H)
= [(cs — bt)*K (e, e3) + &(cs — bt)(ai(T) — ri(H))

— (aA(T) = ra (H))?]

+ [(at — cr)?K(ey , e3) + e(at — cr)(bAy(T) — siy(H))
— (bAy(T) - s22(H))*]

+[(as — br)®K (e , e3) + e(as — br)(cA3(T) — tAs(H))
— (cA3(T) - tA3(H))]

where A; (i =1, 2, 3) are defined by

M(U)=(U, yes +aes), A(U)=(U, —yes+ Pes) and
A3(U) = (A + 2)(U) = (a + B)U , es) forall U € a.

Proof. First of all we show that,
(R(aey + bey + ces, rey + sey + te3)(re; + sey + te3), ae; + bey + ce3)
= (as — br)* K (e}, e;) + t*(a’K (e , e3) + b*K (e, , €3))
+ cz(rzK(el s e3) + S2K(€2 s €3))
—2ct(arK(e;, e3) + bsK(e,, e3)).
Let X =ae; + be, and Y = re; + se, . Applying the linearity of R
and using that R(X, Y)e; is an element in a (see (2)) we have,
(R(X +ce3, Y +te3)(Y + tes), X + ces)
= (R(X, Y)Y, X) +2ct{R(X, &3)Y , e3) + t*(R(X , e3)es, X)
+ CZ(R(e3 s Y)Y: €3>-
Now, since R(e;, e3)e; is a multiple of e; (see (2)), an easy calcu-
lation shows that
(i) (R(X, e3)e3, Y) =arK(e;, e3) + bsK(ez, e3).
Hence, (i) is deduced from (ii) and the equality
(‘R(X’ Y)Y’ X) = |X A YIZK(el ’ e2) = (aS - br)zK(el » eZ)'
Now, the formula stated in the lemma follows by a straightforward
computation using Lemma 2.1.

Next, in the two propositions below we find necessary and suf-
ficient conditions for G to have nonpositive curvature in terms of

a, B,7,¢.
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ProPOSITION 2.3. If G has sectional curvature K < Q then the
following relations among o, B,7,¢& hold: & < 2B(a+ B), & <
2a(a+ B), y* < €2 +aB. In particular, K(e,, e3), K(ey, e3) and
K(ey, ey) are all strictly negative.

Proof. We first show that if e2—28(a+8) > 0 (or e2—2a(a+8) > 0)
then there exists a plane 7 in g with sectional curvature K(z) > 0.
In fact, if we take H = 0, T = Aeq4 we have A3 = A3(T) = 0 and
Ay = A(T) = —yA with A; # 0 for any nonzero real A. Hence, by
applying the curvature formula given by Lemma 2.2, we get

(R(aey + ces , e; + Aeg)(ey + Aes) , aey + ce3)
= c?K(ey, e3) + a*(K (e, €) — A}) — eAyac,

for any real numbers a, ¢. If we consider this expression as a poly-
nomial of second degree in a (K <0, A; # 0) its discriminant A is
given by

A= c*(A}(e? + 4K (e, €3)) — 4K (e1, €2)K (€2, €3)).

Note that &2 + 4K (e;, e3) = 2(¢2 — 28(a + B)). Thus, by choosing
A so that
4K (e, e3)K(er, e2)
2(e2 = 2B(a+ B))
we get A strictly positive for any nonzero real ¢. For this A and
nonzero ¢, a real number a can be chosen satisfying

APyr=A7>

K(ae, + ce;, e, + Adeg) > 0.

The other statement follows in the same way by interchanging the roles
of e; and e,. Hence, the first two inequalities follow.

Now we prove the last one. In the same way as above, if we take
T = A(—Pes + yes) with 4 # 0 (hence, 4, = 45(7T) = 0 and A3 =
A3(T) = Ay(a+ B) # 0) and applying the curvature formula again, we
have

(R(bey +ces,er+T)(eg+T), be; + ces)
=b’K(ey, e2) + c*(K(ey, e3) — 43) — eAsbc,

which considered as a polynomial (of second degree) in ¢ has dis-
criminant

A= (25" + 4K (e, €2)) — 4K (e1, e2)K(er, €3)).
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Note firstly that &2 + 4K (e;, ;) = 2(—&2 + 2(y2 — af)). Thus, if we
assume 2(y2 —af) —&2 >0 (or 2 >¢&?/2+ap), taking A in such a
way that
4K (e, e2)K (ey, €3)

g2+ 4K (e, e)

Ay o+ B2 =13 >

for any nonzero real b we get A > 0. Hence, a real ¢ can be chosen
such that K(bey+ces, e;+T) > 0. The assertion follows since K < 0.

PROPOSITION 2.4. The conditions €2 < 2f(a+ f), &% < 2a(a+ fB),
y2 < %82 + af are sufficient for G to have sectional curvature K < 0.

Proof. We note from the curvature formula given in Lemma 2.2
that each term in between brackets is a polynomial of second de-
gree (K(e;, e3), K(ey, e3) and K(e,, e,) are negative) in (cs — bt),
(at —cr) and (as — br) respectively, with discriminant

(@Ay(T) - rA1(H))* (2 +4K(es, €3)),
(bAy(T) — sA2(H))? (e +4K(e;, e3)), and
(cA3(T) — ths(H))® (&% + 4K(ey, e2)).

Under our assumption, &2 < 2f8(a + B), & < 2a(a + B) and
y?2 < %sz + aff, these discriminants are nonpositive and therefore
each polynomial is also nonpositive. Thus,

K(aey +bey +ces+ H,re;+se;+tes+T)<0

for any real a, b,c,r,s,t and H, T €a. Hence, K <0.

Next, under the assumption K < 0, we will get some conditions
for G to have rank one.

PROPOSITION 2.5. The real number ¢ must satisfy ¢ < a+f. More-
over, G has rankoneif e<a+ f.

Proof. The condition ¢ < o+ f follows immediately from the first
two inequalities of Proposition 2.3. We note that (a+ f)? < 2a(a+8)
or (a+ B)?* < 2B8(a + B) depending on whether 8 < a or o < 8
respectively. Consequently, &€ < o+ f if and only if &2 < 2a(a+ )
or e2<2B(a+f).
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Next we check the last statement. Using Lemma 2.2, foreach Y € ¢’
orthogonal to e3 and T € a, we have
(Rley+ey, Y +tes+T)Y +tes+T), e +e)
= *(K(er, e3) + K(e2, €3)) — te(Ay — A2)
—Af -+l +e) AYPK(er, &).
This expression is a polynomial p(t¢) of degree two in ¢ whose dis-
criminant A is given by
A=A — )’
+4(K(er, e3) + K(ez, €3)(A1 + 13 ~ |(e1 + €2) AYPK ey, €2)).
Now, we assume &€ < o+ f. Since K <0 we have
A< e (A —A2)* +4(K(er, e3) + K(e2, €3)) (A7 + 43).
If we substitute the expressions for K(e;, e3) and K(e,, e3) into the
expression above, we get
A<ed(hy—2p)%+4 (%82 —(a+B8)?) (3 +4})
= e2(A1 ~ 2)* +26°(A1 + 23) ~ d(a + )’ (41 + 4)
= e2(3A2 + 343 — 24142) — 4(a + B)2(A3 + A3).

Now, we consider the two cases, 7 #0 and 7 =0. If T # 0, since
A1(T) and Ay(T) are not simultaneously zero, 34% + 342 — 24,4, >
(A1 —42)? > 0. Hence, if ¢ <a+ B, we get

A< (a+ B)2(323 + 343 = 2A12) — d(a+ B)2 (A3 + A3)
= —~(a+ B)* (A1 +42)* <0,
and then p(¢) <0 forallreal 1, T #0 in a and Y in ¢ orthogonal
to e3.

If T=0,p(t)=12(K(er, e3)+K(ez, e3))+|(e;+e2) AY [’ K (e, €3) <
0 whenever ¢ # 0 or Y, orthogonal to e3, is independent of e; +e¢;.
(Note that K(e; +e,, Y)=K(e;, e;) <0.)

Therefore, K(e;+e,, Y+te3+7T) < O for all real number ¢, T € a,
Y € ¢ orthogonal to e; and independent of e; + e;. Thus, the
geodesic y in G satisfying y(0) = e and y'(0) = e; + e, has rank
one.

PROPOSITION 2.6. The numbers o, B,y satisfy the inequalities y*—
20~ B2 <0 and y?-2af —a? < 0. Moreover, if y2—2af -2 <0
or y*2 —2af —a? <0, G has rank one.

Proof. The first two inequalities follow immediately from Proposi-
tion 2.3 (y2 —af < &2/2).
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Now, we will show the last assertion. Applying Lemma 2.2, for each
T €a and Y in g orthogonal to e,, we have

(R(ey+e3, Y +se,+T)Y +sex+T), e; +e3)
= s*(K(ey, ) + K(ey, €3)) + s€(A; + A3) — 43 — A}
+|(e1 + e3) AY|*K (e, e3) = p(s),
where A; = 4;(T) (i =1, 3) are defined as in Lemma 2.2.

Note that p(s) is a polynomial of degree two in s whose discrimi-
nant A is given by

A=A +43)* +4(K(er, €2) + K (e, e3))
x (A2 + 23— |(e1 + e3) AY|?K ey, €3)).

Substituting K(e;, e;) and K(e,, e3) for its expressions, and since
K <0 we get,

A<eX(dy+A3)2 +4 (—%82 +92 = 2af - ﬂZ) (A2 +12)
= &2(Ar + A3)? = 262(A + A3) + 4(»* — 208 — B2 (A + A)
= —g2(A) — A3)2 + 4(y% — 208 — BA)(3 + 13).

To prove that G has rank one we will see that if y2—2af - 2<0
then K(e;+e3, Y+se;+7T) <0 forall s, T in a, Y € ¢’ orthogonal
to e, and independent of e; + e3. We first consider the case T # 0;
since A1(T) # 0 we have A < —&2(A; — 42)> < 0 and hence, the
polynomial p satisfies p(s) < O forall s, 7 #0 in a and Y € ¢
orthogonal to e;. If T =0,

p(s) = s*(K(ey, &) + K(ez, €3)) + |(e1 + €3) AY[?K(ey, e3) < O

whenever s # 0 or Y € ¢, orthogonal to e3, is independent of
e1 +e3 (K(ey, e3) <0 and K(ey, e3) < 0). Therefore, the assertion
is proved and consequently, the geodesic y in G such that y(0) =e
and y'(0) = e; + e3 has rank one.

If y2—2apB —a? < 0, interchanging the roles of e; and e, , we also
obtain that G has rank one.

We summarize the preceding results in the following:

THEOREM 2.7. Let G be the simply connected Lie group with Lie
algebra associated to (a, B, v, €) and left invariant metric as defined
above. Then G has sectional curvature K < 0 if and only if

2
€

e <2a(a+B), &<2B(a+p) and Y <5

+af.



32 MARIA J. DRUETTA

Moreover, G has rank one if any of the following conditions hold.
e<a+f, 7-208-0’°<0, yp*-2af-p><0.

CoROLLARY 2.8. If G has nonpositive curvature, then G has rank
one or two and in the latter case, a = f =¢/2=1y/./3.

Proof. We note first that the roots of a in g’ are given by A;(H) =
(H, ye4+ae5) , A(H) = (H, —ye4+ﬁe5) , A3=A1+4, forall He€a,
where A; and A, are independent with associated root spaces g} =
Re; (i=1,2,3). Thus, gy =0 =ap and hence G has no de Rham
flat factor. Then, it follows from Theorem 1.3 of [7] that G has rank
one or two. If rank(G) = 2, Theorem 2.7 implies that ¢ = o+ f and
2 —2af — B*=0=92-2af —a®. Hence, a =B =¢/2=7//3.

REMARK 2.8. It will be shown in §3 (3.1) that when a = f =¢/2 =
v/V/3, G coincides with the symmetric space SL(3, R)/SO(3), pro-
vided we multiply the metric by a suitable positive constant.

3. The group of 3 x 3 upper triangular real matrices of determinant
one.

3.1. Let G be the solvable simply connected Lie group of 3 x 3-
upper triangular real matrices of determinant one. Its Lie algebra g
consists of the 3 x 3-upper triangular real matrices having trace zero
and has a basis {E;};_; given by

010 000 00 1
E;=[{000 E2=001,E3=000J,

000 000 000

1 0 0]
E4s=|0 -2 0| and Es=}(E!+E?), where

0 0 1

1 0 0] 2 0 0
E}=|0 1 0| and EZ2={0 -1 o].

00 -2 0 0 -1

Let a, £, 7, ¢ be any positive real numbers. Setting e; = 2aFE;,
ey = 2BE,, e3 = (4aP/e)E;3, es = y/3E4 and es = }(BEL + aE?),
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we obtain a basis {e;};_, of g satisfying:

[e1, el =¢ee3, [er, e3]1=0=][ey, es3],
[es, e1] =yer, [es, ] = —ver, [es, e3] = 0 = [e4, e5],
[es, e1]l =ae;, [es, e] = Bes, [es, e3] = (a + B)es.

That is, g is isomorphic, as a Lie algebra of matrices, to the Lie
algebra associated to (a, £, 7, €) which was studied in §2. I learned
of this realization from [9]. Thus, considering on g the inner product
( , ) such that {ei}f=1 is an orthonormal basis of g, we see that
any choice of (a, 8, y,¢) gives us a left invariant metric on G.
Moreover, almost all these metrics are not isometric. Note, since g’
is nonabelian, it is deduced from the proof of Theorem 1.3 that any
left invariant metric on G of K < 0 is, up to an isometry, the metric
associated to some (a, f, 7, ¢€).

In the case @ = f = ¢/2 and y = (y/3/2)e, provided that we
multiply the metric by a suitable positive constant, G is isometric
to the irreducible symmetric space of noncompact type and rank two
H = SL(3,R)/SO(3). In fact, G = NA where N =expn, n is the
Lie algebra of 3 x 3-strictly upper triangular real matrices and A is the
group of diagonal real matrices of determinant one. Since SL(3, R) =
SO(3)N A is an Iwasawa decomposition for SL(3, R), it is well known
(see [1, Lemma 2.4] and [10]) that G acts simply transitively on H .
Now, if p is the orthogonal complement of so(3) in si(3, R) with
respect to the Killing form B on sl(3,R) (B(X,Y)=6tr(X,Y)),p
may be identified with the tangent space to H at o = ISO(3), and the
metric on ToH corresponds to the restriction of the Killing form to
p. If 0 is the Cartan involution in sl(3, R) relative to so(3) (8(X) =
—X") then the inner product in g = n&®a, where a is the Lie algebra
of A, obtained from the metric on p is given by

(X+H,Y+T)=—-1B(X,0Y)+B(H,T) forX,Yen, H,T€u.

It is a straightforward computation to see that the metric given
by a = f, & =2a and y? = 3a? (thatis, (E;,E;) =0,i # j,
|E1|? = |E2f* = |E3|* = 1/4a?, |E4|® = 3/a?, |Es|* = 1/a?) is a
multiple of the metric ( , ). Moreover, ( , )= 12a2(, ).

3.2. Next we will obtain a comparison result between the symmetric
metric on G and nonsymmetric metrics. The idea is to compare the
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curvature associated to the 4-tuples (a, B, 7, €) and (ag, ag, /39,
2a) where the last one corresponds to the symmetric case.

Let o, B8, 7, € be positive real numbers and let {E;}>_; and {e;}7_,
be as in (3.1). We consider the inner product ( , ) on g such that
{e;}>_, is an orthonormal basis of g. Then we have:

(Ei, E;) =0, i#7,

1 1 g2
IEIIZZW’ | 2l2=4—ﬂ2’ I 3'2 16 2B2,
9
Ef =25, BE}+aE} =

In order to compare the metrics associated to different (o, 8, 7, €)
it is convenient to multiply the metric { ) by the factor 4a?f82%/e?.
Then the orthonormal basis with respect to the new metric, that we
also denote by {e;} and ( , ) is given by

el—%Eu €2=£Ez, ey = 2FE3,
&y
84=WE4’ es = ¢ ﬂ( E: + BEJ).

Now, observe that the metric on 3 = REj3, the center of g', does
not depend on («a, B, 7, ¢); that is, if Z,, Z, € 3 then (Z,, Z,) =
(Z1, Zy)o where ( , )o is the metric associated to (ag, fo, Yo, €0) -
Therefore, since [g’, g'] = [3+, 371 C 3 (31 is the orthogonal comple-
mentof 3 in ¢'), for X, Y €¢g and H, T € a, the curvature formula
given in Lemma 2.1 tells us that the last three terms of its expression
do not depend on (a, £, 7, ¢€).

Let X =aE, +bE, and Y = Y' + dE; with Y’ €31 . Then, from
(1) in the proof of Lemma 2.2, we get

<R(X, Y)Y, X> = IX/\ Y,l K(€1 5 e;z)
< (e e +b -5 @, e
1 1> 3) ( 2> 3) .

Substituting for K(e,, e;), K(e;, e3) and K(e,, e3) and taking into
account that the metric was multiplied by 4a?$2/¢?, we get

2
(RX, Y)Y, X) = fz(—%az+y2~aﬁ>

+ %Zé [g—; (%82 —a(a+ ,8))
2

+Zz (;az—ﬁ(a+ﬂ))]
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where A?, defined by the expression |X A Y'|> = (a?f?/e*)A? does
not depend on («, B, 7, ¢€).
If we write [H, Y] - [T, X]=rE, +sE, + tE3, we have

12
Z.
Therefore, if R, denotes the curvature tensor associated to the metric
(, )o,we get
(%) (RX+H,Y+T)Y+T),X+H)

— (R X+H,Y+T)Y+T), X+ H)g

= (R(X: Y)Ya X) - <R0(Xs Y)Y) X)O

—|[H, Y]1-IT, X]?+|[H, Y1-[T, X]§

_N (Vz—aﬁ N V%-%ﬂo)

2 2
4 € &5

Jfa (e e b2 &
16]4 \a? o2) 4 \p2 B2

2 (BS_B*\  afed_<f
+r > 3 + S > 5 |-
80 € 80 €

Now, if we choose ag = By, € = 2ag and y¢ = 3a3, the right hand
side of (*) becomes

A (Y- 1 d? (a*> b?)\ (&2
- (=) 6 (E ) (5)

2 2

Hence, if (a, B, 7, €) satisfies the conditions ¢ < 2a, ¢ <28 and
y2 < €2/2+ af, it follows that

(RX+H,Y+T)YY+T),X+H)
—~(RyX+H,Y+T)Y+T),X+H)<0.

If R(n) =(RX+H,Y+T)Y+T), X+ H), where n is the
plane spanned by {X + H, Y + T}, we get K < 0 and the stronger
condition R(m) < Ry(m) for every plane n C g.

Conversely, if R(n) < Ry(m) for all plane # C g, considering
the planes spanned by {X, Y} (X,Y €3t), {e,+ T, e, + H} and

2 2
A, Y]-IT, X])? =r2'f—2 +s22‘—2+
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{ea+T,e;+ H} (T and H such that A(T) # A,(H)) respectively,
we get in each case y2 < &2/2+aff, e <28, € < 2a. Thus, we have
the following:

ProprosITION 3.2. Let G be the simply connected Lie group of 3 x 3-
upper triangular real matrices of determinant one with the left invariant
metric associated to (o, 8, y,¢). Then, R(n) < Ry(n) for all plane
n Cg ifand only if y> <e?/2+af, ¢ <2a and ¢ < 2f. Moreover,
R(n) = Ro(n) for all plane ©n C g if and only if y? = €2/2 + aff,
e =2a and ¢ =28 (that is, G is symmetric).

In particular, G is not symmetric if R(n) < Ro(m) for some plane
nCg.

3.3. It follows from Theorem 2.7 that:

(i) G admits many different metrics of nonpositive curvature of
rank one and only one metric, up to multiplication by a positive con-
stant, of rank two. So the rank in a homogeneous space is not invariant
under the change of homogeneous metrics of nonpositive curvature.
This situation does not occur for Hadamard manifolds which are com-
pact or have finite volume (see [4]).

(ii) G with the left invariant metrics of rank one, gives us examples
of homogeneous spaces of rank one having two-flats. In fact, 4 =
exp(a) is a flat totally geodesic submanifold isometrically imbedded
in G of dimension two.

Acknowledgment. I would like to thank the referee for very detailed
suggestions which helped to improve the exposition of this paper,
shortening the proof of Theorem 2.1 and strengthening the statement
of Theorem 2.7.
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COMBINATORIAL TECHNIQUES AND
ABSTRACT WITT RINGS III

ROBERT W. FITZGERALD

We introduce an equivalence relation on maximal elements (i.e.,
D(1, —x) is maximal). We present a form theoretic proof of Mar-
shall’s classification of reduced Witt rings, thus providing a possible
outline for proving the full elementary type conjecture. The same re-
lation restricted to elements of index two yields characterizations of
Witt rings with a factor either of local type or a group ring extension
of a totally degenerate Witt ring.

(R, G, q) will denote a finitely generated (abstract) Witt ring R,
its assnciated group of one-dimensional forms G and the associated
quaternionic mapping ¢. As in [7, 8] we use the abstract Witt ring
as defined by Marshall-Yucas [13] rather than Marshall’s modification
in [12]. The technique introduced here is the formation of equiva-
lence classes of maximal elements (x € G with D(1, —x) maximal).
While forming classes is not combinatorial, it does blend well with the
techniques of the previous two papers in this series.

We start by discussing a four step approach to the elementary type
conjecture, two of which are statements about classes of maximal ele-
ments. The four steps can be verified when R is reduced, thus giving
a new, form-theoretic, proof of Marshall’s classification theorem [11].
Each step is valid for Witt rings of elementary type (as opposed to
the main steps in Marshall’s proof or in the proofs for |G| < 32).
And, when restricted to maximal elements with [G : D{l, —x)] = 2,
the proposed approach leads to new results clarifying the structure of
such Witt rings. The first section concludes with a verification (with
some details omitted) of the four steps when R is reduced. Of in-
terest here is the identification, when R is reduced, of the quotient
structure defined in [8] with a Pfister quotient as defined by Marshall
in [12].

For non-reduced R, maximal elements and their classes are difficult
to handle. In the second section we consider only elements of index
two (x € G with igD(1, —x) = 2). The restricted equivalence classes
behave well and occur in two types. Using classes of type 1, we slightly
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improve the characterization of local type factors in [6]. Working with
classes of type 2 yields an analogous result for factors which are group
rings over totally degenerate Witt rings (called S-rings here).

The last section takes up two extreme cases. First we consider the
case where there are two classes of elements of index 2, one of each
type, which generate B = ¢(G, G). We show R is then a product of
two Witt rings, one of local type and the other an S-ring. Then, since
many of the previous results involve conditions of the form Q(x)n
Q(y) = 1, we consider the case where some Q(x) is contained in all
Q(y) . Under quite general conditions (satisfied if x has index 2, for
example) we show R is of local type.

The notation is the same as in [7, 8]. Thus for any group H,
H' denotes H — {1}. For a € G, Q(a) = {q(a, x)|x € G} and
Yr ={Q(a)la€ G'}. B denotes the image of g, ¢q(G, G). The value
set of (1, —x) is D{1, —x) = {y € G|q(x, y) = 1}. The radical of
G is rad(G) = {x € G|D(1, —x) = G}. We say R is degenerate if
radG # {1} and totally degenerate if radG = G. We will assume
throughout that R is non-degenerate.

R is of local type if |B| = 2. We let A, denote the group of
exponent two and order 2”. The group ring R[A,] is again a Witt
ring. The direct product in the category of Witt rings is the fiber
product over Z,, which we will denote by the usual product symbol.
Thus:

Ry x Ry ={(r, r)|r; € R; and dimr; = dimr,y(2)}.

R is of elementary type if it can be built from Z,, Z4 and Witt rings of
local type by a succession of group ring extensions and products. We
will often use orthogonal decompositions as defined in [3]. Subgroups
Hy, ..., H, of G yield an orthogonal decomposition (denoted H; L
1L Hy)if G=H; x---xHy, and x; € D(1, —x;) for all X; € H;,
Xj € H js i 75 ] .

1. Reduced Witt rings. The two notions which form the basis for
all three sections are:

DEFINITION. An element m € G is maximal if D(1, -m) C
D(1, —x) implies x =1 or D(1, —m) = D(1, —x). The collection
of maximal elements of G will be denoted by M .

DEFINITION. For a, b e M write a~b if a=b or abe M.
We say a and b are equivalent, and write a ~ b, if there exist
Cly...,Ck €M suchthat: a~ci~cy~---~c~b.
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Equivalence is clearly an equivalence relation. Denote by C(a)
the equivalence class of a € M. Let H(a) be the subgroup of G
generated by C(a).

Recall the quotient structure of [8]. For g € G let Q(g) =
{q(g, h)lh € G} and H(Q(g)) = {h € G|Q(h) C O(g)}. Set G/g
G/H(Q(g)) and define:

9g: G/g x G/g — B/Q(g),
(aH , bH) — q(a, b)Q(g).
If g¢ is linked the resulting Witt ring is denoted R/g. We consider
a possible outline for proving the elementary type conjecture:

(1.1) (a) G is generated by M .

(b) If as%# b, where a, be M, and if x € H(a), y € H(D)
then x € D(1, —y).

(¢) g, islinked for all ae M.

(d) If G=H(a) for some a € M and if R/b is of elemen-
tary type for all b € M then R is of local type or a group ring.

Proving these four steps would prove the elementary type conjec-
ture. The first two steps show there is an orthogonal decomposition
(cf. [3]) G=H(a;) L--- L H(a;), where C(a;), ..., C(a;) are the
distinct equivalence classes. Each H(a) generates a Witt ring, if each
of these Witt rings is of elementary type then so is R [3, 3.8]. We may
thus assume G = H(a) for some a € M. Steps (c) and (d) constitute
an induction argument on |G| which completes the proof.

There is some evidence for the truth of the elementary type con-
jecture. It holds if R is reduced (proven for abstract Witt rings by
Marshall [11], simplified in [12]; cf. [2], [4], [9] for the field case) and
if |G| £ 32 (proven by a variety of unrelated counting arguments).
There is also some evidence that (1.1) will yield a proof of the ele-
mentary type conjecture. First, the four steps of (1.1) can be proven
if R is reduced, thus given a new proof of Marshall’s result. Sec-
ond, each of the four statements of (1.1) are true for Witt rings of
elementary type. This may appear to be an insignificant advantage.
However, none of the intermediate results in Marshall’s proof of the
reduced case are valid for non-reduced Witt rings. Only reduced Witt
rings are determined by their space of orderings. Also, very few of
the counting arguments used for |G| < 32 yield information about
larger Witt rings. Third, (1.1) can be followed partially for maximal
elements with [G : D(1, —x)] = 2 yielding significant improvements
over previous results (see §2, 3). Unfortunately, we have been unable
to prove any new cases of the elementary type conjecture via (1.1).



42 ROBERT W. FITZGERALD

The remainder of this section is devoted to sketching the proofs of
(1.1)(a)-(d) if R is reduced. Thus for this section (R, G, q) will
denote a finitely generated, reduced Witt ring. Then D(1, 1) = {1}
and as a result, if a € D(1, b) then D(1,a) C D(1,b).

LEMMA 1.2. Let a, beG.
(i) If D(1,a) =D(1, b) then a="b.
(ii) a is maximal iff a is rigid.
(iii) For any g € G', g is a product of elements of D{1, g) N M.
In particular, G is generated by M .

Proof. (i) D(1, a) =D(1, b) c D(1, —ab). Thus a, b, —ab, and
hence —1, liein D(1, —ab). R reduced implies ab=1.

(i) {x € G|D(1, —a) c D{1, —x)} = {x € G|x € D(1, a)} since
R is reduced. Then a is max1mal iff this set is {1, a} iff a is rigid.

(iii) If |D(1, g)| = 2 then g € M by (i)). If |[D(1, g)| > 2

write D(1,q9)={1,8,x3,...,%x}. Then g=x3---x:. D(1, x;) C
D(1, g) by (i), so by induction each x; is a product of elements in
MnD{(l,x)ycMnD(1, g). O

LEMMA 1.3. Let a, b € M. Then either:
(i) D(1, —ab) = D(1, —a) N D(1, ~b),
or
(ii) a~b.
In particular, if a% b, x € H(a) and y € H(b) then x € D(1, —y).

Proof. Suppose first that 1 € D(a, b). Then a, b € D(1, ab)
and —ab € D(1, —a)ND(l, —b). We obtain (i), since R is reduced.
Next suppose that 1 ¢ (a b). Then D{a,b) C M by [1,1 1.2]
and (1.2)(ii). We may choose ¢ € M N D(1, ab) by (1.2)(iii). Hence
ceM and ac, bce D{a,b)cM.Soa~c~b. ]

The following is of some interest independent of (1.1). We show
that when R is reduced, the quotient defined in [8] is the same as the
Pfister quotient defined by Marshall in [12].

LEMMA 1.4. Let a€ M. Then:
(i) H(Q(a)) = {1: a} =D<1 > a)’
(i) R/a is well defined, and

(iii) R/a is reduced.



COMBINATORIAL TECHNIQUES AND ABSTRACT WITT RINGS 43

Proof. (i) Let h € H(Q(a)). Then g(-1, h) € Q(h) c Q(a). By

linkage (on G) there exists z € G with:

q(-1,h)=¢q(-1, z) =4q(a, 2).
Thus 2 € zD(1, 1) = {z} and z € D(1, a). So H(Q(a)) c D(1, a) =
{1, a}. We have equality since clearly 1, a € H(Q(a)).

(ii) Let I be the fundamental ideal of R. Since R is reduced we
may assume [12, 3.23] that ¢ : G x G — I?/I? is given by g(x,y) =
{(=x, =)y +I3. Thus Q(a) = (1, —a)I + I* and by (i):

4a:G/D(1, a) x G/D(1, a) — I*/(1, —a)I + I*,
2 (X,7) = {(-x, y)) + (1, —a)] + I°).

There is a well-defined Pfister quotient R/ann(l, a) [12, 4.24]

which is reduced [12, 6.10]. Note that
ann(l, a) = ({(1, —x)|x € D(1, a)}) = ((1, —a)).

Set J =1/((1, —a)). The quaternionic map for R/ann(l, a) is:

q*:G/D(1,a) x G/D(1, a) — J*/J3,

a*(%, ¥) = ({(-x, =y)) + ({1, —a)) + J°>.
Map a: I? — J2/J3 by a(p) = ¢ + ({1, —a)) + J3. This is clearly
a surjective homomorphism with (1, —a)l + I3 C kera. If ¢ € kera
then ¢ —n € ((1, —a)), for some n € I3. Thus ¢ — 5 = (1, —a)x
for some form x, and indeed y € I as ¢ —n € I?>. Hence ¢ €
(1, —a)l+13.

Thus « is an isomorphism and the linkage of ¢* implies g, is
linked.

(iii) Let y = yD(1, a) and suppose ¢,(—1,¥) = 1. Then g(-1, y)
€ Q(a) and as in the proof of (i) we obtain y € D(1, a). Hence
y=1in G/D(1, a) and so R/a is reduced. o

The proof of (1.1)(d) is long and tedious. We present one part of
the proof both to give the flavor of the whole and because a weaker
version of this result holds generally for Gorenstein Witt rings (see

[5D).

PROPOSITION 1.5. Let a € G° be maximal. Suppose G = H(a) and
R/a is a group ring. Then R is a group ring.

Proof. We may write G = Gy x {1, 7}, where {1,a} Cc Gy Cc G =
Go- {1, t}, and 7 is two-sided rigid in R/a. Write Gy = {1, a} - Hy
where a ¢ Hy and —1 € Hp.
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We will assume R is not a group ring and first show that D(1, —s)
has index 2 in G. Let Ay € Hp. Then hot, —ht € M*, the maximal
elements of G. The value setin G, D(1, X), is

D(1, —x)D(1, —ax)/{1, a}.

If X € M* then either:
(1) x, axeM
or
(i) xe M and D(1,ax)={1,a, x, ax}
or
(iii) ax € M and D(1,s)={1,a, x, ax}.
Now if +hgt € M or +ahyt € M then R has two-sided rigid elements
(1.2) and is thus a group ring. Otherwise, one of two cases occurs:
(i) hot € M, D(1, ahyt) = {1, hot, a, ahgt}, —ahyt € M and
D(1, —hot) = {1, —hot, a, —ahyt} or
(ii) ahgt € M, D(1, hot) = {1, hot, a, ahgt}, —hot € M and
D(1, —ahol> ={1, —hot, a, —ahyt} .
We see then that for all hg€ H, either hgt or —hyt liesin D(1, —a).
In particular, taking A4y = 1, we have ¢ or —¢ liesin D(1, —a). Thus

ID(1, —a) N Ho| = |Ho|.

If teD(1,—a) then G={1, —a,t, —at}Hy and igD(l, —a) =2.
Similarly, igD(1, —a) =2 if —te€ D(l, —a).

We now obtain the desired contradiction by showing that G = H(a)
implies D(1, —a) does not have index 2 in G. Note that R/a being
a group ring implies |[M*| > 2 and so |M| > 2. Since G = H(a),
there exists m € M — {a} with am € M. Now -1 ¢ D(1, —a)
since R is reduced, so either m or —m lies in D(l, —a) (since
igD(1, —a) =2). But —m € D(1, a) implies D(1, —m) c D(1, —a)
and m ¢ M. And m € D(l, —a) implies D(1, —am) C D(1, —a)
and am ¢ M. Thus we have contradicted the initial assumption that
R is not a group ring. a

2. Elements of index 2. We now drop the assumption that R is re-
duced. (R, G, q) will denote a finitely generated non-degenerate Witt
ring. Let i(x) denote the index of D(1, —x) in G (this is a slightly
different use of i(x) than in [6]). Maximal elements in an arbitrary
Witt ring are difficult to work with. If, however, we restrict our atten-
tion to those maximal elements with i(x) = 2 then the equivalence
relation of §1 is a useful tool.
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Set T = {x € Gli(x) = 2} and take the same relation of §1 on T,
namely, for x, y € T write x ~y if x=y or xy € T. Thus for
x,yeT, x~y iff i(xy) < 2. In what follows we will frequently
use Marshall’s result [12, 5.2]:

|D(1, —xy)/D(1, —x) N D(1, —y)| = |Q(x) N Q(y)|.

LEMMA 2.1. Let x, y € T and suppose x +y. Then:
(1) i(xy)=4

(2) D(1, —xy) =D(l, -x)ND(1, -y),

(3) Q(xy) =Q2(x)Q().

Proof. By definition, i(xy) > 4 while D(1, —x) N D(1, —y) C
D(1, —xy) and ig(D(1, —x) nD(l -y)) £ 4. Th1s proves (1) and
(2). Further, 2 = |D(1, —y)/D(1, —x)ND(1, —xy)| = |Q(x)NQ(xy)| .
Thus Q(x) C Q(xy), as |Q(x)| = 2. Similarly, Q(y) € Q(xy). Then
Q(x)Q(y) € Q(xy) C Q(x)Q(y) which gives (3). o

LEMMA 2.2. Let x, y € T and suppose x ~ y. Then either
D(1, —x) = D(1, —x) = D(1, —y) or Q(x) = Q(y). Further, if both
occur then x =y.

Proof. Suppose D(1, —x) # D(1, —y). Then
ID<1: —xy>/D<1’ _x>nD<1a _y>l 22-

Hence |Q(x) N Q(y)| = 2 and Q(x) = Q(). If D(I,-x) =
D(1, —y) and Q(x) = Q(y) then

=[Q(x)NQW)| = [D(1, —xy)/D(1, —x)|
shows i(xy)=1 and x=y. O

THEOREM 2.3. ~ is an equivalence relation on T .

Proof. We need only check transitivity. Suppose x, y, z € T with

X~y and y ~ z. We may assume x#y, X # z and y # z, so that
i(xy)=i(yz) =2. We show i(xz) =

Suppose not. Then x » z and xy + yz. By (2.1), D(1, —xz)
is contained in D(1, —x), C(1, —-z) D(1, —xy), D{1, —yz) and
hence D(1,-y). Now D(l,-x) # D(l,-z) since otherwise
D(1, —x) = D{(1, —xz) and z(xz) = 2. There can only be three
distinct subgroups of index 2 containing D(l, —xz), as i(xz) = 4.
We must have D(l, —x) = D(l, —y) or D(1,-y) = D(1, —z).
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We will assume D(1, —x) = D(1, —y) = D(1, —xy), the other case
being similar.

We thus have D(1, —y) = D(1, —x) # D(1, —z) and so Q(y) =
Q(z) by (2.2). We claim i(xyz) = 4. Otherwise, D(l, —xz) C
D(1, —y) implies D{l, —xz) is contained in D(l, —y), D(l, —z),
D(1, —yz) and D(1,-xyz), all of index 2. Again there are
only three distinct subgroups of index 2 containing D(l, —xz). So
D(1, —xyz) equalsone of D(1, —y), D(1,—z) or D{l, —yz), which
we know are distinct. But D(1, —y) = D(1, —xyz) implies D(1, —y)
= D(l,-xz) and i(xz) = 2, D(1,-z) = D(l, —xyz) implies
D(l, —z) = D(1, —xy) = D(1, —y). And D(l, —yz) = D(l, xyz)
implies D(1, —yz) = D(1, —x) = D(1, —y) = D(1, —z). All three
possibilities are impossible which proves the claim.

We thus have i(xyz) = 4 and D(l, -xz) c D(1,-y). So
D(l, -xz)=D(l, -xyz) c D(1, —y), D{1, —z). Hence:

_ D(l, —xz) _
L=\ B —xyzrn DI, | — QG2 N QW1
2= | DT, —xyzynD(T, =z ~ Q¥ ),

which is impossible as Q(y) = Q(z).

NoTATION. For a € T let C’(a) denote the class of a in 7 under
the relation ~. Let C(a) = C'(a) U{l1}.

LEMMA 2.4. For each a€ T, C(a) is a subgroup of G.

Proof. Let x, y € C(a). If x or y equals 1 then xy € C(a), so
suppose x, ¥y € C'(a). Then x ~y and so i(xy) <2.If i(xy)=1
then xy =1€ C(a). If i(xy) =2 then xy € T,and xy ~x ~a.
Hence xy € C(a). O

PROPOSITION 2.5. Let a€ T . Then either:

(1) Q(a) =Q(x) forall x € C(a), or
(2) D(1, —a) =D(1, —x) forall x € C'(a).

Proof. Set Ci(a) = {x € C'(a)|Q(x) = Q(a)} U{1} and Cy(a) =
{x € C'(a)|D(1, —x) = D(1, —a)} U {1}. We first claim that C;(a)
is a subgroup of C(a). If x, y € Ci(a) and x # 1, y # 1 then
Q(x) = Q(a) = Q(¥). So Q(xy) C Q(x)Q(y) = Q(a). Hence either
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xy =1 or Q(xy) = Q(a). In either case, xy € Ci(a). Next we
claim C,(a) is a subgroup of C(a). If x, y € Cy(a) with x # 1,
y #1 then D(1, —x) = D(1, —y) € D(1, —xy). So either xy = 1
or D(1, —xy) =D(1, —a) and so xy € Cy(a).

Now C(a) = Ci(a) U Cy(a) by (2.2). Hence either C(a) = Ci(a),
yielding (1), or C(a) = C3(a), yielding (2). O

DEFINITION. Let a € G have index 2 (i.e. a€ T). We say a has
type 1 if Q(a) = Q(x) for all x € C'(a). We say a has type 2 if
D(1, —a) =D(1, —x) forall x € C'(a) and |C(a)| > 4.

Every a € T thus has type 1 or type 2 (but not both, by the re-
striction that |C(a)| > 4 for type 2). We observe that if a has
type 2 then C(a) € D{l, —a) (namely, if m € C'(a), m # a then
D(l, -m) =D(1, —a) = D(1, —am). In particular, —1 € D(1, —a).
Hence C(a) C D(1, —a)).

Elements of index 2 having type 1 have appeared in the literature
before. We reformulate two such results in this language.

PROPOSTION 2.6 (Marshall [12]). Suppose G is generated by ele-
ments of index 2. Then R is a fiber product of Witt rings of local

type.

Proof. We have G = C(ay) - --- - C(ay), where the C'(a;) are the
distinct classes in T'. If x € C(a;), y € C(a;) with i # j then
x € D(1, —y) by (2.1). In particular, no C(a;) has type 2, else all
the C(a;) are contained in D(1, —g;) and so G C D(1, —a;). We
thus have G = C(a;) x --- x C(ag) and Q(C(a;)) N Q(C(a;)) = {1}
if i # j. Thus R is a fiber product with the ith factor generated by
C(a;). Since |Q(C(a;))| = 2 (a has type 1) each factor is of local
type. a

PROPOSITION 2.7 (Fitzgerald-Yucas [6]). Let a € T have type 1.
Set H=C(a) and K =g D(1, —h).
(1) If HNK = {1} then G=H L K is an orthogonal decomposi-

tion.
(2) If; further, Q(a) ¢ Q(K) then R = Ry x R, is a fiber product
with Ry of local type.

Proof. We refer to [6]. C'(a) = —M and C(a) = M?. The
conclusion of (1) is Proposition 2.12(1)-(4) which depends only on
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Proposition 2.11 which in turn depends only on the assumption that
HNK = {1}. Thus (1) holds; statement (2) is Theorem 1.1. ]

We note that, in (2.7), if K generates a Witt ring of elementary
type (as in an inductive argument) then condition (1) is sufficient to
show R is a fiber product with one factor of local type [3, 3.8].

We turn now to elements of index 2 having type 2. Among Witt
rings of elementary type these arise from fiber products R; x R, where
R, = S[A], S a degenerate Witt ring with radical Dg satisfying
[Dg| > 4 and |A] = 2. Here any a = (g, 1) € Dg x 1 has type 2
and C(a) = Dg x 1. One difficulty is that here the class does not gen-
erate a factor of R. In the simplest case where S is totally degenerate
(i.e. Dg = Gg) then the element (¢, 1) (where A = (1, ¢)) is required
along with C(a) to generate R;. Note that Q(z, 1) = Q(C(a)).

DEFINITION. A Witt ring R is an S-ring if R is a group ring ex-
tension S[A] where S is a totally degenerate Witt ring, |Gs| > 4 and
Al =2.

DEFINITION. Let a € T have type 2. An element ¢t € G is a cap
for a if Q(¢t) = Q(C(a)).

We will concentrate on the easiest case of type 2 elements. We seek
conditions on an a € T having type 2 analogous to (2.7) which will
yield an S-ring factor.

In what follows we will often use the observation that Q(a) C Q(b)
iff G=D(1, —a)D(1, —ab).

LEMMA 2.8. Let a€ T have type 2.

(1) Q(C(a)) = Umecia) C(m).

(2) Forany g€ G and m, m' € C'(a) we have Q(m) C Q(g) iff
Q(m') Cc Q(mm'g).

Proof. (1) We check that the union is a group. Let p; € Q(m;)
and p, € Q(my) where m;, my € C(a). If either pyj =1 or pp =1
then p;p; € Q(m;) U Q(my). Suppose p; # 1, pp # 1. Then p; =
g(m;,y) for some y ¢ D(1, —m;) = D(1, —m;), since a has type
2. Thus p, = q(my, y) and pipy = g(mymy,y) € Q(mym,) with
mimy € C(a).

(2) OQm) c Q(g) if G = D(1,-m)D{(1, -mg) if G
D(1, -m')\D(1, —mg) (as D(1,-m) = D(1,-m')) if Q(m')
Q(mm'g).

on
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PROPOSITION 2.9. Let a € T have type 2 and set P = Q(C(a)).
For any g € G either:

(1) Q(g)nP={1}, or

(2) Q(g)NnP = Q(m), for some me C'(a), or

(3) PcQ(g).

Proof. Suppose Q(g)N P # {1} or P. Then there exist m; and
my € C'(a) with Q(m,) C Q(g) and Q(m;) ¢ Q(g) by (2.8). Set
Hy = H(Q(g)) and Hy = H(Q(mm,g)). We wish to show H; n
C(a) = {1, m}. Now my € H, and m; ¢ H, by (2.8). Let m3 €
HynC(a) so that Q(m3) C Q(g). Applying (2.8) with m = m3; and
m' = mymyms yields Q(m;myms3) C Q(mymyg). Thus mymyms,
and so m;ms, lies in H,. This shows m;(H;NC(a)) C H,.

If |[HiNC (a)| #1 then there exist distinct x, y € H;NC"(a). So
mix, my, mxy € H, and hence m; € H,, a contradiction. Thus
HiNC(a) ={m,} as desired. O

We can now re-derive a result of Kula [10]. We use the counting
formula of [7]:

O Y omeeE ow m et e

x#1,z yeD(l,~z)

CoROLLARY 2.10 (Kula). Let a € T have type 2 and set P =
Q(C(a)). If Q(G) = P then R is an S-ring.

Proof. Choose b ¢ C(a) and apply () with z = b. We split
the left-hand sum into sums over C*(a), bC'(a) and G\{1, b}C(a).
For any x ¢ C(a) we have Q(x) = P by (2.9). Set g = |G| and
¢ =|C(a)| = |P|. We obtain:

c—-1 ¢c-1 g-2¢

e T T
We split the right-hand sum into sums over {1}, C'(a) N D(l, —b)
and D(1, —b)\C(a). We obtain:

RHS= 241+ 921, @80-d
c 2 c
where d = |D(1, —b) N C(a)|. Equating the two sides gives:

~1l/c=(d-1)/2-d]/c,
c—2=d(c-2)

LHS =
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and so d = 1. Thus forall b ¢ C(a), D(1, -b)nC(a) = {1}. In
particular, C(a) C D{1, —a) c C(a) and so D(1, —a) = C(a).

Fix b ¢ C(a). Since igC(a) = i(a) =2 and D(l, -b)N C(a) =
{1} we get D(1, —b) = {1, —b}. Further, —1 € D(1, —a) (cf. the
remarks after (2.5)) and so D(1, b) = {1, b} also. Thus b is 2-sided
rigid and E = S[A] is a group ring extension. We have |A| = 2 and
D(1, —a) = Gg since i(a) = 2. Moreover we have shown that if
x € Gy then x € D(1, —a) = C(a) and so D(1, —x) = D(1, —a) =
G;. Thus S is totally degenerate. Finally, by definition of type 2,
|Gs| =|C(a)| > 4. So R is an S-ring. O

We refine (2.9):

COROLLARY 2.11. Let a € T have type 2 and set P = Q(C(a)).
Let ge€G.

(1) If Q(g) NP = Q(m) for some m € C*(a) then Q(mg)NP =
{1}.

(2) If PC Q(g) then Q(g)=Q(mg) forall me C(a).

Proof. (1) Q(m) C Q(g) implies Q(mg) C Q(g). Hence if Q(mg)
NP # {1} then Q(mg)N P = Q(m) also. Suppose this occurs and
choose n € C'(a)\{m}. Applying (2.8) with m = m and m' = n
to Q(m) C Q(g) gives Q(n) Cc Q(mng). Next, using M = m and
m' = mn for Q(m) C Q(mg) gives Q(mn) C Q(mng). Hence
Q(m) c Q(mn)Q(n) c Q(mng). Apply (2.8) to this inclusion with
m = m and m' = n to obtain Q(n) C Q(g), which is impossible.
Thus Q(mg)NP = {1}.

(2) Fix my € C*(a). Then Q(mmgy) C Q(g) for all m € C(a) and
so Q(m) C Q(mpg) by (2.8). Thus P C Q(mgg). From Q(mg) C
Q(mog) C Q(g) we obtain Q(mog) = Q(g)-. 0

We may do better assuming there is a cap for a.

PRroPOSITION 2.12. Let a € T have type 2 and let t be a cap for a
(ie. Q1) =Q(C(a))). Set P=Q(C(a)), L={x€G|Q(x)NP =1}
and K =D(1, —a)nD(1, —t). Let g€ G. Then:

() LcK.

(2) If Q(g)NP = Q(m) for some me C'(a) then mg € L.

(3) If P C Q(g) then either:

(i) There exists a unique m € C(a) with mtg € L, or
(i) Q(mg) = Q(m'gt) forall m, m' € C(a).
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Proof. (1) If Q(x)Nn Q(t) = 1 then D(l, —xt) = D(l, —x) N
D(1, —t) and so x € D(1,—¢). Also Q(x)NQ(a) = 1 so that
x€D(l,—-a). Thus LCK.

(2) is (2.11)(1). For (3) we first show there is at most one m €
C(a) with mgt € L. Suppose not, that is, Q(mgt)NP =1 =
Q(mygt)NP. then forall m, Q(m)NQ(m;gt)=1 (i=1,2) and so
D(1, —m;gt) = D(1, —-m)yND(l, —mm;gt). Taking m = m;m, and
i=1,2 shows (1, —m;gt) = D(1, —mygt). From Q(m;gt)NQ(¢t) =
1 we obtain D(l, —m;) = D(1, —-t) N D(1, —m;gt) = D(1, —-t) N
D(1, —mygt) = D(1, —m,g) . Further, Q(m,g) = Q(myg) by (2.11)
and hence m; = m,.

Suppose now that (i) does not occur. Then P Cc Q(mgt) for all
m € C(a) by (2.11)(1). So Q(mgt) = Q(m’g) for all m, m' € C(a)
by (2.11)(2). 0

There are no examples of Case 3(ii) of (2.12) occurring among Witt
rings of elementary type. The possibility that it might occur is the
major obstacle to showing every a of type 2 with a cap arises from a
fiber product where one factor is an S-ring.

We do however have a result analogous to (2.7).

PROPOSITION 2.13. Let a € T have type 2 withacap t. Set H =
{1,t}C(a) and K =D(1, —a)NnD(1, —t).

(1) If t ¢ D(1, —a) then G = H L K is an orthogonal decompo-
sition.

(2) If further Q(t)NQ(K) =1 then R = R; x R, where R is an
S-ring.

Proof. (1) Let g € G. Either g or gt € D(1, —a) as i(a) = 2.
Further, C(a) N D(1, —t) =1 and |C(a)||D(1, —t)| = |G| by (2.8).
Thus G = U,ec(q) mMD(1, —1) . There exists then an m € C(a) such
that mg or mgt is an D(l —-a)ND(1, —t) =K and so g € HK .

If ge HNK then K C D(1, —g) since g € H. Forall m € C(a),
g€ D(l,—-m)=D(1, —a) and g € D(1, —t), since g € K. Hence
H c D(1,-g). Then G = HK c D(1,—-g) and g = 1. Thus
HNK =1 and G=H L K is an orthogonal product.

(2) follows from (1) by [3, 3.4]. O

We again note that if K in (2.13) generates a Witt ring of elemen-
tary type then condition (1) yields R = R; x R, with R; an S-ring
by [3, 3.8].
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We may combine (2.7) and (2.13) with a change in hypotheses.

THEOREM 2.14. Let a € G have index 2. Set P = Q(C(a)). Sup-
pose:

(1) There exists x € G with Q(x) =P, and

(2) Forno y is Q(my) = Q(m'xy) forall m, m' € C(a).
Then R = Ry x Ry with Ry of local type if a has type 1 and R, an
S-ring if a has type 2.

Proof. Set H = {1,x}C(a), L = {y € G|Q(y)NP = 1} and
K =peg D(1, —h). We first note that L C K. If a has type 2 then
this is (2.12). If a hastype 1 and y € L then @(m)NnQ(y) =1 for all
me€ C(a), as Q(m) = Q(a) = P. Thus D(1, —my) = D(1, —my) N
D(1, —y) and y € D(1, —-m) for all m € C(a). Then y € K as
Q(x) = Q(a) implies x € C(a) and H = C(a).

We next show G = HL. If a has type 2 then this is (2.12) com-
bined with assumption (2) which eliminates Case 3(ii). Suppose a has
type 1. If g€ G, g ¢ L then Q(a) C Q(g) since |Q(a)| = 2. As-
sume, by way of contradiction, that g ¢ HL. Then Q(a) C Q(mg)
for all m € C(a). So Q(m) c Q(mg) C Q(m)Q(g) = Q(g), which
implies Q(mg) = Q(g) for allm € C(a). Again noting that the x
of assumption (1) lies in C(a), we see that assumption (2) is contra-
dicted. So G=HL.

We thus have G = HK as well and (by [6, 1.2]) that HNK = 1.
Then G=HxK, LCcK and G= HL imply that L = K. Thus
G=H LK and PNnQ(k) =1 forall k € K. We obtain that R =
R; x Ry, with R; generated by H. If a has type 1 then |Q(H)| =2
shows R; is of local type, while if a has type 2 then (2.10) shows R;
is an S-ring. m]

3. Extreme cases. As before, T isthe set of x€G with igD(l, —x)

= 2. We consider the simplest of cases where 7 has both elements
with type 1 and type 2.

THEOREM 3.1. Suppose Q(G) is generated by the Q(x) with xe T .
Suppose further that T = C'(a) U C'(b), where a has type 2 and b
has type 1. Then R = Ry x R, where R, is an S-ring and R, is of
local type.

Proof. Set P = Q(C(a)) and B = Q(G).
Step 1. Forall g € G, Q(g) = Q(b), Q(m), Q(m)Q(b), P or
B, for some me C'(a).
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There are three possibilities for Q(g) N P by (2.9). First suppose
Q(g)NP =1. Then [B: P]=2 implies |Q(g)|=2. Thus ge T =
C'(a) U C'(b) and certainly g ¢ C'(a) so that Q(g) = Q(b) (as b
has type 1).

Next suppose Q(g) NP = Q(m) for some m € C'(a). Then
Q(gm)NnP =1 by (2.11), and so gm =1 or gm € C(b). In
the first case Q(g) = Q(m) and in the second case Q(g) = Q(bm) =
Q(b)Q(m) by (2.1). Lastly, suppose P C Q(g). Again [B: P] =2
implies Q(g) =P or B.

Step 2. There exists t € G with Q(¢) = P.

Suppose otherwise. Then for any g € G either g € C(a)C(b) or
Q(g) = B, by Step 1. We again use the counting formula from [7]:

1 1 -2 1

: = + e
2 OmIno@] [0@a] " 0@l T2 00
Set e = |C(b)|], g = |G| and ¢ = |C(a)| = |P|. We note that
H(Q(m)) = {1, m} and H(Q(bm)) = {1, m}C(b) for m € C(a).
Further, C(a)C(b) c D(1, —a), by (2.1) and the remark after (2.5).
We split the left-hand sum into sums over C*(a)\{a}, C'(b), aC'(b),
(C*(a)\{a})C'(b) and G\C(a)C(b). We obtain:

=2 e—-1 e-1 (c—2)e—-1) g-—ce
LHS—2+4+4+ 4 +4C'

We split the right-hand sum into sums over {1}, C'(a), C'(b),
C'(a)C'(b) and D(1, —a)\C(a)C(b). We obtain:
c—1 e-1 + (c—1)e—-1)

__ (8/2) —ce
RHS = -1+1+ -5+ — 2 +

Equating the two sides gives:

c—2 e—-1 3 ¢-2 e—-1 e
2 T TiT 2 TTd 7w
-5/4= -3/2,
a contradiction.

Step 3. There is a cap ¢ for a with ¢t ¢ D(1, —a).

Set F = H(P). We will show F ¢ D(1, —a), since then if ¢ €
F\D(1, —a) we must have Q(¢t) = P lest t € C(a) C D(1, —a). Let
f=|F| and i = |[FND(1, —a)|. We use the same formula as Step 2.
On the left-hand side we need only replace the sum over G\C(a)C(b)
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by sums over F\C(a) and G\(C(a)C(b)U F). We obtain:

c—2+e——1+e—1+(c—2)(e—1)
2 7] 4 4
f—-¢c g-ce—f+c

Tt 4c

On the right-hand side we need only replace the sum over
D(1, —a)\C(a)C(b) by sums over (F n D(l, —a))\C(a) and
D(1, —a)\(C(a)C(b)U F). We obtain:

RHS:c—l+e—1+(c—1)(e—1)+l +(g/2)—ce—l+c

LHS =

2 2 4 c 2c
Equating the two sides gives:

e-1 f—-c c—ce—f -1 e—-1 i-c c—ce—1i
B e 7= e T2t c T2
fl4c=1i/2c,
f=2i.

Thus F ¢ D(1, —a) as desired

Step 4. Finish.

Let ¢ be the cap of Step 3. Set H={1, ¢t}C(a) and K = D(1, —a)n
D(1, —t). Then G=H L K by (2.13). Arguing as in Step 1, we see
that if £k € K then Q(k) = Q(b), P or B. Hence (in the nota-
tion of [8]) |Yx| < 3 and the Witt ring R, generated by K is of
elementary type [8, 3.7]. Indeed, R, is of local type since otherwise
R; 1is a product of two local factors and |P| = 2, which is impossible

(|P| = |C(a)| > 4 since a has type 2). Thus R = R; x R, by [3,
3.4], R, is of local type and R;, generated by H, is an S-ring by
(2.10). ]

Both (2.7) and (2.13) require a condition of the form Q(x) ¢ g(X),
where i(x) = 2, to deduce that x arises from a fiber product. We
consider the case of extreme failure of this condition, namely Q(x) C
Q(y) forall y € G'. When i(x) =2 we will show that Q(x) C Q(y)
for all y, implies R is of local type.

LEMMA 3.2. Suppose Q(w) C Q(g) forall g € G. Let H =

H(Q(w)). In the quotient R/w set Z = zH and Q(Z) = Q(z)/Q(w )
Then:

(hjg) —e@)ID({1, —a)nH| _ (, 1\ 2
w2 0@ --(1 q> 0@’

zeD(l,—a)
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where A€ G\H, h=|H|, q =|Q(w)| and:
(7)_{0, ifzHND(l, —a) =3,
“ 1, ifzHND(l, —a)+# Q.

Proof. R/w is well defined by [8, 2.4]. We start with the counting
formula of [7] for both (R, G) and (R/w, G):

1 1 -2 1
@ 2 pwno@l e S e@lt 2> 0o’

x#1,a yeD(1,—a)

1 1 -2 1
® 2 emne@l @ - 0@l T, A, 06T
Note that for all g € G° and & € H, we have Q(g) = Q(gh).
Namely, 0(gh) C Q(8)Q(h) = Q(8)Q(w) = Q(g) and similarly
Q(g) C Q(gh). Then:

_ 11
LHSC) = 2. prno@) 1ot

1 1
* Z e no@ | Q@)

1
- Z 2 IQ(X)OQ( )] 10(@x)]

7#1,3 *¥€zH
_h-1 . h- 1 1
= 210@)] qIQ 1t Z _lono@ el

Now |Q(g)| =10(%)lg and |Q( x)ﬂQ a)l =1Q(xX)NQ(@)|g . Thus:
2(h - 1) h

)= Pga) Z 710 n 0@)I0@=)]
_h 1
[lQ(d Z IQ(Z N Q(a)||Q(az )IJ
2
q%Q@)|
Equation (3) then implies:

_h 1) 2
LHS‘Z)‘qZ( 2 lQ(Z)I) 210@)]

zeD(1,-a)
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We turn now to the right-hand side of (2):

!
RHS(2) = (505 + 2 A
e veni—anzn 120))

Z|1>1 —a nzH|

If ¢(Z) = 1 then D(l, —a) N zH = x(D(1, —a)
x € zH. Thus |D(l, —a) N zH| = &(Z)|D(

since D(1, —a) = D(1, —a)D{1, —aw)/H, i
D(1, —a)nzH = . We obtain:

) for some
|. Further,

=2 e(Z)|D(1, —a) N H|
RESQ) =ty *_ 2=~ 100

2 e(z)|D(1, —a) N H|

—_qu(ﬁ)I+E€D%;_E> 0@

Equating the two expressions for LHS(2) and RHS(2) (and mul-
tiplying by q) gives:

h 1 2
q (_ 2 - lQ(f)I) ~ 4|0@)]

zeD(1,-a)
=( SR —a)mH|) 2
I 6] e@I
This is easily seen to be equivalent to (1). o

THEOREM 3.3. Suppose Q(w) C Q(g) forall g € G'. Set H =
H(Q(w)). If |Q(w)| < |H| then R is of local type.

Proof. Let ¢ = |Q(w)|, h=|H|, Z=zH and Q(Z) = Q(z)/Q(w
We assume, if possible, that g # H. Set g = |G|. If there ex1sts
an a € G\H such that |D(l, —a) N H| < h/q then LHS(1) > 0
while RHS(1) < 0, a contradiction. Hence for all a € G\H we have
|D(1, —a)NH| > 2h/q.

We now count, in two ways, the number N of pairs (a, x) where
ac€ G\H, x€ H and a € D{1, —x). If we fix x, the number of
pairs with this x is

|D(1, —x) N (G\H)| = |D(1, x)| = [D(1, —x) N H|
=(g/q) — |D(1, —x) N H|.
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Thus
N = - > ID{1, =x)nH|.

xeH'

Denote this last sum by f.
Next, if we fix a € G\H the number of pairs with this a is

|D{1, —a)NH'|=|D(1, —a)NH| - 1.
So:

N= Y (ID(1,-a)nH|-1)> —(g—h).

(g — h)2h
acG\H q

Comparing the two expressions for N yields:

(g-m2h (h-1)g
7 (g h)S-——q B,

(g—h)2h-(g—-h)g<(h-1)g - Bg.
Now B =3 . ID(1,-x)NH|>(h-1). Thus:
(g—h)2h—(g-h)g+(h-1)g<(h-1)g,

gh—gq+g<2h*-2hg+q,
gh—q+1)<2h(h-q)+q.

Note that A —g+ 12> 1 since &> ¢g. Thus:
2h(h—q)+gq

— = < 2h,
ESh=g+1
since ¢ < 2h. Thus g =h andso G = H. Then Q(g) = Q(w) for
all g € G'. R is then of local type [7, Th. 5]. O

The condition ¢ = |Q(w)| < |H| = h in (3.3) can be viewed as
follows: In the quotient R/w, let @ = aH. Then |D(l, —-a)| =
|ID(1, —a)|q/h. Thus if g < h, no value group increases in size upon
passing to the quotient.

COROLLARY 3.4. Suppose igD(l, —w) =2 and Q(w) C Q(g) for
all g € G' Then R is of local type.

Proof. Clearly |Q(w)| =2 < |H(Q(w))|, so apply (3.3). ]
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COROLLARY 3.5. Suppose Q(w) C Q(g) for all g € G*. Suppose
further that the counting coefficients of the Hasse diagram for Yr (cf.
[7, p. 49)) are positive. Then R is of local type.

Proof. Here we get |Q(w)| =2 by [7, Th. 13], so apply (3.4). O

(1]
(2]
(3]
(4]
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[11]
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DENTABILITY, TREES,
AND DUNFORD-PETTIS OPERATORS ON L,

MARIA GIRARDI

If all bounded linear operators from L; into a Banach space X
are Dunford-Pettis (i.e. carry weakly convergent sequences onto norm
convergent sequences), then we say that X has the complete continu-
ity property (CCP). The CCP is a weakening of the Radon-Nikodym
property (RNP). Basic results of Bourgain and Talagrand began to
suggest the possibility that the CCP, like the RNP, can be realized
as an internal geometric property of Banach spaces; the purpose of
this paper is to provide such a realization. We begin by showing
that X has the CCP if and only if every bounded subset of X is
Bocce dentable, or equivalently, every bounded subset of X is weak-
norm-one dentable (§2). This internal geometric description leads to
another; namely, X has the CCP if and only if no bounded separated
J-trees grow in X, or equivalently, no bounded J-Rademacher trees
grow in X (§3).

1. Introduction. Throughout this paper, X denotes an arbitrary Ba-
nach space, X* the dual space of X, B(X) the closed unit ball of %,
and S(X) the unit sphere of X. The triple (2, X, u) refers to the
Lebesgue measure space on [0, 1], £* to the sets in ¥ with positive
measure, and Ly to Li(Q, X, u). All notation and terminology, not
otherwise explained, are as in [DU]. For clarity, known results are pre-
sented as Facts while new results are presented as Theorems, Lemmas,
and Observations.

The following fact provides several equivalent formulations of the
CCP.

Fact 1.1. For a bounded linear operator T from L; into X, the
following statements are equivalent.

(1) T is Dunford-Pettis.

(2) T maps weak compact sets to norm compact sets.

(3) T(B(Ly)) is a relatively norm compact subset of X.

(4) The corresponding vector measure F: X — X given by F(E) =
T(xg) has a relatively norm compact range in X.

(5) The adjoint of the restriction of T to L., from X* into L},
is a compact operator.
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(6) As a subset of L;, T*(B(X*)) is relatively L;-norm compact.

(7) As a subset of Ly, T*(B(X*)) satisfies the Bocce criterion.

The equivalence of (2) and (3) follows from the fact that the sub-
sets of L; that are relatively weakly compact are precisely those sub-
sets that are bounded and uniformly integrable, which in turn, are
precisely those subsets that can be uniformly approximated in L;-
norm by uniformly-bounded subsets. As for the equivalence of (6)
and (7), [G] presents the two definitions below and shows that a rela-
tively weakly compact subset of L; is relatively L;-norm compact if
and only if it satisfies the Bocce criterion.

DeFINITION 1.2. For f in L; and A4 in X, the Bocce oscillation of
f on A is given by

_ L=, fdu/u(4)]]du
h u(A) ’

Bocce-osc f] 4
observing the convention that 0/0 is 0.

DEFINITION 1.3. A subset K of L, satisfies the Bocce criterion if
for each ¢ > 0 and B in Xt there is a finite collection % of subsets
of B each with positive measure such that for each f in K there is
an A in & satisfying

Bocce-osc f| 4 < €.

The other implications in Fact 1.1 are straightforward and easy to
verify. Because of (4), the CCP is also referred to as the compact
range property (CRP).

Towards a martingale characterization of the CCP, fix an increasing
sequence {7,},>0 of finite positive interval partitions of Q such that
Vo(n,) =X and ng = {Q}. Let %, denote the sub-o-field a(n,) of
Y that is generated by n,. For f in L;(X), let E,(f) denote the
conditional expectation of f given .%,.

DEFINITION 1.4. A sequence {fn},>0 in L;(X) is an X-valued mar-
tingale with respect to {%,} if for each n we have that f, is -
measurable and E,(f,,1) = f» in L;. The martingale {f,} is uni-
Jormly bounded provided that sup, || fx||z_ is finite. Often the mar-
tingale is denoted by {f,, %} in order to display both the functions
and the sub- g-fields involved.

There is a one-to-one correspondence between the bounded linear
operators 7 from L; into X and the uniformly bounded X-valued
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martingales {f,, %} . This correspondence is obtained by taking
n—oo

T(g)=lim | fi(w)g(w)du(w) if{f,} is the martingale,
Q

and

n(w) = Z T(XE)XE(a)) if T is the operator.
o ME)
Fact 1.1.6 implies that a bounded linear operator 7 from L; into
X is Dunford-Pettis if and only if
lim sup ||E,(T*x*)— En(T*x*)||L =0.
M, N=00 x* e B(X*) :
Since E,(T*x*) = x*f, in L;, we have the following martingale
characterization of Dunford-Pettis operators, and thus of the CCP.

Fact 1.5. A bounded linear operator from L; into X is Dunford-
Pettis if and only if the corresponding martingale is Cauchy in the
Pettis norm. Consequently, a Banach space X has the CCP if and
only if all uniformly bounded X-valued martingales are Pettis-Cauchy.

Recall that a bounded linear operator 7: L; — X is (Bochner)
representable if there is g in L, (u, X) such that foreach f in L;(u)

Tf=/gfgdu-

A Banach space X has the Radon-Nikodym property if all bounded
linear operators from L; into X are Bochner representable. It is
clear that a representable operator from L, into X is Dunford-Pettis.
Thus, if X has the RNP then X has the CCP. Both the Bourgain-
Rosenthal space [BR] and the dual of the James tree space [J] have
the CCP yet fail the RNP.

2. Dentability. In this section, we examine in which Banach spaces
bounded subsets have certain dentability properties.

Dentability characterizations of the RNP are well-known (cf. [DU]
and [GU]).

Facrt 2.1. The following statements are equivalent.

(1) X has the RNP.

(2) Every bounded subset D of X is dentable.
DEFINITION 2.2. D is dentable if for each ¢ > 0 there is x
in D such that x ¢ ©o(D\B(x)) where B.(x) = {y € X :

=yl <&}
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(3) Every bounded subset D of X is o-dentable.
DEeFINITION 2.3. D is o-dentable if for each ¢ > 0 there is
an x in D such that if x has the form x = ) 7, a;z; with
z;ieD,0<a;,and >} a; =1, then ||x —z;]| < ¢ for some
i.

The natural question to explore next is what dentability condition
characterizes the CCP. Towards this, the next definition is a weakening
of Definition 2.2.

DEFINITION 2.4. A subset D of X is weak-norm-one dentable if for
each ¢ > 0 there is a finite subset F of D such that for each x* in
S(X*) there is x in F satisfying

x¢gco{z€D: |x*(z—-x)| > e} =TW(D\V, ,(x)).

Petrakis and Uhl [PU] showed that if X has the CCP then every
bounded subset of X is weak-norm-one dentable. For our characteri-
zation of the CCP, we introduce the following variations of Definition
2.3 that are useful in showing the converse of the above implication
of [PU].

DEFINITION 2.5. A subset D of X is Bocce dentable if for each
€ > 0 there is a finite subset F of D such that for each x* in S(X*)
there is x in F satisfying: if x = Y7, a;z; with z; € D, 0 < q;,
and Y7 a;=1,then Y} I, ai|x*(x —z;)| <e.

DEFINITION 2.6. A subset D of X is midpoint Bocce dentable if for
each & > 0 there is a finite subset F of D such that for each x* in
S(X*) thereis x in F satisfying: if x = %zl +%zz with z; € D then
Ix*(x = z1)| = |x*(x — 22)| < .

We obtain equivalent formulations of the above definitions by re-
placing S(X*) with B(X*).

The next theorem, this section’s main result, shows that these
dentability conditions provide an internal geometric characterization
of the CCP.

THEOREM 2.7. The following statements are equivalent.

(1) X has the CCP.

(2) Every bounded subset of X is weak-norm-one dentable.
(3) Every bounded subset of X is midpoint Bocce dentable.
(4) Every bounded subset of X is Bocce dentable.



DUNFORD-PETTIS OPERATORS 63

The remainder of this section is devoted to the proof of Theorem
2.7. Because of its length and complexity and also for the sake of
clarity of the exposition, we present the implications as separate the-
orems. It is clear from the definitions that (2) implies (3) and that
(4) implies (3). [PU, Theorem II.7] shows that (1) implies (2) by
constructing, in a bounded non-weak-norm-one dentable subset D, a
(€0 D)-valued martingale that is not Cauchy in the Pettis norm. Using
Fact 1.1.7, Theorem 2.10 shows that (3) implies (1). That (1) implies
(4) follows from Theorem 2.8 and the martingale characterization of
the CCP (Fact 1.5).

THEOREM 2.8. If'a subset D of X is not Bocce dentable, then there
is an increasing sequence {m,} of partitions of [0, 1) and a D-valued
martingale {f,, o(n,)} that is not Cauchy in the Pettis norm. More-
over, {m,} can be chosen so that \/ o(n,) =X, ny = {Q}, and each
n, partitions [0, 1) into a finite number of half-open intervals.

Proof. Let D be a subset of X that is not Bocce dentable. Accord-
ingly, there is an ¢ > 0 satisfying:

(%) for each finite subset F of D there is x; in S(X¥)
such that each x in F has the form x = Y}/, a;z;
with 7, a;|x5(x — z;)| > ¢ for a suitable choice of
zieD and o; >0 with > a; = 1.

We shall use property (%) to construct an increasing sequence
{mn}n>0 of finite partitions of [0, 1), a martingale {f,, o(7,)},>0.,
and a sequence {x;},>; in S(X*) such that for each nonnegative
integer n:

(1) f, has the form f, = ZEenn XpXg Where xg isin D,

(2) fQ |x;+1(fn+l - f)ldu>e,

(3) if E isin m,, then E has the form [a, ) and u(E) < 1/2"

and

(4) mo ={Q}.

Condition (3) guarantees that \/ g(n,) = £ while condition (2) guar-
antees that {f,} is not Cauchy in the Pettis norm.

Towards the construction, pick an arbitrary x in D. Set ny = {Q}
and fy = xxqo. Fix n > 0. Suppose that a partition 7, of Q
consisting of intervals of length at most 1/2"” and a function f, =
Y Ecx XEXE With xg € D have been constructed. We now construct
st ,nn,,H and Xx,_, satisfying conditions (1), (2), and (3).
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Apply (*) to F = {xg: E € n,} and find the associated xj = x}_,
in S(X*). Fix an element E = [a, b) of m,. We first define f,.;xE.
Property (*) gives that xg has the form

m m
Xe= Y aix with Y el (- x) > ¢
i=1 =1

for a suitable choice of x; € D and positive real numbers «a;, ..., an
whose sum is one. Using repetition, we arrange to have o; < 1/2"+!
for each i. It follows that there are real numbers dy, d;, ..., dm
such that
a=dy<d <"'<dm_1 <dn=5b
and
di_di—l =a,~(b—a) fori = 1, ... , M.

Set

m
SariXE = XiXia_, .d
i=1
Define f,,; on all of Q similarly. Let 7, be the partition con-
sisting of all the intervals [d;_;, d;) obtained from letting E range
over 7.
Clearly, f,.; and =,,; satisfy conditions (1) and (3). Condition
(2) is also satisfied since for each E = [a, b) in m, we have, using
the above notation,

m di
/E X1 (e = o)l A= 3 /d I (6 — x£)| d
i=1 i—1

= (b-a))_ ailxs, (xi — xg)| 2 u(Ee.
i=1

To insure that {f,} is indeed a martingale, we need to compute
E,(fy+1). Fix E =[a, b) in zm,. Using the above notation, we have
for almost all ¢ in E,

En(fas1)(8) du

/ furrdu = Zd Ao,

= Zaixi =xg = fu(1).

i=1

Thus E,(fy+1) = fn a.e., as needed.
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This completes the necessary constructions. o

We need the following lemma which we will prove after the proof
of Theorem 2.10.

LEMMA 2.9. If A isin £t and f in L. (u) is not constant a.e. on
A, then there is an increasing sequence {m,} of positive finite measur-
able partitions of A such that \/ o(n,) = XN A and for each n

(U e g - L)) - 42,

and so

w(UfE:pem G < BT }) =15

THEOREM 2.10. If all bounded subsets of X are midpoint Bocce
dentable, then X has the complete continuity property.

Proof. Let all bounded subsets of X be midpoint Bocce dentable.
Fix a bounded linear operator 7' from L; into X. We shall show
that the subset 7*(B(X*)) of L; satisfies the Bocce criterion. Then
an appeal to Fact 1.1.7 shows that X has the complete continuity
property.

To this end, fix ¢ > 0 and B in X*. Let F denote the vector
measure from X into X given by F(E) = T(xg). Since the subset
{ 5—((% :E CB and E € £t} of X is bounded, it is midpoint Bocce
dentable. Accordingly, there is a finite collection ¥ of subsets of B
each in X% such that for each x* in the unit ball of X* there is a set

A in ¥ such that if
F(A) 1F(E))  1F(E)
w(d) ~ 2 u(Er) 2 u(Ey)
for some subsets E; of B with E; € £+, then

1 |x*F(E)) x*F(A)| 1|x*F(E;) x*F(A)

W 2 mE - u(A)' 2| TuE)  aA) |

Fix x* in the unit ball of X* and find the associated 4 in % . By
definition, the set 7*(B(X*)) will satisfy the Bocce criterion provided
that Bocce-osc (T*x*)| 4 <e.

If T*x* € L, is constant a.e. on A, then the Bocce-osc (7*x*)| 4 is
zero and we are finished. So assume 7*x* is not constant a.e. on A.
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For a finite positive measurable partition z of A, denote

F(E
fnzz ”((E))XE

Een
and | [ pen XFE) x*F(A)}
" ‘U{ TETWE) T e
and - | [Een. XFE) _xF(4)
. ‘U{ STTWE) S @ }
Note that for £ in X
=/(x*T*)du.
FE
Compute
) /x*fn—XFA)’dﬂ
A
*F E *F A
_ u E) *F(E) X*F(4)
s E; WE) ~ ud)
_ (E;;) X*F(Ef) x*F(4)
‘”(A)[ ud) | wED A |

MES) | x*F(E;) X*F(A)I ]
wd) | w(Er) H(A)

Since the L;-function T*x* is bounded, for now we may view
T*x* as an element in L,,. Lemma 2.9 allows us to apply property
(1) to equation (2). For applying Lemma 2.9 to 4 with f = T™*x*
produces an increasing sequence {7,} of positive measurable parti-
tions of A satisfying

Vo) =Zn4 and WET) = -“—(2’4—) = u(E;).

n

For n = n,, condition (2) becomes

@ [ s - Er
B 1|X*"F(EF) x*F(A)
””[2 WED) T A

X*F(Ez) x*F(4)
W(Ez ) ud) ||

+z
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Since F(A)/u(A) has the form
F) _ WEL)F(ES)  mEy) F(Ey)
ud) — w(A) wEL)  wAd) p(Er)
B lF(E,fn) +_1_F(E;n)
C2u(ER)  2u(Er)’

applying property (1) to equation (3) yields that for each =,
« X*F(A4)
x —
Ry
Since \/o(n,) =XN A4 and

) _ «— XF(E)
(X" fa )4 = Eezn “u(E)

_ v Je(TxNdu .
= Z —‘E'—#—(E:)—XE—E@(T x)Na,

Eern,

I du < u(Ae.

we have that (x*f; )| 4 converges to (7*x*)| 4 in L;-norm. Hence,
_ LT %) = (T x") dpfu(A)]]du
4= u(A) =5

Thus T*(B(X*)) satisfies the Bocce criterion, and so as needed, X has
the complete continuity property. O

Bocce-osc(7T*x*)|

We now verify Lemma 2.9.

Proof of Lemma 2.9. Fix A in £t and f in Ly (u). Without loss
of generality, f is not constant a.e. on 4 and [, fdu=0. Find P
and N in X satisfying

a=pPun, wp)=PY-uw), PaN=o

and

/fdu52M>O, / fdu=-2M <0,
P N
Approximate f by a simple function f(-) = d_aixa () satisfying
(M) If = Al <M,
(2) U4, = A and the A; are disjoint,
(3) A; c P if i <m and A4; C N if i > m for some positive
integer m .



68 MARIA GIRARDI

Note that
P=|J4 and N=|]4,.
i<m i>m
To find the sequence {x,}, we shall first find an increasing sequence
{nP} of partitions of P and an increasing sequence {n)} of parti-
tions of N. Then =, will be the union of zf and znY. To this end,
for each A; obtain an increasing sequence of partitions of A4;:

A,’ = EiO
P N\ / N
Ei2 E}? E}? E}?
such that for n=0,1,2,... and k=1,...,2"
EHNUE™ =B, EyHnEpt =0, wE!)= #(21:i) '
For each positive integer 7, let nf be the partition of P given by
nf={Pl:k=1,...,2"} where P} = | J EJ",
i<m

nlY be the partition of N given by
¥ ={N':k=1,...,2"} where NI = U Ein

i>m
and 7, be the partition of 4 given by
n,=nlunl.

The sequence {7,} has the desired properties. Since

A P 4
uiep) = Y Mg = 1) - )

i<m

and

A; N A
uvp = Y 20 = R - B,

any element in 7, has measure u(A4)/2"*!. Thus \Vo(n,) =XNA.
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As for the other properties, since f takes the value a; on E ,i” C A;
we have

/ fau="Y / fdu=Y am(E])

i<m z<m

= o 3 auu(d) = /fd,u>0

i<m

and likewise

N 1 N
N:fd,u=2—n/Nfdu<0.

We chose f close enough to f so that the above inequalities still hold
when we replace f by f,

fdu> / (f - M) du

n

1
1 o
= 5 [ 7= Mu(pp)
P

1 Mu(4)
> 55 [(F =M du- 53
1

_ /fdﬂ_ Mu(4)  Mu(4)

on 2n+1 2n+1
M Mu4) _ M[1 - u(4)]
27 7 27

>0

and likewise

fdu<1‘_’-’_[/_‘_(2£n)_ﬂ50_
N

Thus the other properties of the lemma are satisfied since for each #,

M<U{E:Eenn,/Efdu20})=u(U{E:Eenf})

_ M4)
u(P) = 5

u(U{E:Eenn,/Efdu<O}>=ﬂ2£)—.

Note that the partitions {n,} are nested by construction. O

and so
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3. Bushes and trees. In this section, we examine which Banach
spaces allow certain types of bushes and trees to grow in them. First
let us review some known implications.

A Banach space X fails the RNP precisely when a bounded J-bush
grows in X. Thus if a bounded J-tree grows in X then X fails the
RNP. The converse is false; the Bourgain-Rosenthal space [BR] fails
the RNP yet has no bounded J-trees. However, if X is a dual space
then the converse does hold.

Bourgain [B2] showed that if X fails the CCP then a bounded J-tree
grows in X. The converse is false; the dual of the James Tree space
has a bounded J-tree and the CCP. It is well-known that if a bounded
d-Rademacher tree grows in X then X fails the CCP. Riddle and Uhl
[RU] showed that the converse holds in a dual space. This section’s
main theorem, Theorem 3.1 below, makes precise exactly which types
of bushes and trees grow in a Banach space failing the CCP.

THEOREM 3.1. The following statements are equivalent.

(1) X fails the CCP.

(2) A bounded separated J-tree grows in X.
(3) A bounded separated 5-bush grows in X.
(4) A bounded 5-Rademacher tree grows in X.

The remainder of this section is devoted to proving Theorem 3.1.
That (1) implies (2) will follow from Theorem 3.2 below. All the other
implications are straightforward and will be verified shortly. As usual,
we start with some definitions.

Perhaps it is easiest to define a bush via martingales. If {7n,},>0 is
an increasing sequence of finite positive interval partitions of [0, 1)
with \o(n,) = £ and 7y = {Q} and if {f,, 6(%n)}n>0 is an X-
valued martingale, then each f,, has the form

Jn = Z XgXE
Eem,
and the system
{xg:n=0,1,2,... and E € n,,}

is a bush in X. Moreover, every bush is realized this way. A bush
is a J-bush if the corresponding martingale satisfies for each positive

While typing this paper, I learned that H. P. Rosenthal has also recently obtained the result
that if X fails the CCP then a bounded J-Rademacher tree grows in X .
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integer n

(1) [fn(8) = fa-1 (DI > 6.

A bush is a separated J-bush if there exists a sequence {x,},>; in
S(%x*) such that the corresponding martingale satisfies for each posi-
tive integer n

(ii) %7 (fa(8) = fu-1 (D)) > 6.

In this case we say that the bush is separated by {x;}. Clearly a
separated J-bush is also a J-bush.

Observation that (3) implies (1) in Theorem 3.1. If a bounded sepa-
rated J-bush grows in a subset D of X, then condition (ii) guarantees
that the corresponding D-valued martingale {f,, ¢(n,)} is not Pettis-
Cauchy since

1o = Fuct lpetcis > /Q X () = far ()| du> 6.

Thus, if a bounded separated J-bush grows in X then X fails the
CCP (Fact 1.5). o

If each n, is the nth dyadic partition then we call the bush a
(dyadic) tree. Let us rephrase the above definitions for this case, with-
out the help of martingales. A free in X is a system of the form
{x:n=0,1,...; k=1,...,2"} satisfying for n=1,2,... and
k=1,...,2n1
Xog—1 + X5k
5

Condition (iii) guarantees that {f,} is indeed a martingale. It is often
helpful to think of a tree diagrammatically:

“en n__l _
(1i1) X, =

x{
xl / \XI
1 2
VRN 7N\
x} x3 x3 x?
7N\ 7 N\ 7\ , 7N\ ;
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It is easy to see that (iii) is equivalent to

() Xy =X = 20y — ) = 20— xgy).

Atree {x} isa O-treeif for n=1,2,... and k=1, ...,2""!
. 1y — -1

(iv) x5y —xP M = (x5 —x2 1> 6.

An appeal to (iii') shows that (iv) is equivalent to

(iv) o631 — x|l > 26 .

A tree {x]} is a separated J-tree if there exists a sequence {x;}n>1
in S(X*) such thatfor n=1,2,... and k=1,...,2"1

v) en (e -y = xg DI = Ixp(xsy — x> 6.
Another appeal to (iii') shows that (v) is equivalent to
(V") [%7 (X1 — X33 )| > 20

Furthermore, by switching x7, _, and xJ, when necessary, we may
assume that (v') is equivalent to

" Xp( XYy — X3p) > 26

Since a separated J-tree is also a separated J-bush, (2) implies (3) in
Theorem 3.1.

Atree {x]:n=0,1,...; k=1,...,2"% is called a J-Rade-
macher tree [RU] if for each positive integer n

2n—1

Z (X2k—1 = X3¢

k=1

> 2"4.

Perhaps a short word on the connection between Rademacher trees
and the Rademacher functions {r,} is in order. In light of our discus-
sion in §1, there is a one-to-one correspondence between all bounded
trees in X and all bounded linear operators from L; into X. If {x}}
is a bounded tree in X with associated operator 7', then it is easy to
verify that {x/'} is a d-Rademacher tree precisely when ||T(r,)|| > &
for all positive integers 7.

Fact that (4) implies (1) in Theorem 3.1 [RU]. Let {f,} be the
(dyadic) martingale associated with a J-Rademacher tree {x}}. If x*
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isin X* and I is the dyadic interval [(k —1)/2", k/2") then

2n—l

[t = frevldu= > /, " (fo = )l

2n—l
= Z [/ IX*(xf_y —x¢ "l du
k=1 L1

2k~—1

+/1." |x* (X2, —x,’c’"l)[d/.tJ

1 2n—l . B . B
= o 2 I (g =)+ e (g = ))
k=1

2n—l

1 .
=5 > Ix* (xS, — x5l by (i)
k=1

2n—l
X" (Z(xi’k-l - xi’k))

k=1

1
2 o

.

From this we see that {f,} is not Cauchy in the Pettis norm since

= fotllpeis = _sup_ [ (= foenl

x*€B(X")
1 2n—l
> sup o |x* (X2k—1 — X2%)
x*eB(x*) 2" ;; 2t %
1 2n—l
= > (6emy = X3
k=1

1
>—2-r72n5=5.

Thus if a bounded Jd-Rademacher tree grows in a subset D of X, then
there is a bounded D-valued martingale that is not Pettis-Cauchy and
so X fails the CCP (Fact 1.5). |

Observation that (2) implies (4) in Theorem 3.1. A separated J-tree
can easily be reshuffled so that it is a 6-Rademacher tree. For if {x}
is a separated J-tree then we may assume, by switching xJ; , and
x}, when necessary, that there is a sequence {x;} in S(X*) satisfying

Xp(X2h_1 — X3p) > 20 .
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With this modification {x}} is a d-Rademacher tree since

2n—1 2n—1
Z(xgk—l = X)) 2 Z'x;(xgk—l - X3)
k=1 k=1
2n—1 2n—-1
=Y Xn(XB = xp) > D 26 =2"6. O
k=1 k=1

It should be noted that a bounded §-Rademacher tree need neither
be a J-tree nor a separated J-tree. For example, consider the cg-
valued dyadic martingale {f,} given by

fu=00,...582,0,0,...),
where the function s, from [0, 1] into [—1, 1] is defined by
{ (-)k2" ifwe I} with k < 2;
Sy =

"l (=1 feelpwithk>2.
The tree associated with {f,} isa J-Rademacher tree but is neither a
J-tree nor a separated J-tree for any positive J . Thus, since a J-tree
grows in a space failing the CCP, the notion of a separated J-tree is
more desirable than that of a d-Rademacher tree for characterizing
the CCP.

To complete the proof of Theorem 3.1, we need only to show that
(1) implies (2). Towards this end, let X fail the CCP. An appeal
to Theorem 2.7 gives that there is a bounded non-midpoint-Bocce-

dentable subset of X. In such a set, we can construct a separated
J-tree. This construction is made precise in the following theorem.

THEOREM 3.2. A separated &-tree grows in a non-midpoint-Bocce-
dentable set.

Proof. Let D be a subset of X that is not midpoint Bocce dentable.
Accordingly, there is a 6 > 0 satisfying:

(%) for each finite subset F of D there is a norm one linear
functional x} such that each x in F has the form
X = (x; + Xx2)/2 with |xg(x; — x2)] > 6 for a suitable
choice of x; and x; in D.

We shall use the property (*) to construct a tree {x;:n=0,1,...;
k=1,...,2"} in D that is separated by a sequence {x;},>; of
norm one linear functionals.
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Towards this construction, pick an arbitrary x? in D. Apply (%)
with F = {x{} and find x} = x}. Property (x) provides x} and x}
in D satisfying

|
0o_X1+X%
X =5

Next apply () with F = {x], x}} and find x} = x}. For k =1

and 2, property () provides x3, , and x3, in D satisfying

and |x;(x{ —xd)|>4.

2 2
ol o= X1 T X
k 2
Instead of giving a formal inductive proof we shall be satisfied by
finding x7, x3,..., x3 in D along with xj. Apply (*) with F =
{x?,x?, x}, x}} and find x; = x}. For k=1, 2, 3 and 4, property
() provides x3, , and x3, in D satisfying

and x5 (x_; +x3)| > 0.

xt=303_, +x3,) and |x3(x3_, —x3)| > 0.

It is now clear that a separated J-tree grows in such a set D. O

REMARK 3.3. Theorem 2.7 presents several dentability characteri-
zations of the CCP. Our proof that (1) implies (2) in Theorem 3.1
uses part of one of these characterizations; namely, if X fails the
CCP then there is a bounded non-midpoint-Bocce-dentable subset of
X. If X fails the CCP, then there is also a bounded non-weak-norm-
one-dentable subset of X (Theorem 2.7). In the closed convex hull of
such a set we can construct a martingale that is not Pettis-Cauchy [PU,
Theorem I1.7]; furthermore, the bush associated with this martingale
is a separated d-bush. However, it is unclear whether this martingale
is a dyadic martingale, thus the separated J-bush may not be a tree.
If X fails the CCP, then there is also a bounded non-Bocce-dentable
subset of X (Theorem 2.7). In such a set we can construct a martin-
gale that is not Pettis-Cauchy (Theorem 2.8), but it is unclear whether
the bush associated with this martingale is a separated d-bush.

REMARK 3.4. The J-tree that Bourgain [B2] constructed in a space
failing the CCP is neither a separated J-tree nor a d-Rademacher tree
since the operator associated with his tree is Dunford-Pettis.

4. Localization. We now localize the results thus far. We define
the CCP for bounded subsets of X by examining the behavior of
certain bounded linear operators from L; into X. Before determining
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precisely which operators let us set some notation and consider an
example.
Let F(L;) denote the positive face of the unit ball of L,, i.e.

F(Ly)={f€eLy:f>0ae. and | f|| =1},
and let A denote the subset of F(L;) given by

XE
A= :E e E+} .
{ H(E)
Note that the L;-norm closed convex hull of A is F(L;).
Some care is needed in localizing the CCP. The example below (due
to Stegall) illustrates the trouble one can encounter in localizing the
RNP.

ExAMPLE 4.1. We would like to define the RNP for sets in such a
way that if a subset D has the RNP then the co D also has the RNP.
For now, let us agree that a subset D of X has the RNP if all bounded
linear operators from L; into X with T(A) C D are representable.
Let X be any separable Banach space without the RNP (e.g. L;).
Renorm X to be a strictly convex Banach space. Let D be the unit
sphere of X and T: L, — X satisfy T(A) C D. Since X is strictly
convex, it is easy to verify that 7(A) is a singleton in X. Thus T
is representable and so D has the RNP. If this is to imply that ¢o D
also has the RNP, then the unit ball of ¥ would have the RNP. But
if the unit ball of X has the RNP then X has the RNP; but, X fails
the RNP. The same problem arises if we replace T(A) C D by either
T(F(Ly))cD or T(B(Ly))CD.

Because of such difficulties, we localize propeties to nonconvex sets
by considering their closed convex hull. We now make precise the
localized definitions.

DEeFINITION 4.2. If D is a closed bounded convex subset of X, then
D has the complete continuity property if all bounded linear operators
T from L; into X satisfying T(A) C D are Dunford-Pettis. If D is
an arbitrary bounded subset of X, then D has the complete continuity
property if the €6 D has the complete continuity property.

The RNP for subsets is defined similarly. We obtain equivalent
formulations of the above definitions by replacing 7(A) ¢ D with
T(F(Ly)) C D. Because of the definitions we restrict out attention to
closed bounded convex subsets of X.
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We can derive a martingale characterization of the CCP for a closed
bounded convex subset K of X. As in §1, fix an increasing sequence
{mn}n>0 of finite positive interval partitions of Q such that \/a(n,) =
2 and ny = {Q}. Set %, = o(n,). It is easy to see that a martingale
{fn, %} takes values in K precisely when the corresponding bounded
linear operator 7 satisfies 7(A) C K. In light of Fact 1.5, we now
have the following fact.

Fact 4.3. If K is a closed bounded convex subset of X, then K
has the CCP precisely when all K-valued martingales are Cauchy in
the Pettis norm.

Theorem 2.7 localizes to provide the following characterization.

THEOREM 4.4. Let K be a closed bounded convex subset of X. The
Sfollowing statements are equivalent.

(1) K has the CCP.

(2) All the subsets of K are weak-norm-one dentable.
(3) All the subsets of K are midpoint Bocce dentable.
(4) All the subsets of K are Bocce dentable.

Proof. 1t is clear from the definitions that (2) implies (3) and that
(4) implies (3). Theorem 2.8 and Fact 4.3 show that (1) implies (4)
while [PU, Theorem II.7] and Fact 4.3 show that (1) implies (2). So we
only need to show that (3) implies (1). For this, slight modifications
in the proof of Theorem 2.10 suffice.

Let all subsets of K be midpoint Bocce dentable. Fix a bounded
linear operator 7 from L; into X satisfying T(A) C K. We shall
show that the subset 7*(B(%X*)) of L; satisfies the Bocce criterion.
Then an appeal to Fact 1.1.7 gives that K has the complete continuity
property. To this end, fix ¢ > 0 and B in Xt. Let F denote
the vector measure from X into X given by F(E) = T(xg). Since
T(A) C K, the set {F(E) :E CB and E € Xt} is a subset of K

WE)
and thus is midpoint Bocce dentable. The proof now proceeds as the
proof of Theorem 2.10. o

Towards a localized tree characterization, let KX be a closed bounded
convex subset of X. If K fails the CCP, then there is a subset of
K that is not midpoint Bocce dentable (Theorem 4.4) and hence a
separated J-tree grows in K (Theorem 3.2). A separated J-tree is
a separated Jd-bush and, with slight modifications, a d-Rademacher
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tree. In light of our discussion in §3, if a separated Jd-bush or a J-
Rademacher tree grows in K, then the associated K-valued martin-
gale is not Pettis-Cauchy and so K fails the CCP (Fact 4.3). Thus
Theorem 3.1 localizes to provide the following characterization.

THEOREM 4.5. Let K be a closed bounded convex subset of X. The
following statements are equivalent.

(1) K fails the CCP.

(2) A separated 6-tree grows in K .
(3) A separated o-bush grows in K .
(4) A J-Rademacher tree grows in K .

(B1]
(B2]

(B3]
[BR]
[DU]

[DU]

[GGMS]

[G]
[GU]
Ul
[KR]

[PU]

[RU]

[R]
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ULTRAPRODUCTS AND SMALL BOUND
PERTURBATIONS

KRzYSzTOF JAROSZ

It is very well-known that two real Banach spaces are isometric if
and only if they are linearly-isometric or that two uniform algebras
are linearly-isometric if and only if they are isomorphic as algebras.
These and similar classical “isometric” results have been extended by
E. Behrends, M. Cambern, J. Gevirtz, R. Rochberg, the author and
others to “almost isometric” cases. Proofs of the extended results are
usually quite technical. In this note we show that using ultraproducts
of Banach spaces we can in some cases deduce an “almost isometric”
result from the classical one in just a few lines.

0. It is a well-known classical result of Ulam that an isometry T
from a real Banach space X onto a real Banach space Y with T(0) =
0 is automatically linear. More recently, in 1982, Gevirtz [S5] proved
that this result is stable:

THEOREM. Let T be a map from a Banach space X onto a Banach
space Y with T(0) =0 such that

(I=ellx=»I <N Tx -Ty|| < (1L +&)llx—yl|, forx,yeX,
then
IT(x+y)—Tx - Ty| <&(lxll +1¥l), forx,yeX

where ¢ — 0 as ¢ —» 0.

The proof of the above result repeats, roughly speaking, the basic
idea of Ulam’s proof but is much longer and much more technical.
The intent of this note is to draw attention to the method of ultra-
products of Banach spaces. Using this method we can extend in just
a few lines some “isometric” results to “almost isometric” cases. This
includes the theorem of Gevirtz.

1. In this section we give a definition of the ultraproduct of Banach
spaces and list some basic results. We refer to the paper by Heinrich
[6] for a more extended exposition.

We denote by N the set of all positive integers and by # a non-
prime ultrafilter of subsets of N. That is, we assume that % is a

81
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proper subset of 2N which does not contain a one point set and such

that .
ANBeF ifA, Be ¥,

Bes ifBDAes,
AeForBes ifAUBeF.
Throughout this paper we assume ¥ is fixed.

DEFINITION. Let (a,)32, be a bounded sequence of complex num-
bers. We write

li}nanzg ifVe>034€e5 VneAd la,—g|<e.

It is easy to observe that lims# a, exists for any bounded sequence of
complex numbers. To get a useful alternative definition let p € SN\N,
where BN is the maximal compactification of N. Since a = (an)y2,
is a continuous bounded function on N it can be uniquely extended
to a continuous function 4 on SN. We have d(p) = limg a, where
s the set of all neighborhoods of p, restricted to N.

DEerFINITION. Let (X,)%, be a sequence of normed spaces and let
m(X,) be the space of all norm bounded sequences (x,)5°; with
Xn € Xn. We introduce a seminorm ||-||# on m(X,) by ||(x2)3,|l# =
limg ||x,|| . The ultraproduct []; X, of (X,)$2, is the quotient space
of the space m(X,) mod ker| - ||# .

DEeFINITION. Let X,, Y,, n € N, be sequences of normed spaces
and let 7,: X,, — Y, be a sequence of maps such that

(1) 1T (xn)|| < K||xn|]| forneN, x,€X,.

(We do not assume that 7}, are linear.) Let [[, 7,, denote the map
from [[s X, into [[5 Y, defined by [ Tu([xnls) = [Tu(xn)ls .
For (x,)%, € m(X,) we denote by [x,]s the corresponding ele-
ment of [[oX,. If X, are equal to a fixed normed space X then
[I# X = [Is Xn is called an ultrapower of X .
From (1) it follows that [], 7}, is well-defined and that

(2)

H Tn([xnl?)
F

< K||[[xn]s |l » [xn]7 € HXn .
F F
Note that if X}, is not only a Banach space but also a Banach algebra
then we can carry this multiplicative structure to [[, X, by defining

[Xnls - [Vnle = [Xn - ynls,  for [Xnls, als € [ Xn.
F



ULTRAPRODUCTS AND SMALL BOUND PERTURBATIONS 83

Here is a list of some basic properties of ultraproducts:

1°. TI# X» is a Banach space, that is [[, X, is complete even if
the X, are not.

2°. A map from X into [[, X defined by x — [x]s (mapping x
onto the sequence constantly equal to x) is an isometric embedding
of X into [],X. This map is surjective if and only if X is finite
dimensional.

3°. If T,: X, — Y, are all linear then []; 7}, is a linear map with
I Tl Tll = limg || T3]

4 If T,: X, — Y, is a sequence of invertible maps with

ITxall 1l }
su R Xn€Xy, X 0 <@
p{nnn Toxe]] - 7 € Xno X #

then []g 7, is invertible and ([T5 Tn)~! = [14(7;1).

5°. If X, = C(K,) then [[s X, = C(K), where K is compact.

6°. If X, are closed subalgebras of C(Kj), then []; X, isa closed
subalgebra of C(K).

7°. With any element [x;]# of [[, X, we can associate a lin-
ear functional on [[; X, by putting [x;]#([xs]) = limg x;(x,) for
[xn]# € [15 Xn . This defines a linear isometric embedding of []; X
into ([]4 X»)* which is surjective if the spaces X, are superreflexive.

Proofs of properties 1°-7° are easy exercises, we show here only
3° and 4° to get some additional information about the structure of
the algebra [[5 4n C [[5 C(Kn). The algebra m(C(K,)) consists of
all continuous bounded functions defined on (-, K,), the disjoint
union of K, . So m(C(K,)) can be identified with the algebra of all
continuous funtions on S = (U, K») . The kernel of the seminorm
l(f)lleg = limg || fu]| on m(C(K,)) = C(S) is a closed ideal. Any
closed ideal J in C(S) is of the form J = Jx = {f € C(S) : fix =
0} where K = K C §. We also have C(S)/J;, = C(K). Hence,
[I# C(Ky) can be identified with a subalgebra of C(K) where K C
B(UK»)\UK,. Now, since 4, is a subalgebra of C(K,), [I5 4y is
a subalgebra of C(K).

2. In this section we give some applications of the method of ultra-
products. We start with the proof of the theorem of Gevirtz. Assume
the result is false. Then there are sequences of Banach spaces X, and
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Y, , a sequence Ty: X, — Y, of surjective maps with 7,0 =0 and
1
@ (1-5) b=yl < 1T - Tl

1
S(l‘f"ﬁ)“x—y”: xayEXna
and sequences x, € X, Y, € Y, with

(4) N Tu(xn 4+ yn) = Tuxn — Tnyull 2 €' ([xnll + nll) , neN,

where & > 0 is a fixed number.
Without loss of generality, by putting

~ 1
Ty(x) = ———Tn((|Ixn]|| + X), xeX,,
d
an x — xn J7 —_ yn
B el + yall” T lxall + [yl

in place of T, x, and y,, respectively, we can assume that x| +
Iyall =1 forall neN.
Put

To=[]Tn:J[Xe =[] Yn: %o =[xals, Yoo =DWnls.
7 F F

By (3) and the property 4°, T, is a surjective isometry. By the
theorem of Ulam T, is linear, but from (4) we get

”TOO(xoo + yoo) - Too(xoo) - Too(yoo)”9'
= li}nHTn(x,, +Yn) = Tn(xn) = Tu(yn)l| 2 &' >0

which is a contradiction.

To formulate the next result we need some definitions.

By a uniform algebra we mean a sup-norm closed subalgebra with
unit, of the algebra C(K) of all continuous complex functions defined
on a compact set XK.

A linear map T from a Banach space X onto a Banach space Y
is called e-isometry if ||T]| < 1+¢ and |77} < 1+e6.

A linear map 7 from a Banach algebra A into a Banach algebra
B is called e-multiplicative if

(3) IT(fe) =T -T(®l<elfllel, f.ge4.

It is well-known that, in general, a linear and multiplicative map
T: A — B need not be continuous [14]. It is also well-known that, if
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B is commutative and semisimple then a linear, multiplicative map
T: A — B is automatically continuous [15]. The same is true for e-
multiplicative maps. In [8, p. 37] it is shown that an e-multiplicative
map 7 from a Banach algebra A into a uniform algebra is automati-
cally continuous, so by (5) we have ||T|| < 1+ ¢&. The general case of
a semisimple commutative algebra B follows easily from this by the
same arguments (closed graph theorem) as in the multiplicative case.

THEOREM 2. Let A and B be uniform algebras. If T: A — B is e-
multiplicative then T is an ¢'-isometry. If T: A — B is an &-isometry
then T: A — B defined by T(f) = (Tf)(T1)7! is &"-multiplicative.
Here ¢, €', €" tend to zero simultaneously.

This theorem was proved in 1979 by R. Rochberg [13] under some
additional assumptions about 4 and B. The general case was proved
in 1983 in [7] (see also [8, p. 35]). On the other hand, the isometric
case of this theorem, that is the case where ¢ = ¢ = ¢" =0, is a
classical result proven in 1959 by Nagasawa [12]. Using ultraproducts
we can simply reduce the general case to the isometric one. We show
here, by contradiction, the implication in one direction, the second
being equally obvious.

Assume T,: A, — B, is a %-isometry between function algebras
A, and B, .

The map []g Tu: [y An — [l Bn is a linear surjective isometry
between function algebras so, by the classical result [15] [ Tx([1]5)
= [Tx(1)]# is an invertible norm one element of [[4 B, with the
norm of its inverse equal also to one. Let F, be an element of
IM(By) , the space of all linear-multiplicative functionals on B, . Since
[1s Fn € M([15 Bn), we have

1=

[T AT:01) | = i Fucrit1).

so for all sufficiently large n, T,(1) is invertible in B, with

. _ . _1 _
Hm||T,(Dlf =1 and Lm[(Zx(1))) = 1.

Hence, we can define a map 7,: A, — By, by Tpf = (T, f)(Tn(1))!
and we have limg ||T,|| = 1 = limg || 71|
Assume there are €9 > 0 and f,, g, € 4n, || full =1 = |/gn|| such
that _ _ _
N T (S - 8n) = Tu(fu) Tn(gn)ll > €0



86 KRZYSZTOF JAROSZ
Then

(6)

>¢e,>0.

[1 Tu(flslgals) = [T Tn(lfule) T Tlenls)
5 4 F

On the other hand [], 7, is a linear isometry from [1+Ar onto
[+ B, which maps the unit onto the unit, so again by the Nagasawa
theorem it is multiplicative, which contradicts (6).

A linear projection P : X — X is called e-LP-projection, 1 < p <
0, if

(L=g)llx|l < (IPx|? + flx — Px|)'? < (1 +&)xll,  x€X,
with the obvious modification for p = co. LP-projections and &-L?-
projections play important roles in studying structure, isometries and
small-bound isomorphisms of various Banach spaces. The main result
here is due to E. Behrends [2]. He proved that if dimX > 2 and
p # 2 then X admits a non-trivial L?-projection for at most one p
and any two such projections commute. In [4] this result was extended
to e-LP-projection as follows.

THEOREM 3. Let X be a Banach space with dimX > 2. Let 1 <
p, q<oo,p#2,let P,Q:X — X be ¢-LP and e-L4 projections,
respectively. Then

Ip—q| <é(p) and ||PQ—-QP| <é&(p), wheree' - 0ase— 0.

Using the method of ultraproducts we can deduce the above the-
orem from the result of Behrends in what is now an obvious way.
It is enough to notice that [], P, is an LP-projection if P, is an
1_I?.-projection and p, — p,as n — 0.

There are a number of open questions related to the problems dis-
cussed here. We conjecture just two of them.

Conjecture 1. Let A be a uniform algebra. Let F be a linear func-
tional on A such that

\F(f-&)=F(NF@@I<elfllgll, f,geA.

Then there is a linear and multiplicative functional G defined on 4

such that
IG—F| <é&, wheree —-0ase—0.

REMARK. The question whether an almost multiplicative functional
is close to a multiplicative one was raised in [8], in connection with the
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theory of perturbations of Banach algebras. It was noticed there that
any such functional is automatically continuous [8]. B. E. Johnson
[10] gave an example of a non-uniform, commutative Banach algebra
which does not have the property described in the above conjecture.
He proved [11] also that C(K) algebras and the disc algebra A(D)
have this property. The problem is open, for uniform algebras in
general, e.g. for H*°(D)—the algebra of all bounded analytic functions
defined on the unit disc.

Conjecture 2. Let X, Y be real Banach spaces such that there is a
surjective map 7: X — Y with

(I-glx -yl <ITx-Ty| <A +e)flx -y, forx,yeX,

where 0 < ¢ < gy and ¢y is an absolute constant. Then X and Y
are linearly isomorphic.

REMARK. The above statement is known to be true for certain spe-
cial classes of Banach spaces like uniform algebras [9]. It is also known
that this is false, even for C(K) spaces, if we do not assume that &
is close to zero. By the theorem of Gevirtz to prove the conjecture it
is enough to show that an almost linear map is close to a linear one.
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THE LOCAL STRUCTURE
OF SOME MEASURE-ALGEBRA HOMOMORPHISMS

RusseLL LYONs

Extending classical theorems, we obtain representations for bound-
ed linear transformations from L-spaces to Banach spaces with a
separable predual. In the case of homomorphisms from a convolu-
tion measure algebra to a Banach algebra, we obtain a generalization
of Sreider’s representation of the Gelfand spectrum via generalized
characters. The homomorphisms from the measure algebra on a LCA
group, G, to that on the circle are analyzed in detail. If the torsion
subgroup of G is denumerable, one consequence is the following nec-
essary and sufficient condition that a positive finite Borel measure on

-~

G be continuous: Iy, — oo in G such that Yan #0 a(y5) — 0.

1. Introduction. Given a measurable space X and a (bounded)
complex measure 4 on X, the Banach space dual of L!(u) is com-
monly represented as L>°(u). We shall call M an L-space on X if
M is a Banach space of complex measures on X (under the measure
norm) such that v <« y € M = v € M [Sc]. Sreider [Sr] gave a rep-
resentation of the dual M* of M as a space of so-called generalized
functions, i.e., families of functions f, € L*®°(u) satisfying

(1.1) v = f,=f, v-ae.,
(1.2) 3215 N fullLooqu) < 00

The representation of A*, like that of L!(u)*, is by integration:

HH/fudﬂ-

Now, given two Banach spaces, B; and B, we denote by L(B;, B>)
the Banach space of bounded linear transformations from B; to B,.
Since M* = L(M, C), we may ask, in generalizing the above, for a
representation of L(M , B), where B is an arbitrary Banach space.
Again, the case where M = L!(u) is classical [DS]; here, the hy-
pothesis that B has a separable predual is made. In §2, we ex-
tend this theorem to general L-spaces M in a manner similar to
Sreider’s representation above. In essence, functions are replaced by

89
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B-valued functions. Our treatment will be entirely self contained,
thus giving an apparently new proof of [DS, Theorem VI.8.6]. How-
ever, another point of view could be adopted. Namely, if we use the
Radon-Nikodym theorem to identify L(u) = {v <« u : v bounded}
with L!(u), then we may regard an L-space M as the direct limit
limyepr L' (n), where M is directed by < and for v < u, L(v) is
included in L'(u). Now L(-, B) is a functor from the category of Ba-
nach spaces to its opposite category and, furthermore, is easily checked
to be a left adjoint. Since left adjoints preserve direct limits and in-
verse limits are dual to direct limits, it follows that L(M , B) is the
inverse limit limyep L(L' (1), B), where, for v < u, L(L'(n), B) is
mapped by restriction to L(L!(v), B). Hence, given a representation
of L(L'(x), B) (as in [DS]) and a construction of inverse limits, we
may obtain a representation of L(M, B). This amounts to the same
as our Theorem 2.1.

Now Sreider was actually interested in representing AM , the mul-
tiplicative linear functionals on M , when M was a convolution mea-
sure algebra on a locally compact abelian group. He showed that in
addition to (1.1) and (1.2), the following property was necessary and
sufficient for f, to define an element of AM :

(13) Vi, v 20 fuw(x) = fu)S () s xv-ae [(x, y)].

We, too, are mainly interested in the subset of homomorphisms
Hom(M,B) C L(M,B) when B is a Banach algebra. A simi-
lar condition to (1.3) is found in Theorem 3.2. In particular, when
M = M(G), the complex Borel measures on a locally compact abelian
group, G, and B = M(T), T the circle, Hom(M(G), M(T)) con-
tains in a natural way Hom(G, T) = G. The closure of G in a
certain weak topology is related to the behavior of Fourier transforms
at infinity and contains much information about a measure u when
regarded locally, i.e., when restricted to L(u), or, what is the same,
when viewed via the Sreider representation. For example, this analy-
sis will lead to the following surprising result: if the torsion subgroup
of G is denumerable, then a positive measure u € M(G) is contin-
uous iff there is a net {y,} C G tending to infinity such that for all
n # 0, lim, 2(y?) = 0. Characterizations of certain other classes of
measures are found in §4; these have proved useful in [KL] and [L4]
Other analyses of the local structure of the closure of G for certain u
can be found in [L3], [L4], and [L5]. The local structure of G is also
related to asymptotic distribution; this relationship, described here,
has been used in [KL] and [L4].
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The Sreider representation, Theorem 3.2, has been given before in
[(IgK] for the case Hom(M, M(T)), M being an L-subalgebra of
M(T), though in slightly different notation. An alternative represen-
tation for Hom(M , M(G)), where M is a semisimple commutative
convolution measure algebra in the sense of Taylor and G is a com-
pact abelian group, analogous to Taylor’s representation of AM via a
structure semigroup, has been given in [InK].

2. The Sreider representation of linear transformations. Suppose
that M is an L-space on a measurable space X and that B is a
Banach space with a separable predual, B.. Let £ (X, B) denote the
set of maps f: X — B which are bounded in B-norm and measurable
when B is given the weak* topology from B.. If fe€ % (X, B) and
U € M, there is a unique element [ fdu € B defined by the relation

Vb, € B. <b* , / fdu> - / (be, F(x)) du(x).
X
If D is a countable dense set in the unit ball of B, , then the equation

IF (e)lls = sup |(be, f(x))]
b.eD

shows that || f(-)||p is measurable. It is clear that

| [rau] < [1rtada.

The set of equivalence classes of % (X, B) under equality u-a.e. will
be denoted Z (X, B),, although this distinction will often be ignored.

The following theorem, which we shall term the Sreider representa-
tion, associates to each element of L(M, B) a certain family of maps
in #(X, B). We denote the image of u € M under £ € L(M, B)
by ,.

THEOREM 2.1. Let M be an L-space and B a Banach space with a
separable predual. There is a bijection between L(M , B) and the set
of elements {b. ,},em € 1'[#e uZ(X, B), which satisfy

i sup || ||bx, () < 00
(i) FGMH b2, ull Bl Lo ()

and

(ii) VV < ﬂ € M bx’y = bxhu v-a.e. [x]



92 RUSSELL LYONS

such that if ¥ corresponds to {b. ,}.cm (written T ~ b. .), then

(iii) YueM X, = /bx,#du(x)
and
(iv) 12l ar, 3y = 525!! 16, ullBll L ) -

Proof. Given {b. ,} satisfying (i) and (ii), define X by (iii). If
K,V € M, then by (ii), we have bx , = by |4, M-a.c., Whence
Zy = [ by |+ du(x). In conjunction with similar equations for Z,
and X,,,, this equation shows that £, + X, = X,,, . Similarly, for
aeC, X,, =aZX,, whence X is linear. Let K denote the quantity
in (i). Then

IZ) = sup [|Z,|| = sup H / bx,ﬂdu<x>||
[lull<1 Jlull<1

< sup [ f1bs,ulldlule) < K.
flull<1

To show that ||Z|| = K, choose any nonzero u € M and ¢ > 0. Let

0# v € L(u) be such that || [|5. .|z — | “b.,ﬂ||B|]Loo(u)||Lw(y) <e. Let

S be the unit sphere of B . Since the unit ball of B is weak* compact,

there exists a finite number of elements, 4!, ..., b2, of the unit ball

of B, such that

S=LnJ{beS: I(bi, Y — 1] < &}.

i=1

Therefore 30 < w € L(v) 3i |[(bl, bx,u/lbx,ullB) — U= < €. We
have

Zoll o i s 2 L | [
12 el > i, 2 = | [ b dot)

1
> o [ Morslls do(x) = K 2 |18l =gy~ 20K + 1),

Thus ||Z]| =K. _

Conversely, let X € L(M, B). Fix u€ M. For b, € B,, we denote
by b.oX the map v — (b,, X,). Restricted to L(u), this map is a
bounded linear functional and hence can be represented by a function
8», € L>(u). Choose a countable linearly independent set D whose
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linear span over Q, D', isdensein B,. If b, =Y" ,0;d!, di e D,

a; € Q, define
n
=1

Then b. — hy (x) is rational-linear on D' for every x € X . Further-
more, h, =g u-a.e., whence by countability of D',

(2.1) Vb. € D' |y (x)| < ||bu o ZI| < [|Bu]] - I Z]

for p-a.e. x. Now for every x such that (2.1) holds, b, = A (x)
extends from D’ to all of B, as a bounded linear functional, hence
element of B, call it f(x). This defines f(x) u-a.e. and shows that,
given any b, € B,, if b, =1lim,_, b (b? € D'), then

(22) (b., £(x)) = lim (b2, f(x)) = Tim hys(x)
for every x where f is defined. Write b. , for the equivalence class
of f. From Equation (2.1), we see that || f(x)|| < ||Z|| for every

x where f is defined. Together with (2.2), this shows that b. , €
Z(X, B), and gives (i). Now for v € L(u) and b, € D', we have

<b*,/fdu>=/b*,f /hb ) du(x)
= [ &.0dv(x) = .. ).

Since D’ is dense, (iii) follows. We claim that b. , is uniquely deter-
mined by the property just established:

W e L(w) 5, = /bx,ﬂdu(x).

Indeed, if we also have that Vv € L(p) £, = [ b du(x ) for some
b, , € Z(X, B),, then

Vb, € D' Vv € L(n) /(b*, by ) dv(x) = /(b*, B ) dv(x),

whence for u-ae. x Vb € D' (bs, bx u) = (bs, by ), 1€, by y=
by ., w-a.e. Thus (ii) follows. The same argument shows that if X ~
b... and T~ b’ ., then b..=5! .. O

We define the weak* operator topology (W*OT) on L(M, B) as
the weakest topology such that Yu € M Vb, € B, X+ (b,,X,) is
continuous. It is an elementary exercise to show that the unit ball of
L(M, B) is W*OT compact.
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For u € M, let L(M, B), denote the set of Sreider representa-
tions b. , of elements of L(M, B). We give L(M, B), the weak
topology generated by the maps b. , — [(bs, bx ) dv(x) (b« € Bx,
v € L(u)). Thus, the W*OT is the inverse limit of these topologies,
i.e., it is the weak topology generated by the maps X +— b. , (4 € M)
from L(M, B) — L(M, B),, where £~ b. ..

Every decomposition M =I1& J of M as a direct sum of closed
subspaces yields an addition on L(M, B) as follows: if IT!, I12
L(M, B), then we may define

(2.3) T, =10, +I12

where = pr+uy, pr€l, uyeJ. If T~b. ., I ~ bl ., and
ILJ,then by , = b)lwt] + b)%,ﬂl u-a.e.

The case where B = M(Y), the space of complex regular Borel
measures on a locally compact metric space, Y, is of interest. A
predual of B is the separable space Cyp(Y) of continuous functions
vanishing at infinity. We shall denote the Sreider representation of X
by ox,, in this case; thus, if f € Cy(Y) and pe M,

(2.4) [ razi= [ ([ rao..) duco.

(If Y is separable and a countable union of complete subspaces, then
(2.4) holds for f € Z(Y, C) since it is preserved under bounded
pointwise limits. In particular, for Borel sets EC Y,

mm=A@¢mwmo

Let M* denote the nonnegative elements of M and likewise for
M*(Y). We say that £ € L(M, M(Y)) is positive if it carries M+
into M*(Y). Itis easy to see from (2.4) applied to |u| that £ > 0 iff
VueM Vex[u] ox,, =20 (“Vex[u]” means “for u-a.e. x”-see [L1]).
It is also easy to show that if £ > 0, then v < u = X, < X and
Zul < Zjyy -

3. The Sreider representation of homomorphisms. Let G be alocally
compact semigroup with separately continuous multiplication. Then
M(G) is a Banach algebra under convolution [W]. Let M be an L-
subalgebra of M(G), i.e., a subalgebra which is also an L-subspace,
and let B be a Banach algebra with a separable predual such that
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multiplication is separately weak* measurable and
(3.1) VfeZ(G,B)VbeBYueM

[ 16 bautx) = (/fdu) b
& [b-f@dutx)=b- [ rdu.

In order to state some sufficient conditions that (3.1) be true, we define
the following multiplication on B* x B. If b € B and b* € B*, then
b'— (b'-b, b*) is a bounded linear functional on B ; we denote it by

b*-b. Let Fiw‘ be the smallest subspace of B* containing (canoni-

cally) B, which is closed under weak* sequential limits. Let AB be
the subset of B* consisting of the multiplicative linear functionals.

ProposITION 3.1. Let B be a Banach algebra with a separable pre-
dual. Right multiplication on B is weak* measurable and the first
equation of (3.1) holds if any of the following conditions is satisfies:

(i) B.-BCB," .
(ii) Right multiplication is weak* continuous.
(iii) Right multiplication is weak* measurable and B,” NAB sep-
arates points in B.

Proof. The class of b* € B* such that b — (b, b*) is weak* measur-
able contains B, al}d is closed under weak* sequential limits. Thus,
all elements of B, are weak* measurable. Now right multiplication
is weak* measurable iff Vb € B Vb, € B, b' +— (b., b’ - b) is weak*
measurable. But (b, d'-b) = (b', b, - b), whence this condition is
equivalent to all elements of B, - B being weak* measurable. The
sufficiency of (i) for measurability is now obvious. Also, the class of
weak* measurable b* € B* such that

([ rau.er)= [¢r.6)an

is closed under weak* sequential limits by the bounded convergence

theorem, hence contains B, . Thus, if (i) holds, then Vb, € B,
Vbe B

<b*,/f-bd,u>= /(b*,f-b)du=/(f,b*-b)du

([} o (f ) 5).

whence the first equation of (3.1).



96 RUSSELL LYONS

Now (ii) is equivalent to B. - B C B, since B, is the set of weak*
continuous linear functionals on B. Thus, sufficiency follows from
that of (i). Finally, if (iii) holds, then for f € #(G, B), b € B,

L€ M,and b* € B, NAB, we have

</f-bdu,b*>=/<f-b,b*>du=/<f,b*><b,b*>du
= [ir by a6y = ([ fau,bt) 0,57

{(fra) 2.9

from which the first equation of (3.1) follows. m

Let %)(G, B) denote the Baire-measurable functions from G to
B, where B is given the weak™* topology. For u, v € M(G), let uxv
denote, besides the usual product measure, also its unique extension
to a regular Borel measure in M(G x G). If f € %(G, B) and
u,v e M(G), then

/fdu*u=/f<xy>duxv(x,y>
- / Flxy)du(x)dv(y),

as can be seen by applying any b, € B, [W].

The Sreider representation of Hom(M , B), the continuous homo-
morphisms from M to B, satisfies one property additional to those
in Theorem 2.1.

THEOREM 3.2. Let G be a locally compact semigroup with separately
continuous multiplication and M an L-subalgebra of M(G). Let B
be a Banach algebra with a separable predual and separately weak*
measurable multiplication satisfying (3.1). Let £ € L(M, B) and
choose b. , € %(G,B) (u € M) so that T ~ b.... Then X €
Hom(M, B) iff

(32) VYu,veM* byy yw=bx by, foruxv-ae (x,y).
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Proof. Suppose first that (3.2) is satisfied. Then for u,ve M,
Zarr = [ e s v(0) = [[ byt dutx) dvy)

= / / byl by, dn(x) dv(y)

- / ( / b 1 du(x)) by i dv(y)

= /bx,“,,du(x)-/by,h,,du(y)=EM-Z,,.

Conversely, if ¥ € Hom(M, B), then given u, v € M*, we have for
all 4’ € L(u) and v' € L(v),

/ by, uww A X V(X , y) = / b, e A+ V' () = Z s
=%, I, =/bx,ﬂdy’(x)-/by,udV’(y)
- / b+ by,v di'(x) dV'(9)
.—_/bx,”-by,,,du'xu’(x,y)-

Since the span of L(u) x L(v) is dense in L(u x v), (3.2) follows. 00

If multiplication in B is jointly weak* continuous (for example, if
B. N AB separates points in B), then the unit ball in Hom(M, B) is
easily shown to be W* OT compact. An example where compactness
fails is Hom(M(R), M(R)): define 7,, (n > 1) in the unit ball by

/ £ d(T)u(x) = / fxydu(x)  (f € CQ(R))
R R

and let Z: u — u({0})d(0), where d(0) is the Dirac measure at 0.
Then 7, — X in W*OT, but

T e L(M(R), M(R))\ Hom(M(R), M(R)).

We define the following multiplication on L(M, B): if X ~ b. .
and IT ~ b. ., then X -II is defined by its Sreider representation
bx,u- by, ,. When B is commutative, Hom(M, B) is closed under
multiplication. It is easily verified that if multiplication in B is sepa-
rately weak* continuous, then multiplication in L(M , B) is separately
W*OT continuous.
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Suppose that M = I @ J, where I is a closed ideal and J is a
closed subalgebra. If IT1!, I1> € Hom(M , B) satisfy

(33) VuelWeJI,, =I,.IZ & I, =I3.IL,

then the “sum” X of I1! and I1? defined in (2.3) is 2 homomorphism.

4. Limit points of group homomorphisms. If H is a locally compact
group, then convolution is separately weak* continuous in M (H).
Indeed, if go, 4, v € M(H) with uo <> u, then for f € Co(H),
the map x — [ f(xy)dv(y) lies in Cy(H), whence

[ ramary = [[ 1) avy)duato)
= [[ ro)aviyauen = [ rausv,

which is to say that u, * v —— u*v. A similar argument applies

to v x u,. Thus, if G is a locally compact semigroup with sepa-
rately continuous multiplication and H is a locally compact metriz-
able group, then the preceding section applied to Hom(M , M(H)) for
any L-subalgebra M of M(G). Every continuous homomorphism
¢: G — H vyields an element of Hom(M, M(H)), which we also
denote by ¢, defined by (f, ¢,) = (foe, u) for f € Co(H). The
Sreider representation of such a ¢ is particularly simple: ¢ ~ d(p(x))
(independent of u), where d(¢) denotes the Dirac measure at .

We identify Hom(G, H) with a subset of Hom(M(G), M(H)) in
the above manner. Our aim is to study the set

A =Hom(G, H)\ Hom(G, H)
and its local structure
Alp)={Z,:Z €A}, Ap)={0. ,:0.,.€A},

where A consists of the Sreider representations of elements of A.
Since all elements of Hom(G, H) are positive and lie in the unit ball,
the same holds for A. (In fact, every positive homomorphism lies in
the unit ball: if 0 < £ € Hom(M(G), M(H)), then for u € M(G)
and n > 1, we have

IZull™ < IZuill” = NZL N = 1]
whence ||Z|| < 1.)

We are particularly interested in the case where G is a locally
compact abelian group and H is a circle group, T. In this case,

SZI- 1 el = 120 Neell™ s
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Hom(G,T) = G, the dual of G, and the identification of G as a
subset of Hom(M(G), M(T)) preserves the usual topology of G (of
uniform convergence on compact subsets). Furthermore, as G lies in
the unit ball of Hom(M(G), M(T)), it follows that G = GUA is a
compactification of G.

Recall that a sequence {x;}%2, C G is said to have an asymptotic
distribution o, written {x;} ~ o, if
L5 K
Eg:l (xy) — o as — 0.

For n € Z and X € Hom(M(G), M(T)), define fl(n) € AM(G)
by (u,X(n)) = Z,(n). We write the Sreider representation of y €
AM(G) as xu(x). Thus, if X~ 0. . and x = Z(n), then

Xu(x) = bx,u(n).

Note that for all n, the map X — fl(n) from (Hom(M(G), M(T)),
W*OT) to AM(G) (with its usual Gelfand topology) is continuous.
We regard the Fourier transform as a restriction of the Gelfand trans-
form; thus, in accordance with the Sreider representation, we have

a(y) = [ydu for yeG.

PROPOSITION 4.1. Let G be a locally compact abelian group and
A= G\G in Hom(M(G), M(T)). Then

(i) A is closed topologically and under multiplication by elements
of G _ _

(i1) if ox, Tx € A(u), then oy x T4 € A(u) 5

(i) A(u) = {v € M(T): 3 net {yo} € G (Vo — 0&Vn € Z
A7) — B(m)};

(iv) A(u) ={0.€ Z(G, M(T)),: 3 net {y.} € G (yo— 0&Vne
Z y" — 6.(n) weak* in L*(u))};

(v) if G is metrizable, then the nets in (iil) and (iv) can be
replaced by sequences and A (u) = {0. € B(G,M(T)),: 3y; € G
(7j — 0o & for every subsequence y; , Vex[u] {) (X)}f2; ~ 0x)}.

Proof. Suppose that X € A is the limit of a net {y,} C G Then
$(n) = limy? in AM(G) for all n € Z. Now if y, — y € G, then
y? — y", whence X = y. But since AN G = @, this is impossible,
and so 7, — oo in G. In particular, (1) is 0 on LY(G) [HMP,
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p. 136, Proposition 4] and consequently A is closed. It is clear that
A-G C A, from which (i) now follows. Statement (ii) ensues as well.
Now if v € A(u), thenlet G > y, — X € A be such that v = X,
Then y, — o0 and (), o, %, = v, which gives the inclusion C of
(iii). On the other hand, if y, — oo and Vn a(y?) — ©(n), then by
compactness of G, we can choose a subnet {vg} of {ya} converging
to some X. Since Y, — oo, it follows that T € A and v =X, € A(y).
This completes the proof of (iii). The proof of (iv) is analogous.
Finally, if G is metrizable, then L!(u) is separable for u € M(G)
and so L(M(G), M(T)), is metrizable. Thus, if u € M(G) and
Yo — X ~ 0. ., pick any non-zero p € L!(G) and a subsequence
{J(yaj(-))} converging to 0. |4 0 L(M(G), M(T)) 44| - Then
Yo, = 0(7,())~ (1) = (E(1)), = 0 in L(p), whence 74, — o0

in G, and " > (£(n)), = 6. ,(n) in L®(u). This shows the
sufficiency of sequences for (iii) and (iv). Furthermore, if Vn 7 —
6.(n) weak* in L°°(u), then by [L2, Lemma 5], there is a subsequence
{7j} of {y;} such that every further subsequence {y}k} satisfies

(4.1) vex[u] {7, (X)) ~ s

Conversely, if {y;} is a sequence, every subsequence of which satisfies
(4.1), then we claim y} — 6.(n) weak* for every n. If not, then for
some n there would be a subsequence {yj’fc } converging to a different
limit x . Then also

and by (4.1),

Therefore y = 6.(n), a contradiction. Thus (v) follows from (iv). O

When G is regarded as a subset of AM(G), we shall use the no-
tation I rather than G to avoid confusion. Let T, € Hom(G, G)
denote the map x — x" (n € Z), as well as the corresponding map
induced in Hom(M(G), M(G)). Thus, for £ € Hom(M(G), M(T)),
we obtain Xo T, € Hom(M(G), M(T)); note that if £ =y € G, then
yoT,=y".
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PRrROPOSITION 4.2. Let G be a LCA group and
X € Hom(M(G), M(T)).

Then T € G iff £(1) € T and VneZ $(n) = (1) o T,,. The map
Z— f,(l) is an isomorphism from G onto T sending GtT.
Proof. If L € E, let G> Va WOT, 5. Since Po(n) =y, we have
yi— f(n) for all n. In particular, £(1) e T'. Also, fl(n) =limy? =
limy, o Ty = (limy,) o T = £(1) o T,,. Conversely, if £(1) € T and
Vn X(n) = Z(1)oT,, then let y, — Z(1). Choose a convergent stnet
yk — IT in Hom(M(G), M(T)). Then from the above, I1(n) = I1(1)o
Tn=2(1)o T, = Z(n) forall n, whence E=I1€G.
It follows from this that the map X — (1) is injective. Surjectivity
onto I' is proved by a compactness argument similar to the above. O
We write M(G) = M. (G)®M,(G) for the decomposition of a mea-
sure into its continuous and discrete parts. Then hy: u— [; dug =
212(0) is in T\I' [HMP, pp. 136-7, (4.1.4)]. We denote the element
of A corresponding to h; by I1?. If G has at most countably many
torsion elements, then we claim that
~ 0 ifrn=0,
fi4(n) = { B
hy ifn#0,
whence
I = 2:(0)A + 24(0)6(0),
where A is Lebesgue measure on T. To see this, note first that

I14(0): = (o Tg") = (0) = A(0).
Second, if n # 0, then for all g € G, there are, by the supposition,
denumerably many x € G such that x” = g. Therefore

(mo T HY({g}) = Y, u({x}),

x"=

whence
fi9(n): w3 (no T )({g})
geiG
=3 Y u({x}) =) u({x}) = i4(0).
8€G x"=g x€G

This proves the claim.
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Related elements of A are X-II¢ for X € 5; if, as above, the
torsion subgroup of G is denumerable, then

(Z-T1%), = 1c(0)A + Z,, .

Thus, if we set IT: 4 — 2(0)A, then X-II¢ is the sum of IT and X
defined by (2.3) and (3.3) from the decomposition M = M. &M;. An
interesting example is G =T and X: u — u; in this case, (X-I1%), =

e(0)A + ug -
Provided still that G has a denumerable torsion subgroup, the
Sreider representation n.d, . of I1? is given by

A if u({x}) =0,
4.2 4,=
(42 o ={30) it e 50,
Let A€ #(G, M(T)), be defined by A(x) =A. Then from [HMP, p.
70, Corollaire 2] and Proposition 4.2 (or from (4.2) and the following
proposition),
(4.3) peM(G) & AeAy).

This yields other characterizations of M (G) when combined with
Proposition 4.1 (iv), (v). For example,

UEM(G) & Ay —mooVWweLu)Vn#00(ys)—0
& 3y, — oo Vy e G Vn #0 a(yyh) — 0.

Our next proposition describes X( 1) completely when u is discrete
(cf. [HMP, pp. 67-68]).

) (

PROPOSITION 4.3. Let G be a LCA group. Let G denote the
Sreider representations of G € Hom(M (G), M(T)) and, for u €

M(G), E(/A) ={0.,,:0,.€ _G_}. Let G; denote G with the discrete
topology and, for u € My(G), let G, denote the discrete subgroup
generated by the mass-points of u.

(1) VE€ G 39 € Gy Vu € My(G) Zy = Y e h({x})d(p(x))
and ox,, =0(¢(x)), where Z~a...

P

(i) Yu € My(G) E("l ~ G-,

(iii) 4 € My(G) & E(u) is a group (under the multiplication
in L(M(G), M(T))).
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. ~ W* OT
Proof. (i) Let G5y, —— X. Then for x € G,

0(Ya(-)) = 0. 5(x) € LIM(G), M(T))s(x) >

i.e., 6(7a(x)) = 0y s(x) eventually. Thus, y,(x) stabilizes at some
point ¢(x) and oy 5x) = 6(¢(x)). The assertions now follow from

linearity and properties of the Sreider representation.
(i1) The fact that E(u) can be identified as a compact subgroup

—

of Gf,‘ follows from (i). If it were not the whole group, then there

would be a nonzero x € Gfi‘ such that ¢(x) =1 forall ¢ € E(u). In

particular, y(x) =1 forall y € G, whence x = 0, a contradiction.
(iii) This follows from [HMP, p. 68, Proposition 10] and (ii).O

We now arrive at the characterization of positive continuous mea-
sures mentioned in the introduction.

THEOREM 4.4. Let G be a LCA group whose torsion subgroup is
denumerable and let 1 € M*(G) be positive. Then p € M (G) iff
there is a net G > y, — oo such that for all n #0, a(y?)—0.

Proof. By Proposition 4.1 (iii), this is equivalent to u € M}(G)

A(0)A € A(u). For p € M} (G), this follows from 4 € A(u) (see
(43)). If u ¢ M¥(G) and Z€ A, then X, =%, +%, >2, since
#c 2 0 and X > 0. However, by Proposition 4.3(i), X, is nonzero
and discrete; hence X, cannot equal 2(0)A. O

Because of the interest this theorem may present, we provide the
following “elementary” proof and strengthening for the case G =T.
If u € M. (T), then by Wiener’s theorem [K, p. 42], there is a sequence
{m,(cl)} of density one in N such that ﬂ(m,(cl)) — 0. Likewise, there is
a sequence {m}c”)} of density one such that ﬁ(nm,(c")) =(T,) ”(m,(c”) ) —
0 since (T,), € M., for n # 0. By an elementary intersection argu-
ment, we obtain a sequence {my}, still of density one, such that for all
n#0, a(nmg) — 0. (A similar argument produces a sequence {m;}
of density one such that for n # 0 and all r, a(r+ nmy) — 0, i.e.,
o(myx) — A in L(M(T), M(T)), , thereby strengthening (4.3).) For
the converse, we use the following proof due to Jean-Frangois Méla.
Let K;(x) be the Fejér kernel of order /. Then if u > 0 and if for
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all n#0, a(nmy)— 0, then
1 | S
u({0}) < fT S Kilmex) du(x) = 5 R(0) s k — oo

by hypothesis. Since this is true for all /, it follows that u({0}) =0.
Now apply this result to u * i, where a(E) = u(-FE).

The local structure of A can be used to characterize other classes
of measures besides M, and M, . If # is a class of subsets of G, let

%l ={ue M(G):VE €% |u|(E) =0}.
Thus, if 2 is the class of singletons, 2+ = M.(G).

DEFINITION. A set E C G is called an H-set if there is a sequence
G 3 y; — oo such that {y(x): k> 1, x € E} is not dense in T. A
set E C G is called a Dirichlet set if there is a sequence G 3 y; — oo
such that limy_, . Sup,cg |7k(x) — 1] = 0. A measure u € M(G) is
called a Dirichlet measure if lim,_, | |7I|(y)| = ||y .

For background on H-sets, see [Z, Chapters IX, XII]; on Dirichlet

sets and measures, see [HMP, pp. 34-35, 240-247]. The following
proposition is used in [KL)].

ProrosITION 4.5. Let G bea LCA group.
(i) If G is metrizable, then

H* ={u:Vvo. € X(u) Veéx[u] supp oy =T}
={u:vXe AVv e L(u) suppZ, =T}.

(ii) u is a Dirichlet measure iff the constant function 6(0) € A(u).
(iii) D+ = {u: Vo. € A(u) ¥ex[u] ox # 6(0)}

Proof. Part (i) follows from Proposition 4.1(v) and a straightfor-
ward generalization of [L4, Theorem 13]. Part (ii) follows from Propo-
sition 4.2 and the fact that u is a Dirichlet measure iff the constant
function 1 € (T\I)(z) [HMP, p. 34, Lemma 6]. Part (iii) follows
from part (ii) and the fact that D! consists of the measures orthogo-
nal to the Dirichlet measures [HMP, p. 243, Proposition 9]. O

Our final remarks concern the circle group.

DEFINITION. A positive measure u € M*(T) is called C-quasi-
symmetric if for all pairs of adjacent arcs, / and J, on T of equal
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length, uI < C-uJ. We denote the class of C-quasisymmetric mea-
sures by QS(C).

Note that quasisymmetric measures are continuous.

PROPOSITION 4.6. The class QS(C) is weak* closed. If u € QS(C),

then A(u) € QS(C), A(u) € QS(C) in the sense that if o. € A(u),
then Véx[u] ox € QS(C), and A(v) CQS(C) forall 0<v e L(u).

Proof. Let QS(C) 2 uq ", ». Given adjacent arcs I, J of equal

length and ¢ > O, pick f, g € C(T) such that f < 1;, 1; < g,
f(; - f)dv <e,and [(g—-1;)dv <e. We have

v < /fa’u+a=lim/fd,ua+e_<_mua1+e

gc-muaJ+aSC-lim/gdua+a=C/ng+a

<C-vJ+(C+1)e.

Since ¢ was arbitrary, we see that vI < C-vJ, whence v € QS(C).

Choose u € QS(C). Then y, € QS(C) for any y € T. Since
A(u) is contained in the weak* closure of {yﬂ}y EIR! follows that
A(u) € OS(C). Suppose that E C T and uE > 0. If I and J
are adjacent arcs of equal length and ¢ > 0, then choose U, a finite
union of arcs, such that y(UAE) < ¢. By continuity of ux, we have
for all large 7,

RENY N < pUny I +e< C-u(Uny~'[J]) + 2¢
<C-wWEny I+ (C+ 2.
Since ¢ was arbitrary, it follows that A(u|g) C QS(C). As QS(C)
is a positive cone, we deduce that A(v) C @S(C) for 0 <v € L(u).

Finally, let 0. € A(#). Let P be the essential range of o., i.e, the
smallest weak* closed set P such that g, € Pu-a.e. Then P is con-
tained in the weak* closure of {[oxdv(x): 0<v e L(u), |lv||=1}=
U{A(v): 0 <v e L(u), |v| =1}, which, by the above, is contained
in QS(C). |

As an example of the pathology possible for A(u), we present the
following observation.
PROPOSITION 4.7. There is a measure u € M(T) such that for any

probability measure v € M(T), there exists a. € A(u) such that o, =
vi-a.e.
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Proof. Let {Py}x>; be a set of trigonometric polynomials such that
{P -A} is weak* dense in the set of probability measures. Let {n;} C
N satisfy n;,; > 3n; - deg P, . Form the generalized Riesz product
[HMP, Chapitre 5] u = [[;>; Px(nxx). Then given a probability v,

let Pklﬂ ", ». For any r, m € Z, it is easy to see that ﬂ(r+mnkl) —
A(r)o(m), ie., d(mgx) — v in L(M(T), M(T)),. m)
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ASYMPTOTIC BEHAVIOUR OF SUPERCUSPIDAL
CHARACTERS OF p-ADIC GL3 AND GL4:
THE GENERIC UNRAMIFIED CASE

FioNA MURNAGHAN

This paper describes the singular behaviour of the characters of ir-
reducible supercuspidal representations of n of G = GL,(F) around
1 in terms of the values at 1 of certain weighted orbital integrals.
The weighted orbital integrals are computed when » =3 or 4 and #
is generic and unramified.

1. Introduction. Let 7 be an irreducible supercuspidal representa-
tion of G = GL,(F), where F is a p-adic field of characteristic 0.
The character ©, of = is a locally constant function on the regular
set Greg consisting of all x € G such that the coefficient of A” in
the polynomial det(4 + 1 — Adx) is nonzero. It is well known that,
if d(m) is the formal degree of m and x € Gy is elliptic and close
to the identity, ©,(x) = cd(n) for some constant ¢ depending only
on normalizations of Haar measures. For other x € Gy near 1, the
value of ©,(x) is unknown. Kutzko [K] has given a formula for 6,
when 7 is prime, but it involves a sum over double cosets in G and
cannot easily be evaluated.

The two objects of this paper are as follows. The first is to describe
the singular behaviour of the character ©, of n around 1 in terms
of the values at 1 of certain weighted orbital integrals. To do this, we
compare results of Howe and Arthur giving asymptotic expansions for
O, . The second is to compute the weighted orbital integrals required
to give a formula for ©, when n = 3 or 4 and 7 is generic and
unramified.

Howe showed that

Or(expX) = > co(m)is(X),
A

for X € = Lie(G) close to zero and such that exp X € Greg. (A5)
denotes nilpotent Ad G-orbits in £, cs(n) is a constant, and s is
the Fourier transform of the orbital integral over & . In the case of
GL,(F), the functions i, are known. The behaviour of ©,(x) as
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Xx € Greg approaches 1 is determined by the homogeneity properties
of those fis’s for which cs(m) # 0. These results are outlined in §2.

In §3 we state results of Arthur [A3], [A4] showing that a weighted
orbital integral has a germ expansion valid on a neighbourhood of 1,
and that O, itself is a multiple of a weighted orbital integral of a sum
of matrix coefficients of 7.

The equality of Howe’s and Arthur’s expansions for O, yields one
of the main results of this paper—a formula for each constant cs(7)
as a multiple of a certain weighted orbital integral evaluated at 1. We
derive this formula in §4. It holds for all » and any supercuspidal
representation of GL,(F).

In §§5 and 7, we consider a generic, unramified, irreducible super-
cuspidal representation 7 of GL3(F) or GL4(F). Such a represen-
tation is known to be induced from a representation of some open
subgroup of G. The particular sum of matrix coefficients appearing
in the weighted orbital integrals is defined in §5 using results of Kutzko
which give the character of the inducing representation. §6 contains
a description of the normalizations of measures and the evaluation
of the weight factor for the weighted orbital integrals. In §7, we ob-
tain explicit expressions for the constants cs(7) as polynomials in the
order g of the residue class field of F.

The equality of Arthur’s expansion and Harish-Chandra’s general-
ization of Howe’s expansion to a reductive p-adic group can be ex-
pected to yield information about the character ©, of any supercus-
pidal representation z#. However, the functions fs, which are not
known in general, may be difficult to compute, and the germ expan-
sion for weighted orbital integrals is more complicated than that for
GL,(F).

I would like to thank Paul Sally for helpful discussions and James
Arthur for explaining his results about weighted orbital integrals.

2. Fourier transforms and characters of admissible representations.
Throughout this section, G will be the F-points of a connected, re-
ductive F-group. Let 7 be an irreducible admissible representation
of G. ©; denotes the character of 7. We summarize results of
Harish-Chandra and Howe relating the values of ©, near smgular
points in G to certain Fourier transforms.

Recall the deﬁnmon of the Fourier transform on the Lie algebra &
of G. For f € C>(£), the function f € CX(&) is given by:

/t// BX,Y)f(Y)dY, Xeg,
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where B is a nondegenerate symmetric G-invariant bilinear form on
Z, v is a nontrivial character of F and Ad Y is a Haar measure on
the additive group of £. The map f +— f is a bijection of C*(¥).
The Fourier transform of a distribution T on £ is defined by T'(f) =
T(f). Let Zieg be the set of semisimple elements X in & such that
det(ad X)g,» # 0, where # is a Cartan subalgebra containing X .

THEOREM 2.1 [HC2, Theorem 3). Let T be a G-invariant distri-
bution on & which is supported on the closure of Ad G(w) for some
compact set w C & . Then there exists a locally integrable function ¢
on & such that

L T(f) = [ or(X)f(X)dX, f € C(2).

2. ¢t is locally constant on Zieg.

Let Xo € & and ¢ = AdG(Xp). If Gy, is the stabilizer of Xp in
G,let dx* be a G-invariant measure on Gx \G. Then

Mm=/GﬂMfmww

Xo

converges for f € C®(¥) and f — ug(f) is a G-invariant distribu-
tionon .

CoROLLARY 2.2 [HC2]. There exists a locally integrable function
fg: & — C which is locally constant on %eg and

wm=éwavwwx
Jor feCX(¥).

Let () be the set of nilpotent G-orbits in &. If g is the order
of the residue class field of F,|.| denotes the norm on F which
satisfies || = g~! for any prime element @ of F. For y € G, let
G, be the centralizer of y in G, and let &, be the Lie algebra of G, .

ProrosiTION 2.3 [HC2]. For ¢ € (#;), X € & and t € F*,
fe(2X) = |t|74m7 fe(X).

Proof. For f € C*(%), define fi(X) = f(t7'X), X € &. It is
well-known that pe(f:) = |¢|4im? ks(f). This, together with (f,) =
|g|dim (F) _, -1, broves the proposition.



110 FIONA MURNAGHAN

THEOREM 2.4 [HC2, Theorem 5]. Let y be a semisimple point in
G . For any irreducible admissible representation n of G, there exist
unique complex numbers cz(m), one for each nilpotent G,-orbit @ in
%y, such that

2(7exp X) Z co (M) 0p(X

for X € &, sufficiently near 0. Here Vg is the Gy-invariant measure
on @, and Vs is the Fourier transform of vs on &,.

REMARK. The case G = GL,(F) and y =1 is due to Howe [H].

The functions {ix|@ € (#;)} are linearly independent on V' N,
for any neighbourhood ¥ of 0 in & [HC2, Theorem 4]. Therefore
the functions {iiz|cs(m) # 0} determine the singular behaviour of ©,
near 1. Very little is known about the constants cs(7) in general. If
m is supercuspidal with formal degree d(x), then, if {0} denotes the
trivial nilpotent orbit, c;py(n) = cd(n) where ¢ # 0 depends on the
normalization of measures. Howe [H] proved that, if n is a super-
cuspidal representation of GL,(F), then cs(n) = 1 for the regular
(maximal dimension) nilpotent orbit & . Moeglin and Waldspurger
[MW] have shown a relation between cs(m), for n admissible and
some @, and dimensions of certain Whittaker models. As far as the
functions f» themselves are concerned, there is some information
available in [MW] for induced nilpotent classes, and for G = GL,(F)
the [ ’s are known due to Howe (see Lemma 4.1).

3. Weighted orbital integrals and characters of supercuspidal repre-
sentations. We state several results due to Arthur which will be used
in later sections. Theorem 3.4 relates the character ©, of a super-
cuspidal representation 7 to a weighted orbital integral of a sum of
matrix coefficients of 7. Theorem 3.5 gives a germ expansion for
weighted orbital integrals. A vanishing property for weighted orbital
integrals of cusp forms is stated in Proposition 3.9. In Proposition
3.7, we derive a formula for the weighted germ gAGJ corresponding to
the trivial unipotent class in a Levi subgroup A .

Our notation follows that of Arthur [A2]-[A4] except in one re-
spect: the boldface letter G will be used to denote an algebraic group
defined over F, and G = G(F) will be the F-rational points of
G. By a Levi subgroup M of G, we mean M = M(F), where
P = MN is a parabolic subgroup of G. If Ay is the split com-
ponent of M, then Ay, = Am(F). Let F (M), resp. Z(M), be
the collection of parabolic, resp. Levi, subgroups of G which contain
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M . Given a parabolic subgroup P = P(F), Mp and Np denote its
Levi component and unipotent radical, respectively. Let #(M) =
{P € $(M) | Mp = M}. The chambers in the real vector space
a, = Hom(X(M)r, R) parametrize the set #(M), where X(M)fg
is the group of characters of M which are defined over F.

We now review the notation required in order to define the weights
vyr occurring in the weighted orbital integrals. Given M, choose a
special maximal compact subgroup K of G which is in good position
relative to M. For P € #(M) and x = np(x)mp(x)k(x), with
np(x) € Np, mp(x) € Mp, and k(x) € K, set Hp(x) = Hy(mp(x)).
Here Hys: M — a,, is given by:

eHum)t) = |y(m)|, meM, xeX(M)g.

Let 21?4 be the kernel of the canonical map from a,, onto a;. There
is a compatible embedding of a; into g,, resulting from the embed-
dings of X(M)r and X(G)r into the character groups X(A4p) and
X(Ag) of Awm and Ag, respectively. Therefore, a, = a$ @ ag.
Fix a Weyl-invariant norm |- || on g, , where My C M is a mini-
mal Levi subgroup. The restriction of || - || to each of the subspaces
ay, M € Z(M,), yields a measure on a,,. We take the quotient
measure on a$, ~a, /ag.

Let P € #(M). The roots of (P, Aps) will be regarded as charac-
ters of Ajs or as elements of the dual space a3, of a,;,. Let Ap be
the set of simple roots of (P, Ay). If a € Ap, the co-root oV is de-
fined as follows. Choose a minimal Levi subgroup My c M. If p isa
reduced root of (G, 4y), the co-root BV is an element of the lattice
Hom(X(4wm,), Z) in g M, For Py € #(M,), with Py C P, there is
exactly one root g € Ap such that B|dy, = c. aV is defined to be the
projection of BV onto 4§, . Set A} = {a"|a € Ap}. The lattice Z(A})
in gf, generated by Ay is independent of the choice of P € #(M)
[A4, p. 12]. For x € G, vps(x) is equal to the volume of the convex
hull of the projection of the points {~Hp(x)|P € (M)} onto a$ .
Set 6p(4) = vol(a$,/Z(Ay))~! Ioea, MaV), A € ia;,. Then, [A2, p.
36]

up(x) = lim Yo e HHEMgp)t,  Aeiay,,
PeP(M)
and, [A2, p. 46]
(3.1) wa(x)=1/r Y (—AHp(x))0p(A)",
PEeP(M)
where r = dim(A4s/Ag).
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For y € G, define D(y) = Dg(y) = det(1 — Ad(g))z/z , where o is
the semisimple part of y. Let f € C*(G). For a Levi subgroup M,
set Ap g = {a € Arr | Go € MO}, The weighted orbital integral is
defined for ye M. If G, C M, then [A3, p. 234]

(32 Ju(y, f) = D) /G SO o)

More generally, for any y € M [A3, §5],

(33) Ju(r, H=lim > riz(v,a)ilar, f),  a€Au g,
=l Lez M

where ri,(y,a), L € #(M) is a certain real-valued function. We
remark that f +— Jy(y, f) is not an invariant distribution on C*(G).
If y; and p, are conjugate in M, then Jy (y1, f) = Ju(y2, f),
so Jy(@, f) is well-defined for any conjugacy class & C M. The
restriction of f — Jy(y, f) to the space of cusp forms is G-invariant.

Let M., be the set of » in M which lie in some elliptic Cartan
subgroup of M . Recall that an admissible representation n of G is
supercuspidal if its matrix coefficients are compactly supported modulo
Ag .

THEOREM 3.4 [Ad4]. Let n be a supercuspidal representation of G .
Suppose f is a finite sum of matrix coefficients of m. For y € My N
Greg, Where M is a Levi subgroup,

(=)l 400, ()| D()| /20 (y) = Iu(7, f).

REMARK. 1. Although f is not in C(G), the weighted orbital
integrals of f still converge because supp f is compact modulo 4.

2. The corresponding result for reductive Lie groups appears in
[A1].

3. In Theorem 3.4, and, with the exception of the proof of Propo-
sition 3.9, in the remainder of the paper, if y € Gy, the integral in
Ju(y, f) is taken over A, \G instead of G,\G. The weight factor
vy 1s invariant under left translation by elements of M, so this is
equivalent to multiplying the original definition (3.2) by the measure
of A M\Gy .

The measures on Ag\G, Ay \G, and a,,/a; must be normalized
correctly in order for Theorem 3.4 to hold. Let k3, = Ay, NK . Given
measures on a,,, d;, and a,,/a; defined using the restriction of
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a fixed Weyl-invariant metric on g,, , as above, the compatibility
requirement for the measures is as follows [A4, p. 5]:

voly, (rka) = vol(ay/Hu(Aum)),
vol, (kg) = vol(ag/Hg(Ag)).

The measures on A)/\G and Ag\G are the quotient measures in-
duced by the measures on G, 43, and Ag.

If y € Grg N M, the weighted orbital integral Jy(y, f) has a
germ expansion on neighbourhoods of semisimple points in M . The
weighted germs are uniquely determined up to orbital integrals on
M . Suppose ¢; and ¢, are functions defined on an open subset X of
oM, which contains an M-invariant neighbourhood of the semisim-

ple element o. ¢; is (M, g)-equivalent to ¢;, ¢1(y) (M) da(y), if
¢1(y) — ¢2(y) = JM (v, h) for y € ZNU, where U is a neighbour-
hood of ¢ in M, and h € C°(M). Let (g% ) be the finite set of
orbits in 0%, under conjugation by M(g) = MO(F),. Let ye M.
Generalizing the definition of Lusztig and Spaltenstein [LS], Arthur
[A3, p. 255] defines the induced space of orbits y$, = y in G as the
finite union of all G°(F)-orbits in G which intersect yNp in an open
set for any P € #(M).

THEOREM 3.5 [A3, Prop. 9.1, Prop. 10.2]. 1. There are uniquely
determined (M , a)-equivalence classes of functions y — gAG{(y, o),
? € 6 M, N Greg parametrized by the classes & € (G?/La) such that, for
any f € C¥(G),

@, NS ghv. e, .

LeZ(M) 6€(ot, )

where Ji (@, f) def Ji(ou, f) forany cue@.
2. Let t€ F* and w € (%) . Set d°(w) = (1/2)(dim Gy —rank G).
If x =exp(X), let x' =exp(tX).

M,1 G
gG (v, w) YV ) S S gk, wer(u, 0[uC : w),
LeZ (M) ue(#,)

where the cp(u, t) are certain real-valued functions and [u° : w] is 1
if weu%, 0 otherwise.

LEMMA 3.6. Let © be a supercuspidal representation of G and f
a matrix coefficient of m. Then ©,(f) = d(n)~1 f(1), where d(n) is
the formal degree of = .
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Proof. Let (, ) denote a G-invariant inner product on the repre-
sentation space ¥ of m. Let ¢, e;, ... be an orthonormal basis for
V. f(x) = (v, z(x)w), some v, w € V. We use the orthogonal-
ity relations for matrix coefficients of supercuspidal representations
[HC1, p. 5] to evaluate

©:(f) =tra(f) = tr( J(x)m(x) dx*)

A\G

—-Z/ (v, n(x)w)(n(x)e;, e;) dx*
—Zd )" v, e)(ei, w)
—d( )"Hv, w) =d(m)~ f(1).

PROPOSITION 3.7. Assume G is connected. Let y € Mg N Greg. If [
is the F-rank of G and d(Stg) is the formal degree of the Steinberg
representation of G, then

g8y, 1) WY (—1)0=dim 4| D (5))112 4 (Stg).

Proof. Let m be a supercuspidal representation of G. Choose a
matrix coefficient f of n such that f(1) # 0. By Lemma 3.6,

O:(f)#0.
First, let y € Gy N Greg - From [R], the leading term in the Shalika

germ expansion of Jg(y, f) is (—=1)U—4m4)|D(y)|V/2 £(1)/d(Stg) .
We also have, by Theorem 3.4,

J6(7, f) = ©x(NID)*Ox (7).

The leading term in Harish-Chandra’s asymptotic expansion of
ID()|'2@5(p) is cgoy(n)|D(y)|!/?, because figop = 1. By {0}, we
mean the trivial nilpotent orbit in &. Thus the leading term in
Je(7, &) is also equal to O (f)|D(y)|/2coy(r) , which means

croy(m) = (=1)~4m4) £(1)/87(f)d(Ste)

which, by Lemma 3.6, equals (—1){/~d4m4a)d(7)/d(Stg).
Now let y € Mgy N Greg . From Theorem 3.4 and Theorem 3.5(1),

ID()|2@n(y) = (- 1)dim(AM/AG) ()" s(v, f)
(Ml (- )dlm(AM/A) Z Z gM(y oL@, f)

Lez (M) o€,
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We will show that gAGl(y , 1) is the only term occurring in the above
expansion having the same homogeneity as |D(y)|!/2. Given this, we
then have

(—1)(1_dimAc)d(7z:)

Pl LI

OLY (_pydimu/400, (1)1 £(1)gS (7, 1),

which, using Lemma 3.6, yields the desired expression for gfl(y, 1).

Let L € #(M) and u € (%). Since [u®:1]=1« L =G and
u=1,and cg(1, t) =1 (see [A3, §10] for the definition of c;(u, ?)),
Proposition 3.7(2) reduces to:

M,1 im G—
gﬁ(?’, 1)( o )|t|1/2(d1mG rankG)gAG{(y’ 1).

Let w e (%), w # 1. The power of |f| in || ®eL(u, 1), u € (%)
such that [u%: w] =1, is less than d9(1). Therefore, all other terms
in the above weighted germ expansion for |D(y)|1/?20,(y) have smaller
homogeneity than g@(y, 1).

LeMMA 3.8 [A3, Cor. 6.3]. Let Ly € & (M). Then

JL‘('})Ll ’ f) = h_I’T} Z rfl(y’ a)JL(aY: f) > ae AM,reg-
T Lez(L)

REMARK. ‘]Ll(yLl > f) d=e:f Ei JL(% ’ f) > where yLl = Ulﬁl .

Recall that a locally constant function ¢ on G is a cusp form
if, for all x € G and all proper parabolic subgroups P = MN of
G, [y¢(xn)dn = 0. The following is a generalization of the well-
known fact that orbital integrals of cusp forms vanish at nonelliptic
semisimple points in G.

PROPOSITION 3.9. Let f be a cusp form on G such that supp f is
compact modulo Ag. Suppose y is a semisimple element in a Levi
subgroup M and y ¢ Mgy. Then Jy(y, f) =0.

Proof. This is due to Arthur. We give a rough outline of the proof.
Using results about products of (G, M)-families from §§6 and 10 of
[A2], it is possible to show that, for M, C M,

vp(x) = > an]‘QIl (x), xe€GaG,
{QeF (M), Q#G}
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where ’UAQ{‘ (x) = lim;_,g Z{PEQ(M‘”PCQ}e"‘(Hr("))Hg(l)‘l and ag €
R. Here, Gg(/l) is defined in the same way as 0p, but with respect
to the set A2 of simple roots of (PN My, Ap) and the associated set
{a¥|a € AD}.

Because y ¢ M., there is a Levi subgroup M| propertly contained
in M with y € M,. Assume that M, = G,. Then

Iu(. ) = D)2 /M\Gf(x“‘yx)vM(x) dx

=|D(y)|'/? > ag f(x“yx)v,%l (x)dx.
(Qes (M), 026} 'M\G

Note that M, = M17 . By [A2, (8.1)], the integral corresponding to Q

in the sum above is equal to J g‘-’(y , fo), where J AA;Q is the weighted
orbital integral for the Levi subéroup M, of My, and Jo: My —C
is given by fo(m) = dg(m)'/? [y [ f(k~'mnk)dkdn. Since f isa
cusp form, fp =0 for Q#G. '%herefore, Ju(y, /)=0.

For general y, and a € Ays g close to 1, the element ay is not
elliptic in any L € (M), and L,y = Gg,. Thus the above argument
shows that Jy(ay, f) =0. From (3.3), Jy(y, f)=0.

4. Some results for G = GL,(F). Assume 7 is an irreducible
supercuspidal representation of G = GL,(F). The main result of
this section, Theorem 4.4, expresses the constant ¢s(n), & € (/) , as
a multiple of a certain weighted orbital integral of a sum of matrix
coefficients of 7. Because of the one-to-one correspondence between
the set (#;) of nilpotent G-orbitsin & and the set (%) of unipotent
conjugacy classes in G, we can view ¢s(7n) and fs as corresponding
to @ € (%s). We begin by defining some notation which allows us
to state our results in terms of unipotent conjugacy classes. For & €
(%), let (@) ={P=MN|@ =1§}. If P P@), let np
be the admissible representation of G induced (unitarily) from the
character 6;1/ 2 of P, and let ©p denote the character of np. If
P, P, € #), then P, and P, are conjugate in G, and 7p and -
mp, are equivalent, so ©p =Op . Let B5 denote the common value
Op, PeRP(0).

For a Levi subgroup M of G,set % (M)={LeZ(M)|o =1¢}.
If L, L, e %(M) and K is a special maximal compact subgroup in
good position relative to M , then L; = kL,k~! for some k € K and
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[A3, p. 235] Jp (1, f) = JL (1, f%), where f*(x) = f(kxk™!). As-
sume f is a cusp form. Then Jy (1, f%)=J. (1, f),s0 J. (1, /) =
Jr (1, f). We denote the common value by Jg(1, f). Similarly, let
d(St(€)) be the formal degree of the Steinberg representation of any
L € % (M,), where M, is a minimal Levi subgroup. We note that
Zs(My) # & forany @ € (%) . Finally, we set ws = |Ng(A)/Zg(A)],
for 4 equal to the split component of any P € #(&¢), and Ng(A)
(resp. Zg(A)) the normalizer (resp. centralizer) of 4 in G. Let
K = GL,(#F), where &r is the ring of integers in F. K is a special
maximal compact subgroup of G. For convenience, we consider only
those Levi subgroups M which are in .#(M;), where M, is the sub-
group of diagonal matrices in G. For all such M, G=PK =KP if
PeP(M).

LemMMmA 4.1 [H]. Measures can be normalized so that [is(logy) =
Qs (), for y € Greg in a sufficiently small neighbourhood of 1.

REMARK. In §6, we normalize measures on G and its Levi sub-
groups. We will assume that the measure on the Lie algebra & has
been normalized so that Lemma 4.1 holds.

LEMMA 4.2. Let M be a Levi subgroup of G. If y € MggiNK N Greg
and @ € (%g), then

fe(logy) = D) Pwe > |DL(y)]V2
LeZ,(M)

Proof. Let P, = LN, € #(@) with A, the split component of
L, . We have simply rewritten van Dijk’s [D] formula for the induced

character: | "
_ Dys(7)]
Os(r)= Y. sapl”zmw,
SEW (4, ,4,,) ’

where W (Ay, Ay) = {s: 41 = Ay | sl —-1,a° =a’,y € G}, and
Ségl/z(y) = Jal/z(y‘lyy). épllK =1 and y can be taken in K, so
sa,:ll/z(y) =1. W(Ay, Ay) =D & %(M) = D. Assume % (M) #
& and L; € % (M). Define a map s — L from W(A4,, Ay) to
Z(M) by: L =1L =yLiy~'. If L € %(M), then L = L] for
some y € K and a — a’ maps A; bijectively onto A;. Since
M cL,A; ¢ A. Thus a — a” defines an s € W(A;, Ay) which
maps to L. Suppose L = L;z for some s, € W(Ay, Ap). Then
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Ap = yAy~! = yod1y5t, so y3ly € Ng(4y). Clearly s = 5, &
23 'y € Zg(A4;). Thus s — L is onto and wg-to-one, which proves
the lemma.

LEMMA 4.3. Let f be a cusp form on G which is compactly sup-
ported modulo Ag.
1. If ue (%y), and u# 1, then Jy(u, f)=0.
2- JM(I ’ f) = lima—'l JM(a: f)s a EAM,reg-

Proof. 1. There exists a Levi subgroup M; C M such that u = 1%I .
By [A3, Corollary 6.3},

JAGl(u’f)=‘lzlin Z r]If{(19a)JL(a’f)’ aEAM[,reg-
LeZ (M)
Because a € Apy, rg and M; # L for each L € (M), a is not
elliptic in L. Therefore, by Proposition 3.9, Ji(a, f) =0.
2. For Le M), L # M, we have Jy(a, f) = 0, since a €
Ap reg 18 Dot elliptic in L. By definition, [A3] r% (1,a)=1. Thus

Tu(1, fy=lim 3 riz(1, a)Jp(a, f)
0 Lez(M)

= lim Jy(a, f).
a—1

Let n be a supercuspidal representation of G. We now express the
coefficients cs(n) in the asymptotic expansion about 1 of the charac-
ter ©, in terms of the weighted orbital integrals at 1 of the matrix
coefficients of 7.

THEOREM 4.4. Let f be a finite sum of matrix coefficients of the
supercuspidal representation n. Assume f(1)# 0. For @ € (%),

(1, pd)
(T) = AU F(D)

Proof. Let y € My, ¢ N Greg . Recall [HC1] that the matrix coeffi-
cients of 7 are cusp forms. Applying Theorem 3.4, Theorem 3.5(1),
and Lemma 4.3(1),

(M, ,1) _ _ _
8:(y) X7 (=1)"10(NTIDMITE Y sk (v, DIF(, )

LeZ (M)
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Writing the sum over L € .#(M;) as a double sum over &€ € (%;) and
L € % (My) and using Proposition 3.7 to substitute |Dy(7)|/2/d(St;)
for g,{“lo(y , 1), we obtain

0:(y) " (=110, (N DT Y a1, £)/d(SKE))
se,
X( > IDL(J?)II/Z)-
Le%,(M,)

For y € My o1 N Greg close to 1, we also have:

(46) O = 3. co(m)its(logy)

o)

D 1/2
= Z Co(m)we Z ————————||Dl‘((yy))lll/2 .
oE,) Lez,(M,)

The two expressions (4.5) and (4.6) differ by an orbital integral on
My = Ay, , that is, by ¢ | D(y)|~1/2, for some constant c. Let &g be
the regular unipotent class in G. By Lemma 4.3(2), Ju (1, f) =
J@m(l, f) = lim,, Jpr (a, f,a € A, ,reg- Multiplying (4.5) by
(=1)"10,(f)|D(a)|}/? and letting a — 1, we get

Jo (1, f)[d(St(Greg)) + €,

which must equal J%(l , f). Since M; is abelian, the Steinberg
representation of My is just the trivial representation, so d(St(Zreg)) =
1. Therefore ¢ =0.

The functions 3, i) IDL()|Y2/|D()|V?, @& € (%), are lin-
early independent on any neighbourhood of 1 intersected with A, reg.
Therefore, the equality of (4.5) and (4.6) implies:

_ (=Dl ()1, f)
Co(m) = 'wgd(St(ﬁ)()y '

From Lemma 3.6, ©,(f) = f(1)/d(n).

REMARK. 1. It follows from the definition of the Steinberg charac-
ter, that is, the character of St; (see [Ca]), that

co(Stg) = (=1)""9@card 2 (M),
where d(@) =dim Ay, M € % (M,).
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2. If n = Ind,G,(t ®id), P = M N, t asupercuspidal representation
of M, then, using van Dijk’s formula in [D] which expresses @, in
terms of ©., it is possible to write cs(n), & € (%g), terms of the
constants ¢, (1), @ € (%) -

3. If = is in the discrete series of G and 7 is not supercuspidal or
a twist of Stg, there is no formula for cs(n), @ # {1}.

5. Characters of inducing representations. To find the constant ¢s(7)
for a supercuspidal representation © of G = GL,(F), we must eval-
uate Jy(1, f) for f equal to a sum of matrix coefficients of 7 such
that f(1) # 0 (Theorem 4.4). Here, we outline how to produce such a
function f. It will be shown in Lemma 6.1 that only the values of f
on the unipotent set %; are required to compute Js(1, f). Lemma
5.2 gives a formula for the values of f on %; for m generic and
unramified.

Carayol [C] has constructed an infinite family of irreducible uni-
tary representations of K A; which are called very cuspidal. To each
such representation ¢ is attached a positive integer 4, the level of
o. Given any (unitary) character y of F*, the representation n =
Ind$ 4,0 ® x odet is irreducible and supercuspidal. We will say that
any such 7 is generic and unramified.

The reason for this terminology is as follows. Let p be the residual
characteristic of F. If (p, n) = 1, the irreducible supercuspidal rep-
resentations of G are parametrized by conjugacy classes of admissible
characters of extensions of degree » over F. For definitions and a
general description, see [CMS]. Let 6 be such a character. In this
setting, those supercuspidal representations which correspond to the
case where 0 is generic over F and the extension of F is unrami-
fied are precisely the generic and unramified representations defined
above. We remark that Carayol’s construction is valid for arbitrary
D, and thus we do not place any restriction on p.

LeMMA 5.1 [C]. Let H be an open subgroup of G. Suppose ¢ is a
matrix coefficient of a representation g of H. For x € G, define ¢(x)

to be 9(x), if x € H, and 0 otherwise. Then ¢ is a matrix coefficient
of Ind¥o .

Let n = Indg 40®x0 det be generic and unramified. By Lemma
5.1,if y, isthe character of o, then jf, is a sum of matrix coefficients
of Indg 4,05 and we may take f = J,x odet as a finite sum of matrix
coefficients of 7#. Note that f(1) = dimo # 0. This particular f
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is chosen because [, f(k~'uk)dk = f(u), for u € #%g, which will
simplify the computation of Jg(1, f) (see Lemma 6.1).

Let @ be a prime element in F, and let & = wdp. If j isa
positive integer, define K; ={k € K | k € I + M,(#})}.

LEMMA 5.2. If o is a very cuspidal representation of KAg having
level h, then, for ue %; NK,
s, (1)1
n(n=1)(h=1)/2(_ 1 )r+5,( J-1, i K
q" h q ifue Ky,
Xo(u) = ; hol
0, otherwise.

For u € Ky_y, sy(u) is the number of blocks in the Jordan form of
w ="y — 1) viewed as a matrix over Or|Pr .

Proof [K, Lemma 6.6). The proof given by Kutzko is for n prime,
but in fact uses only the very cuspidal property of ¢ and therefore is
valid for arbitrary n.

6. Weights for GL4(F). To compute the coefficients cy(7), it is
necessary to evaluate Jy(1, f) for f equal to a suitable sum of matrix
coefficients of 7. Proposition 6.5 gives explicit integral formulas for
Ju(1, f) for non-minimal Levi subgroups M of GL4(F).

On G = GL,(F), we take the Haar measure with respect to which
K = GL,(#Fr) has measure one. The Haar measure on K is the
restriction of this measure to K. If P = M N is a parabolic subgroup
with G = KP, the measures on M and N are normalized so that
the measures of M N K and NN K equal one. Then we have

/G(o(x)dx=/K/M/N¢(mnk)dkdmdn, p € C(G).

LEMMA 6.1. Let f be a cusp form on G which is compactly sup-
ported modulo Ag. Then, if G=KP and P=MN,

D1, f) = lim [ feuu(mdu, 6 € dur,ms
where n € N is defined by u=a"'n"lan and
- / Fk—txk)dk,
K

for xeG.
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Proof. From Lemma 4.3(2) and (3.2),

= lim |D(a)|'/2 / folaxyuy(x)dx,  a€ Ay g
a—1 M\G

The quotient measure on M\G is dx = dndk, and [A2] vy (mnk) =
vy (n) for me M, ne N, and k € K. Therefore,

Ju(1, f) = lim |D(@)|!/? / fi(n~'anyvyg(n) dn.
a—1 N

Since n — a“'n~lan,n € N,a € Ajp g, is an invertible poly-
nomial mapping from N to N, we can make the change of vari-
ables u = a~'n~lan. This introduces the factor |D(a)|~1/26p(a)!/?.
fx 1is locally constant on G, and therefore is invariant under left
and right translation by some open compact subgroup of G. Thus
fx(au) = fx(u) forall u € N if a is sufficiently close to the identity.
Also, 6p|KNP=1.

We now describe, for GL,(F), the normalizations of measures
on a,,dg, a$, Au, Ag and Ap/Ac required by the compatibility
conditions of §3. Fix the Weyl-invariant inner product ((x;, ..., X»),
P1seeesVn) = log"quISiSn Xiyi on Q. The corresponding
measure is log™" gdx; ---dx, , where dx; denotes the standard Haar
measure on R. On a,, we take the measure coming from the restric-
tion of the above inner product to a,,. Suppose M is conjugate to

i=z1 GLn (F). The embeddings of X(M)r and X(G)r into the
character groups X(A4y) and X(A4g) result in the embedding x —
(xny/n, ..., xn/n) of a; into a,,. It is compatible with the canon-
ical projection (X, ..., X;) = 3 <<, X from g, onto a;, whose
kernel is denoted by 4.1?4- This results in the decomposition a,, =
af ®ag.

Let kpr = Ay N K. The function Hjs maps Aus/kys bijectively
onto a lattice in a;,. As stated in [A4, p. 5], the measure of &,
in Ays must equal the volume of a,,/Hys(Ap). The measures on
Ay\G, AG\G, and a,,/a; ~ a§, are the ones induced by those on
G, AM, AG: Qs and ag.

The next lemma gives the measures of the xj,’s. We will use these
to determine the formal degree d(St(#)) which appears in the formula
for cy(m). Note that, in order to be consistent, the measure of MyN
K = Ay, N K must equal one. This determined our choice of inner
product on a M, -
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LEMMA 6.2. Let M be conjugate to [];_; GLn (F). With the above
normalizations, the measure of Ky is /iy ny.

Proof. For m € M, Hy;(m) = (log|detm,|, ..., log|detm,|). Thus
Hy(Ap) = nylogqZ x --- x n loggZ. The measure on g;, ~ R" is
(log™"q//A1 - 7ny)dxy ---dx,. The volume of a,,/Hys(Ay) is there-

fore /n,---n,.

In order to evaluate vy (x),x € G, we need to compute
vol(a$,/Z(A})) for P € #(M). As noted in [Ad, p. 12], Z(A}) is
independent of the choice of P € #(M). Let up = vol(a$/Z(A})).

LEMMA 6.3. up = +/n/(n;---n,)log™" ' g.

Proof. Let P = MN € (M) be chosen so that N is upper trian-
gular. Then AY = {a;, ..., a,_1}, where a; has | in the i th position
and 0 elsewhere. Define variables y;, ..., y, by

yiey+ -+ ye(ng/n, oo, nme/n) = (X1, .0, Xp).

Then, since dy;,---dy, = dx;---dx,, the measure on a,, is
(log™"q/\/ny ---7;)dy; - - - dy,. The measure on g is (log™'g/\/n) dx
and x € g; embeds in a,, as (xn;/n,..., xn/n). The quotient
measure on gfl is given by (log™"*'g\/n/(n;---n,)dyi---dy,_.

Let u € supp fx. We want to compute the value of v,,(n), where u =
a~'n~lan,a € Ay rg. If a € Ay, then a = diag(arln, ..., aln),
with g; € F*, and I, the n;x n; identity matrix, 1 <i <r. Let #F
be the maximal ideal in the ring of integers @ . For each positive
integer d, define Ay g = {a € Aprreg | @ € 1 + PE, |a; — aj] =
g4, i# j}. We will compute vy (n) for a e Ay, 4 for large values
of d, and to evaluate Jy(1, f), we will let d — oco. The next lemma
gives the values of vy,(n) for certain non-minimal Levi subgroups of
GL4(F). We take n in the corresponding upper triangular unipotent
subgroup. For x € F*, v(x) is defined by |x| =g~ ¥,

LEMMA 6.4. Let ue€ NNK,a € Ay, q, and n be given by u =
a~'n~lan.
1. Let M = GL3(F) x GL{(F). If

o~ 00
— N =

0
1
0
0

SO O -



124 FIONA MURNAGHAN
is such that max{|x|, |y|, |z|} # 0, then
va(n) = % (d - min{v(x), v(»), ¥(2)}),

for large d .
2. Let M = GLy(F) x GLy(F). If

u =

oo o~
oo —o
o—< &g
- O N X

such that wz — xy # 0 then
vy(n)=2d —v(wz — xy),

for large d .
3. Let M =GL,(F) x GL,

~~~

F)x GL(F). Let

1 0 X1 W1
"= 01 X2 V2
00 1 =z
00 0 1

Define
A =min{v(x;), v(x2)},
B = min{v(x1y2 — X21), ¥(2) + 4}.

If A#0,B #0, and d is large, then

vpr(n) = 3v2d?* — d(2V24 + 2V2v(2) + V2B)
+ %Bf— —V2(B — 4)* + V2Bu(z).

REMARK. Let Py = Ay Ny be the Borel subgroup of GL,(F) such
that N is the subgroup of upper triangular unipotent matrices. For
x € GL,(F), we use the following fact to find Hpo(x). Suppose
x = nak, with n € Ny, a = diag(a;, ..., an) € Aum,, and k € K.
Then, for 1 <7 < n,|a;---an| is equal to the maximum of the set.
of norms of determinants of (n —i+ 1) x (n — i+ 1) matrices which
can be formed from the last » — i + 1 rows of x. For example,
|an—1an| = maxlg#jﬁn{lxn—l ,ixn,j—xn,ixn—l,j|} M P=MN,MEe
Z(M), N C Ny, then Hp(x) = (logla; - an|, ... logla, _11--an|).
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Proof of Lemma 6.4. 1. Let P € ##(M) be the opposite parabolic

subgroup. It is not hard to see that Hp(n) = —Hp(n'"'), where t
denotes transpose. If a € Ay, 5 = diag(a;, a1, a3, a;) then

1 00 (1-ajla)~'x
010 (1-ailay)ly
001 (1-ailay)!z
0 00O 1

Using the above remark, we obtain

Hp(n"') = logmax{1, ¢%|x|, ¢°ly|, ¢°|z{}(~1, 1)

= —logg(d — min{v(x), v(y), v(z)})(1, -1), d large.
By definition, wvp(n) is the volume in 4§, of the convex hull
of Hp(n) = 0 and Hz(n), which is, by Lemma 6.3, equal to

Z(d - min{v(x), v(y), v(2)}).
2. We note that, if a = diag(a;, a1, a2, a2) € Ay 4,

1 0 0 0

nt = 0 1 00
| -(1-alay)tw —(1-arlay)ly 0 0
~(1-ajla)~'x —(1-aj'ay)™'z 0 0

Then

H_F(n) = IOgmaX{L q2d|wz '—xyL qdl'l.U|, quX|, qdlyl, qdlzl}(ls _1)
=logq(2d —v(wz — xy))(1, -1), d large.

To obtain 2, proceed as above for 1.

3. Let a = diag(a;, a1, a2, a3) € Ay, 4. The characters a =
(1,-1,0),8=(1,0,-1) and y = (0, 1, —1) of Ay, are viewed
as elements of the dual space a},. Given u as in the statement of
the lemma,

1 0 % »
1 % 7
"= 80 ; y22 ’
00 0 1
where
%i=(1-a7la) ™ x;,
Pi=1-a'a) i+ a0y (1 - a7 'az) " xi2), i=1,2,
2= (1-ay'a;) 'z
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Define A = min{v(x;, v(x3)} and B = min{v(x;y; — x2¥1), v(z) +
A} . For u in an open dense subset of the unipotent radical, 4 and B
are nonzero. For d sufficiently large, the values Hp(n), P € (M),
are given by the table below.

Ap log™! gHp(n)

{a, 7} 0
{~a, -y} (2d-B)a"+(2d-v(z)—-A)yY
{a,-B} (=d+v(z))a’+(2d-v(z)-A)pY

{~a, B} (d - 4)a¥
{-8,7} (2d - B)BY + (-=d + A)yY
{B, -7} d-v(z)yY

For the pairs {—a, —y}, {—a, B} and {B, —y}, Hp(n) can easily be
computed using the remark preceding the lemma. We describe the
case {f, —y}. If P € #(M) has simple roots {f, —7}, then

1 0 a3 s
_ 0 1 c3 ¢4
MN=3100 1 o
00 C43 1
Note that
1 000
n=n 0100
“TPlo 01 z
0001

where np € Np. Also, ( (1) f ) is the product of (; ?) and diag(d;, ;)
with a matrix in GLy(&Fr), where |6, = |d2]~! = |2|, for large d.
Therefore, Hp(n) = log(q?|z|)(0, 1, —1).

The values Hp(n) for {a, —f} and {-f, y} are determined by
the values for the other parabolic subgroups by using the following
property (see [A4, p. 5]): If P, P € (M) are adjacent, and 7 is
the simple root of (P, Ap) in Ap N (—Ap/) which determines the
wall shared by the chambers of P and P’ in a,,, then for any
x € G, —Hp(x) + Hp/(x) is a nonnegative multiple of 7V. That is,
{-Hp(x) | P € (M)} forms a positive orthogonal set for M .

To compute vy(n) we use formula (3.1):

up(x)=1/rl > (=A(Hp(x)))"6p(A)7",
{Pez(M)}
A€ igju, r= dim(AM/Ag) s
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where 0p(A) = uj} Ilaea, A(@¥). Setting A = (ity, it, it3) with

t1, ty, t3 distinct real numbers, uy = V2 log‘2q, and computing
1/2 3 peaiaryy (A(Hp(n)))*0p(4) 7!, after some algebra, we obtain the
desired expression for vys(n).

PROPOSITION 6.5. Let f be a cusp form on GL4(F) with supp f C
KZ . Given M, define the variable u€ NN K as in Lemma 6.4.
1. If M = GL3(F) x GL(F),

Iu(1, f)==2/V3 /N frwmin{v(x), v(y), v(2)} du.
2. If M = GLy(F) x GLy(F),
In(1, f) =~ /N fewv(wz - xy) du.

3. If M = GLy(F) x GL{(F) x GL{(F), and A and B are as in
Lemma 6.4,

In(1, f)=V2 /N fi(W) (B2~ (B - 4)* + Bu(z)) du.

Proof. Let d > 1 and a € Ay, 4. Forn € N such that u =
a~'n~lan, set 0y (n) equal to

(2/V3)(d — min{v(x), v(y), v(2)}),
2d —v(wz — xy),
3v2d? — d(2V24 + 2vV2v(z) + V2B) + B*/V2
—V2(B - A)? +V2Bv(z),
in cases 1, 2 and 3, respectively. By Lemma 6.4, for all u € N n

K, lim,_ (vp(n) — 9p(n)) = 0. Results of Arthur [A3], imply that
limg_, o [y fx(U)(var(n) — Gpr(n))du = 0. Thus

It )= Jim ([ fewonmyduct [ feuom(n) = oum)du)

= lim [ fx(u)¥p(n)du.

d—oo JN
Because f, hence fx, is a cusp form, we have [, fx(u)du =0. In
the first two cases, ¥,/(n) is a constant multiple of d plus a term
which is independent of d. Thus the lemma follows immediately in
these cases.
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To prove 3, we first observe that, for large values of 4, vpm, (n) is
a multiple of 2d — 4 — v(z), where M; = GL3(F) x GL(F). In the
notation used in the proof of the third part of Lemma 6.4,

10 % 0\ /1 00 j-%2
01 % 0)[0 1 0 ,-%2
00 1 0ff0o01 3
000 1/\000 1

vp,(n) is therefore a multiple of logmax{l, ||, |} — %12|, |[V2 —
X 2|} .

2| = ¢9|z|,
Ji — %i2] = ¢%ly; - (1 —aytas)'xiz|,  i=1,2

We assume that x;z #0,i=1, 2, and 4 is large. Then |j; — %;Z| =
a*|x;z].

Ju (@, f) = dp(a)'/? [y fx(au)vp, (n) du. This is obtained by the
same change of variables used in the proof of Lemma 6.1. a € 4y, 4
is not elliptic in M, , so, by Proposition 3.9, Jy (a, f)=0. Byan
argument similar to the one above for Jy(1, f), we get:

lim Jug (@, /) = Jim [ fictuyoas(n) du
= lim /N fiew)(2d — 4 - v(2)) du
- /N fe(u)(d +v(2)) du.

Thus [, fx(u)(A+v(z))du=0.

Similarly, if M, = GLy(F) x GLy(F), we can show that vy (n) is
a multiple of 2d — B for large d, so [y fxk(u)Bdu=0.

Looking at the formula for ,(n) given at the beginning of the
proof, we see that

/ (@) op(n)du = / fe(WV2(B2)2 — (B - 4)* + Bu(z)) du.
N N

7. Calculation of c,(n) for GL3(F) and GL4(F). We now com-
pute the coefficients cs(7) for a generic unramified supercuspidal rep-
resentation 7 of GL3(F) or GL4(F).

Let M =], <;<, GLy (F). Let Stjs be the Steinberg representation
of M. If G=GL,(F), the formal degree d(St;) of St is given by
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[CMS]:
n—1
d(Stg) =1/n (H(qk - 1)) volZ\G(Z\KZ)‘l.
k=1
Here Z = Agis the centre of G. We are assuming that volz\g(Z\KZ)
= volg(K)/volz(K N Z). With the measures normalized as in §6, we
have

n—1

(7.1) d(styr) = [T /v [ (@* - D).
i=1 k=1

If 7 = Ind¥,0, then, by [C, p. 211], the formal degree d(n) =
volz\G(Z\KZ)~!dim¢ = \/ndimo .

THEOREM 7.2. Assume G = GL4(F). Given any character x of
F*, let m = Indgza ® x odet be a generic unramified supercuspidal
representation of G, where o has level h. If M is a Levi subgroup,
let & =19,.

1. If M =G, co(n) = —4q0h-1
If M = GL3(F) x GL{(F), cs(n) = 4¢3~
If M = GLy(F) x GLy(F), cs(n) = 2¢*—1)
If M = GLy(F) x GL{(F) x GL{(F), cg(n) = —4g"~1.
If M is minimal, cs(n)=1.

nhw

Proof. 1 and 5 are due to Howe [H]. Let 7, be defined as in §5.
The function f = ji; ® y o det is a sum of matrix coefficients of
n. Note that f(u) = j,(u) for any unipotent element u € G, so
Jo(1, f), hence cs(m), is independent of x. Since dimao = f(1),
and n =4, d(n) = 2f(1). Putting this together with Theorem 4.4,
we obtain cy(n) = —2J5(1, f)/(wed(St(@))). In cases 1-4, wy =
1,1, 2 and 2, respectively. The values of f on the unipotent set are
given in Lemma 5.2. Substitution of these values into each formula for
Jo(1, f) given in Proposition 6.5 (note that fx = f), and evaluation
of the integral results in:

L f(1)=¢%""D(g3 - 1) - 1)(g - 1),

2. (=2/V3)g**D(g* - 1)(g - 1),

3. —q*"D(g-1)2,

4. 2V2¢"1(g-1).
The calculations are fairly short in cases 2 and 3, and lengthy in case
4. We do not include them here. Using (7.1) to evaluate d(St(&))
completes the proof.
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REMARK. For arbitrary n, and n and f as in the theorem, if
M =GL,_(F) x GL{(F), it is easy to compute

Iu(l, ) =—f(D)(Vng= D8 /(Vn =T)(1 — g=("7Vy),
which results in ¢ () = (—=1)"2ng*~D(=2A-D/2 for @ = 1§, .
PROPOSITION 7.3. Under the same assumptions as Theorem 7.2, ex-

cept that G = GL3(F), co(n) = 33D, —3¢"~1 and 1 for M =
G, GLy(F) x GLy(F), and M,, respectively.
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QUASI-ROTATION C*-ALGEBRAS

H. RouHANI

The main result in this paper is to classify the isomorphism classes
of certain non-commutative 3-tori obtained by taking the crossed prod-
uct C*-algebra of continuous functions on the 2-torus T? by the irra-
tional affine quasi-rotations. Each such quasi-rotation is represented
by a pair (a, A), where a € T> and A € GL(2, Z), and its as-
sociated C*-algebra is shown to be determined (up to isomorphism)
by an analogue of the rotation angle, namely its primitive eigenvalue,
by its orientation det(4) = +1 and a certain positive integer m(A)
which comes from the K;-group of the algebra and which determines
the conjugacy class of 4 in GL(2, Z).

Introduction. In this paper we study the C*-crossed products of the
continuous functions on the 2-torus C(T?) by certain transformations
¢ of T? which we call quasi-rotations. They are like rotations in
that they have an eigenvalue A = e2"¢ and a unitary eigenfunction
f € C(T?), and unlike rotations in that their degree matrix D(p) €
GL(2, Z) does not equal the identity matrix 7, . Clearly they contain
the rotation C*-algebra .

Recall that an affine transformation of a group G is a mapping
o: G — G of the form g(z) = aA(z), (for z € G), where a € G and
A € Aut(G).

Let &/ (¢) denote the associated crossed product C*-algebra
C(T?) Xa, Z, (cf. [9, 7.6]) where o, is the automorphism on C(T?)
associated with ¢ . We shall construct an integer-valued function m
defined on the 2 x 2 matrices 4 € GL(2, Z) which are of the form
D(p), for some quasi-rotation ¢, such that

(1) Zp(p(y)) is the torsion subgroup of K;(+/ (),
(i) m(A4) and det(4) determine the conjugacy class of 4 in
GL(2,Z).

When this is combined with the computation of the tracial range
on Ko(«(p)) (see §4) a classification of the isomorphism classes of
these algebras is obtained (Theorem 5.2) for the affine quasi-rotations
of T? associated with irrational 6. This is the main result, while for
the rational case a partial answer is given. The determination of the
strong Morita equivalence classes of these algebras has been studied
in [17].

131
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The K-groups of the crossed products of C(T?) by any transforma-
tion have been computed elsewhere ([6]; and independently in [15])
using the Pimsner-Voiculescu six-term exact sequence. Here we shall
merely state the results (§1).

Some results concerning the non-affine quasi-rotation algebras are
given in [16].

1. K-groups. Every continuous function f: T? — T has the form
f(x,y) = xmyne2niF(x.y) for some integers m, n and some contin-
uous real-valued function F on T2. Call the 1 x 2 integral matrix
[m n] the bidegree of f and denote it by D(f). Let ¢ be a trans-
formation (i.e., a homeomorphism) of the 2-torus T2. Write ¢ as
¢ = (@1, ¢2). Define the degree matrix of ¢ to be the 2 x 2 integral

matrix D(y)
_ 1
20)= (g )

It is easy to verify that D(¢ o w) = D(¢)D(y) for any two transfor-
mations ¢, w of T2. Replacing ¥ by ¢! we see that D(¢p) €
GL(2,Z), i.e. detD(p) = +£1. This latter determinant determines
whether ¢ is orientation preserving or reversing. Let I, denote the
identity matrix in GL(2, Z).

THEOREM 1.1 ([6], Chapter 3; [15], Chapter 2). Let ¢ be a trans-
formation of T?.
(1) If detD(p) = 1, then

Z*  if D(p) =1,
Ko(#(p)) =4 Z*  if det(D(p) — L) =0and D(p) # I,
Z?  if det(D(p) - Ip) #0.
(2) If detD(p) = —1, then
Z:Z, if det(D(p)-1) =0,
ZoZ, if det(D(p)-1I,) #0.
(3) Write D(p)~! = (3 ) andlet J denote the quotient group

Ko(a (o)) = {

7207 y 2

=T Z+0,a-DZ  mDe T =D

Then
Z’eJ  if detD(p) =1,

Ki(« (o)) = { ZoJ  if detD(p)=—1.



QUASI-ROTATION C*-ALGEBRAS 133

The proof of this theorem relies on the Pimsner-Voiculescu cyclic
six-term exact sequence for K-theory [11]. A closer look at the proof
yields the following corollary.

COROLLARY 1.2. Let ¢ be a transformation of T? such that
det(D(¢) — 1) =0,

and let P denote the Bott projection in M,(C(T?)). In this case there
is an x such that 6(x) is a generator of ket(a, —id,) in Ki(C(T?)),
where J is the connecting homomorphism in the Pimsner-Voiculescu
sequence J: Ko(/ (9)) — K (C(T?)).
(i) If detD(p) = 1 and D(p) # I, then Ko(¥/(p)) = Z3 is
generated by [11, [P]-[1], and x.
(ii) If detD(p) = —1, then Ko( (¢)) = Z? @ Z, is generated by
[1], [P)-[1] (which has order 2 in this case) and x.

This corollary focuses only on transformations such that
det(D(¢) — I) = 0 because these include the quasi-rotations.

2. Lemmas. In this section we shall construct the integer-valued
function m indicated in the introduction which classifies the con-
jugacy class of certain integral matrices in GL(2, Z) which arise as
D(¢p) where ¢ is a quasi-rotation. As it turns out these are the ma-
trices A which have eigenvalue 1, i.e. det(4 —I;) =0 (cf. §3).

Two matrices A, B € GL(2, Z) are conjugate if there exists S €
GL(2, Z) such that SAS~! = B. Let us express thisby 4 ~ B. It will
be shown later that for quasi-rotations ¢ and w of T?, if &/ (p) =
& (y), then D(p) ~ D(y) (cf. Proposition 2.8). If, in addition, ¢
and y are affine, it will follow that they are topologically conjugate
(i.e., there exists a transformation # of T2 such that hoy =@ oh).

The construction of m is divided up into two cases.

LEMMA 2.1. Let A € GL(2,Z) be such that det(4 — I,) = 0 and

detA =1, say
a b
A_(C d).

Let e =gcd(a—1, b), when b # 0, and define

et .
m<A>={W 770,
lc| if b=0.
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4~ (m(lA) (1))

Hence, A ~ B if and only if m(A) = m(B), for all matrices A, B
satisfying the hypotheses of this lemma.

Then

Proof. From (a—1)(d —1)—bc =0 and ad — bc = 1 one obtains
a+d=2and —(a—1)2=bc. If b =0, the lemma is clear. Suppose
that b # 0. Since e = gcd(a — 1, b), there exist integers s, ¢ such

that
(*57) ()
t—({—=)s=1,
e e
so that a1 _b_
S = ¢ € 1eGL2,2).
Ky t
One then checks that
1 0
SA4 = :_eﬁ ! S
b
(a-lé
SA = e e a b
c 2—-a
\ s ¢
((a—l)a+z (a—l)b+b(2—a)
_ e e e e
\ sa+ tc sb+1t2-a)
and
1 0 a-1 b a-1 b
— e e
) e e | =
S| st —e? (a-1 +5 t—e
b b

These can be seen to be equal using the relations —(a — 1)2 = bc and
(a— 1)t—bs=e. Thus

5457 = (s 1)~ (e 1) -

Henceforth we shall write m(¢) = m(D(¢p)).
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COROLLARY 2.2. Let ¢ be a transformation of T? with detD(p) =
1 and det(D(¢) — ) = 0. Then ¢ is topologically conjugate to a
transformation y with

Dy = (m(1¢) (1)>

Proof. Since D(g¢) satisfies the hypotheses of the previous lemma,
we have

2057 = () 1)

for some S € GL(2, Z). We can choose an automorphism ¢ of T2
(as a group) with D(o) = S. For example, if

- (m n) ’
P q
let a(x,y) = (x"y", xPy9). Letting ¥ =g opoc~!, we obtain

D) = D@D = () |- :

COROLLARY 2.3. Let ¢ be a transformation of T? with det D(p) =
1 and det(D(¢p) —I,) =0. Then
Kl ('537((0)) = Z3 @ Zm((a)-

Proof. Since by the preceding corollary y is topologically conjugate
to ¢, we can use Theorem 1.1 to obtain

Z2
Ki((p)) = K (o x~ 72
=73 @ Ly, O
Consequently, if ¢ and y are transformations of T2 satisfying the
hypotheses of the above corollary and if =/ (p) and & (y) are isomor-

phic, strongly Morita equivalent, or, more generally, have isomorphic
K,-groups, then m(¢) = m(y) so that D(¢p) ~ D(y).

LEMMA 2.4. Let 4 € GL(2,Z) be such that detA = —1 and
det(A — I,) =0, so that A has the form

k x
A=<y —k>’
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where k*+xy =1. Let e =gcd(k—1, x), when x # 0, and consider
the integer-valued function
m(A)z{gcd<e,€—(—]?—)—:_—l)) if x#0,
ged(2, y) if x=0.
Then m(A) e {1, 2}, and
i) mA) =1e4~"O D),
(i) mA) =24~ 9).
Consequently, for such matrices A and B onehas A~ B < m(A) =
m(B). (Hence there are two conjugacy classes in this case.)

Proof. Since (k — 1)/e and x/e are relatively prime integers and
xy=(1-k)(1+k)or (x/e)y =((1 -k)/e)(1 +k), it follows that
x/e divides k + 1; hence e(k + 1)/x is an integer (when x # 0), so
that m(A) makes sense.

To see that m(A) € {1, 2}, note that

m(A)le|(k —1) and m(A4)|(e(k +1)/x)|(k + 1).
Hence m(A)|(k + 1) — (k — 1) or m(A4)|2, as desired.

Now assume that m(4) = 1 and suppose that & # =+1, so that
x # 0. We shall seek an integral matrix

s=(2 )
(¢ a) (5 2= (Vo) (¢ a)

and ad — bc = 1. This implies that
ka+yb=c, xa-kb=d, kc+yd=a, xc—-kd=»b,
and one easily checks that the last two of these equations follow from
the first two. Substituting the first two equations into ad —bc =1 we
get a(xa — kb) —b(ka+ yb) = 1, or xa? — 2kab — yb? = 1, which
may be factored as
X k-1 ey _
{—éa——————e b] [ea+—k_ lb] =1,
where ey/(k — 1) = —e(k + 1)/x is an integer (since k # 1). There-
fore, the existence of S is guaranteed provided the equations
ia—k—:—lb= 1, ea+ib= 1,
e e k-1
have integer solutions a, b.

such that
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Multiplying the first of these equations by e and the second by
x/e and subtracting the two gives 2b = e — (x/e). Similarly, if we
multiply these equations by £ +1 and k — 1, respectively, we obtain
2a = (e(k+1)/x)—((k—1)/e). To show that b exists we must show
that e and x/e have the same parity, i.e., either both are even or
odd. This may be shown as follows.

Assume that x/e is odd and e is even. Then x iseven and kK —1
is even (since 2le|(k—1)). So k+1 is even. But then 2|(e(k +1)/x)
since x/e is odd, and hence, 2|m(A4) =1, a contradiction. A similar
contradiction argument follows if x/e is even and e is odd.

To show that a exists one shows that e(k + 1)/x and (k —1)/e
have the same parity. If (k — 1)/e is even, then x/e is odd. Since
k—1 iseven, k+ 1 is even and so e(k + 1)/x is even since x/e is
odd. Conversely, if e(k +1)/x is even then since 1 = m(A4), e must
be odd. Now as k+ 1 iseven, sois kK — 1, and so (k — 1)/e is even
since e is odd.

Now we assume that m(4) =2 and k # +1, so that x # 0. Then
e and e(k + 1)/x are even so that the matrix

e(k+1)
2x
k-1
e

has integer entries and determinant 1. Using the relation xy =
(1 —k)(1+ k) one can easily check that

10
SA—(O _1>S.

Now the cases when k& = 1 are easily handled by similar argu-
ments as above. o

S =

VX NI

The matrices satisfying the hypotheses of Lemma 2.4 are the “ori-
entation reversing” square roots of the identity matrix. Using this
lemma we can show that there is a quick way to find the conjugacy
class of A when its entries have known parity.

COROLLARY 2.5. Let A satisfy the hypotheses of Lemma 2.4.
(1) k even = m(A4)=1.
(2) Suppose k is odd. Then

(1) x or y isodd = m(A4) =1,

(i) x and y are even = m(A) =2.
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Proof. If m(A) # 1, then m(A4) =2 so that 2|e|(k — 1) and hence
k is odd. This proves (1). We now prove (2).

(i) Without loss of generality suppose x is odd. Since m(A4)le|x,
it follows that m(4) = 1.

(ii) Suppose that x and y are even. Since k — 1 is even, e is
even. We assert that e(k + 1)/x is even, so that m(4) = 2. To see
this, write y = (e(k + 1)/x)((1 — k)/e) where we may assume x # 0
(if x =0 then k = +1 so m(A4) =2). If x/e is even, then (1 —k)/e
is odd (being relatively prime), so y is even implies that e(k + 1)/x
is even. Now if x/e is odd, then k + 1 being even it follows that
e(k +1)/x is even, and hence m(4) =2. O

Setting m(I) = 0, we may now summarize the contents of Lemmas
2.1 and 2.4 as follows:

COROLLARY 2.6. Let A, B € GL(2, Z) be such that det(A — ;) =
det(B—-1,) = 0. Then A ~ B if and only if detA = detB and
m(A) = m(B).

COROLLARY 2.7. Let ¢ be a transformation of T? such that det D(p)
= —1 and det(D(p) —I,) =0. Then
Kl (MW’)) = Z2 52 Zm((p)-

Proof. Arguing as in the proof of Corollary 2.2 ¢ is topologically
conjugate to a transformation ¥ of T2 such that

(},) ifmw=1,

_ 10
o= ((1) Pl) if m(p) =2.

On applying Theorem 1.1(3) to y we obtain
K1 (# (9)) = Ki(+/ (v))
Z2

L) e ((—1, NZ+ (1, —1)z) if m(p) =1,

~ 2 |
ze ((0,0)Z+(0,—2)z> if m(p) =2,
=Z'e Zon(g)-

Combining the results of this section together with those of the
previous one we arrive at the following result.
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PROPOSITION 2.8. Let ¢, and ¢, be transformations of T? such
that det(D(¢;,) —1I,) = 0, i =1,2. If &(¢1) and /(p,) have
isomorphic Kj-groups (i = 0, 1), then detD(gp;) = detD(¢,) and
m(p1) = m(92), so that D(p1) ~ D(92).

Proof. Since they have isomorphic Ky-groups, Theorem 1.1 implies
that det D(¢;) = det D(¢,). Since they have isomorphic K;-groups,
we may combine Corollaries 2.3 and 2.7 to get m(@;) = m(¢;). By
Corollary 2.6 we deduce that D(¢,) ~ D(¢,). O

REMARK. The quantity det(D(¢)—1I,) turns out to be the so-called
Lefschetz number of ¢, which is defined in algebraic topology as
the alternating sum of the traces of the induced maps of ¢ on the
cohomology groups of the underlying space (in our case T?). The
Lefschetz fixed point theorem states that if ¢ is a diffeomorphism
on a smooth manifold which has no fixed points, then its Lefschetz
number is zero. In our case, for the 2-torus, the Lefschetz number is

det(D(¢) — I,) = 1 — trace(D(¢p)) + det(D(9p)).
(see Bott and Tu [1, Theorem 11.25].)
3. Quasi-rotations.

DEFINITION. A transformation ¢ of T? is said to be a quasi-
rotation if D(¢) # I, and if ¢ has a “non-singular” eigenvalue 4 # 1.
That is, 3f € C(T?) invertible such that fog = Af.

Taking the supremum on both sides of fop = Af yields |A| = 1.
Thus f/|f| is a unitary eigenfunction with eigenvalue A. Hence we
will always assume, without loss of generality, that f is unitary. It
is easy to show that the affine quasi-rotations have eigenvalues which
are automatically non-singular.

Crossed products of C(T") by affine rotations of T”,i.e. D(p) =
I, , have been classified by Riedel [13, Corollary 3.7].

LEMMA 3.1. Let ¢ be a quasi-rotation with non-singular eigenvalue
A# 1 sothat fop =Af, where f € C(T?) is unitary. Then

(1) D(f)#100],
(ii) det(D(p)—I,) = 0.

Proof. Assume that D(f) = [0 0] so that one can write f(x,y) =
e2miF(x,¥)  for some continuous real-valued function F on T?. The
relation fo ¢ = Af then becomes

P2mi(F(p(x,9)=F(x,9) = .
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Thus F(p(x,y)) - F(x,y) =c, for all (x,y) € T?, where ¢ is a
real constant. By induction this becomes

F(p®W(x,y)) - F(x,y) = ke,
for every positive integer k. But since the left-hand side is bounded,
it follows that ¢ =0 and so A =1, a contradiction.
Upon taking degrees on both sides of fo ¢ = Af we obtain

D(f)D(p) = D(f), or D(f)(D(p) — I2) = 0, where D(f) # [0 0].
Therefore, det(D(¢) — ;) =0. a

DEFINITION. Let ¢ be a quasi-rotation of T? and 4 a non-singular
eigenvalue of ¢ . We call A a “primitive” eigenvalue if it has an asso-
ciated unitary eigenfunction f € C(T?) such that D(f) has relatively
prime entries.

LEMMA 3.2. Every quasi-rotation ¢ of T? has a primitive non-
singular eigenvalue (# 1), which is unique up to complex conjugation.

Proof. Suppose that fop =Af, A# 1,and f € C(T?) is a unitary
with D(f) = [m n] # [0 0] (by Lemma 3.1). Let d = gcd(m, n).
Choose a unitary g € C(T?) such that g = f, where g¢ is the d-
fold pointwise product of g. Thus g90¢9 = Ag?,or [(gop)Zl¢ =A.
By continuity, (g o ¢)g = Ao for some dth-root 4; of A. Hence
gop = Ayg and Ay # 1 is primitive since the entries of D(g) =
[(m/d) (n/d)] are relatively prime.

To prove the uniqueness part suppose that in addition to go¢ = Agg
(Ao primitive) we have ho ¢ = uh, where y is primitive and D(h)
has relatively prime entries. Taking degrees on both sides of these
two equations we get D(g)(D(¢)—1;) =0, and D(h)(D(¢)—15) =0.
Since D(p) — I, # 0, it follows that D(g) and D(h) are rationally
dependent, that is, there are non-zero integers a and b such that

aD(g) + bD(h) = [0 0].
But since D(g) and D(h) have relatively prime entries it follows
that D(g) = £D(h), and so D(gh*!) = [0 0]. From the above two
eigenvalue equations we have
(gh*") o 9 = (Aou™")(gh™").

Since gh*! has zero bidegree, Lemma 3.1(i) implies that Agu*! =1
Hence, u = 43", as desired. o

ExaMpLEs. 1. Let A =¢e2"? 0 < 0 < 1, and consider the Anzai

transformation ¢g4(x, y) = (Ax, xy). Since D(gg) # I, and uogpy =
Au where u(x,y)=x and A # 1, @y is a quasi-rotation. In fact, it is
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clear that ¢y is affine. If @ is irrational, then @4 is minimal on the 2-
torus (using the minimality criterion in [8, p. 84], or [15, Prop. 1.1.4]).
Hence the associated crossed product C*-algebra &/ (gg) is simple (cf.
Power [12]) and has a unique faithful tracial state since @4 is uniquely
ergodic, i.e. has a unique invariant Borel probability measure (cf. [5,
Prop. 1.12] or [15, Lemma 1.3.4]). The isomorphism classes of these
algebras (for 6 irrational) were studied by Packer [7], and also by Ji
[5] in his more general setting of Furstenberg transformations of -
tori. Here we shall classify these crossed products within the slightly
broader family of those associated with affine quasi-rotations.

2. Furstenberg [4, p. 597] proved that a minimal transformation ¢
of T? which is not homotopic to the identity, i.e. such that D(p) # I,,
has an irrational eigenvalue 4, so that any (non-zero) eigenfunction
will automatically be invertible. Hence ¢ is a quasi-rotation.

3. There are only two orientation reversing affine quasi-rotations
of T2 up to topological conjugation (by Lemma 2.4 above). The first
one is of the form (x, y) — (ay, bx), with degree matrix

(1 5)

having primitive eigenvalue A = ab (say A # 1) and eigenfunction
f(x,y) =xy. The second one has the form (x, y) — (Ax,y), with

degree matrix
1 0
0 -1/’

and has primitive eigenvalue A (say 4 # 1) and eigenfunction u(x, y)
=X.

4. In [16] certain techniques of Furstenberg have been used to con-
struct a (non-affine) quasi-rotation y which does not have topolog-
ically quasi-discrete spectrum. This settled a question of Ji [5, pp.
75-76] in the negative; namely, whether in general a transformation
of the form (x, y) — (e#*®x, f(x)y), where f: T — T is continuous
with degree +1, is topologically conjugate to the Anzai transforma-
tion ¢y or to its inverse. The latter has topologically quasi-discrete
spectrum and so cannot be topologically conjugate to ¥ . An interest-
ing question in this regard is whether the associated crossed product
C*-algebras are isomorphic. They have the same K-groups, same tra-
cial range, have unique tracial states, and are both simple.

4. The range of the trace. In this section we wish to compute the
range of the trace for the algebras ./ (¢) for any quasi-rotation ¢.
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This computation follows closely that of the irrational rotation alge-
bras studied by Rieffel [14] and Pimsner and Voiculescu [11].

Let us note that almost every C*-crossed product of a commutative
unital C*-algebra by Z has a tracial state. If X is a compact metric
space and ¢ is a transformation of X, then a theorem of Krylov and
Bogolioubov (cf. [18, p. 132]) ensures that there is a Borel probability
measure 4 on X which is g-invariant, that is, u(p~1(E)) = u(E)
for every Borel subset £ of X. The map

=/deﬂ

is a tracial state on C(X) which is a-invariant, where « is the au-
tomorphism of C(X) associated with ¢, i.e. a(f) = fop~!. This

A

means that 7 induces a tracial state £ on C(X) x4 Z.

THEOREM 4.1. Let ¢ be a quasi-rotation of T2 with primitive eigen-
value A = e**%. Then for any tracial state © on % (p) we have

7.Ko( (¢)) = Z + OZ.

Note that we did not assume that # is irrational, only that it is not
an integer.

Proof. Let f € C(T?) be a unitary such that fop = Af and D(f)
has relatively prime entries. This f induces a C*-homomorphism
p: C(T) — C(T?) given by p(g)=go f.

If we let B denote the automorphism on C(T) associated with
rotation by 4, namely, f(g)(x) = g(Ax), for g C(T) and x €T,
then p is an equivariant homomorphism between the C*-dynamical
systems (C(T), B, Z) and (C(T?), a,, Z). To see this we verify that
pof =ayop asfollows:

ap(p(8))(2) = p(g)9~'(2)) =go fop
= B(g)(f(2)) = p(B(g))(2),

for all z € T? and g € C(T).

Using the naturality of the Pimsner-Voiculescu sequence, this p
induces a morphism between their associated Pimsner-Voiculescu se-
quences yielding the commutative diagram

— Ko(C(T)) o Ko(C(M)x5Z) 5 K (C(T) —
1 p, . b, , 1o,
— K(C(T2) 5 Kol (p) > K(C(TY) —

“(2) = g(Af(2))
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where p: C(T) xg Z — & (p) is the induced homomorphism
from p.

If 6 is irrational one can construct the Rieffel projection e in
C(T) xp Z = o4 having trace 6 (cf. [14, pp. 418f]). If ¢ is rational
one can still construct the Rieffel projection in the same way and it can
be shown that 7/(e) = @, for any tracial state 7’ on & (cf. Elliott [3,
Lemma 2.3, pp. 170-171]). In both cases one has Jg[e] = [fo], which
is the generator of K;(C(T)), where fy(z) = z, z € T. Since the
diagram commutes, one has

dola(e)] = dyp.le] = p.dole] = p.Lfo} =[],

and since D(f) has relatively prime entries, [f] is generator of
ker((ay)« —ids) in K{(C(T)). Hence the projection pj(e) yields a
generator in Ky(«(¢)) which, along with the two generators as in
Corollary 1.2 (having traces 0 and 1), gives the range of the trace as

T.Ko(# (9)) =Z + 1(p(e))Z
=Z+17(e)Z
=7+ 0Z,

where 7/ = 70 p is a tracial state on 2. O

REMARK. One could use Pimsner’s computation of the tracial range
[10] to prove the above theorem using the concept of the determinant
associated with a trace. But for our purposes the above short proof
suffices.

Now let us look at some of the consequences of this theorem and
the results of the preceding section.

COROLLARY 4.2. Let ¢; be a quasi-rotation of T? with primitive
eigenvalue Aj = ™ j=1,2.If Z(p)) = A (92), then

(1) Z+6,Z=7Z+ 6,Z,

(2) detD(p;) = detD(p3),

(3) m(p1) =m(p2).
Consequently, D(¢,) ~ D(@3).

Proof. The preceding theorem yields (1), and Proposition 2.8 yields
(2) and (3). O

COROLLARY 4.3 (Packer [7, p. 49]; Ji [5, p. 39]). For each irrational
number 0 < 6 < 1 and each non-zero integer k, let Hy ; denote
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the crossed product C*-algebra of C(T?) by the Anzai transformation
o(x,y) = (e*"0x, xky). Then

Hy = Hy o |k|=|K'| and ¢ €{6,1-6}.

Proof. (Note that if k =0, then Hy ; = % ® C(T) and the con-
clusion easily holds.)

(=) In this case the tracial ranges being equal (by the preceding
corollary) implies that 8’ € {6, 1 — 6}, as the latter are irrational.
Since these algebras have isomorphic K;-groups, Corollary 2.3 shows
that |k| = |k'|. The converse easily follows. u|

Let us recall that the natural action of the group GL(2, Z) on the
irrational numbers is given by:

a b 0_a0+b
c d)” " cB+d

CoROLLARY 4.4. Let ¢; be an irrational quasi-rotation of T2 with
primitive eigenvalue ; = e j=1,2 (ie 0; is irrational). If
&/ (91) and & (9,) are strongly Morita equivalent, then

(1) 6, = A6, for some A GL(2, Z),

(2) detD(g,) = detD(g,),

(3) m(p1) =m(p2).

Consequently, D(¢,) ~ D(@3).

Proof. Conclusions (2) and (3) follow from Proposition 2.8 since
strongly Morita equivalent C*-algebras have isomorphic K-groups.
Theorem 4.1 allows one to apply Rieffel’s argument [14, Proposition
2.5] to derive (1). O

COROLLARY 4.5. No s is isomorphic to any C(T?) x, Z. For 6
irrational, no 4 is strongly Morita equivalent to any C(T?) x, Z.

Proof. Assume that & = C(T?) x, Z. Then Ky(C(T?) x, Z) =
Ko(4) = Z?, and the proof of Theorem 1.1(1) shows that
Ko(C(T?) x, Z) is generated by the classes [1] and [P], where P
is the Bott projection. These, however, have traces equal to 1, and
so looking at their tracial ranges yields Z = Z + 6Z. Thus 6 € Z
and hence &4 = C(T?) which is isomorphic to C(T?) x, Z, and
being therefore commutative implies that o = id. Thus, C(T?) =
C(T?) xiq Z = C(T?) ® C(T) = C(T3), a contradiction. A similar
argument shows the second assertion of the corollary. O
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The second assertion of this corollary is still true for 6 rational, but
it requires a little more work which we defer to a future paper [17].

Let us now extend Theorem 4.1 to matrix algebras over & (¢p).

If A is aunital C*-algebra, then any tracial state 7 on M, ® A has
the form (1/n)tr® 7’ for some tracial state 7 on A4, where tr is the
usual trace on matrices (for instance see [5, Lemma 3.3]). Further-
more, if all tracial states on 4 induce the same map on Ky(A4), then
all tracial states on M, ® A induce the same map on Ky(M,® A4) (cf.
[S5, Lemma 3.5]). In fact one has in this case

T.Ko(M, ® A) = %TQKO(A) ’

for all tracial states 7, 7/ on M, ®A4 and A, respectively. This yields
the following.

COROLLARY 4.6. Let ¢ be a quasi-rotation of T? with primitive
eigenvalue A = ™% Then

1
T.Ko(Mn ®  (9)) = ;(Z +6Z),
Sor any tracial state T on M, ® /(p).

COROLLARY 4.7. Let ¢; be a quasi-rotation of T? with primitive
eigenvalue A; = e, j=1,2. If My (91) = M, @ (92), then

(1) n=k,

2) Z+6,Z=2Z+6,Z,

(3) detD(g,) = detD(p3),

(4) m(p1) =m(p,).

Proof. It will suffice to prove (1) since the other conclusions will then
follow from Corollaries 4.2 and 4.6. For brevity denote B; = #/(9;),
Jj =1,2. The proof of (1) is easy if §; is irrational, but requires
a little more work otherwise. To do so it suffices (by symmetry) to
prove that if M, can be unitally embedded in M, ® B;, then kin.

Recall that Ky(B,) is generated by a projection e € By of trace 6,
and two other classes [1] and x = [P] —[1].

Let {eg.‘)},-, j=1,...n be the standard matrix units for M,, so that
Ko(M, ® B;) has independent generators [e{” ® e], [¢!” ® 1], and
eWox =[P -["el].

Suppose that g: M, — M, ® B; is a unital embedding and o.:
Ko(My) — Ko(M, ® By), where Ko(M;) = Z[e!¥)]. Then

o[ = alel? @ e] + blel? ® 11+ (el ® x),
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(k)

for some integers a, b, c. Now since I = ) ;e;;’ is the sum of

equivalent projections, we get from

Lol=o(l) =) ale)

i
that [I, ® 1] = k[o(e!¥)] € Ko(M, ® B;). Thus

n[eg’;) 1=, ®1]= ka-*[eilf)]

and therefore n = kb. a

REMARK. The argument in the above elementary proof can also be
used to show a similar result for the rotation C*-algebras 24 . Recall
that Rieffel [14] showed this for @ irrational, while in [3] and [19] it
was shown for rational § and n=k=1.

5. Main Theorem. Before embarking on the main result let us intro-
duce some notation and characterize the affine quasi-rotations. Later
a partial result is given for the rational affine quasi-rotation algebras.

If A€ GL(2, Z), say
(00
P q

then its action on T2 is defined by A(x,y) = (x™y", xPy4). This
actually gives the group isomorphism Aut(T?) = GL(2, Z). It is easy
to check that

Ay (4z2) = (4142)(2),

forall 4,, A €GL(2,Z) and z € T?.

Now if X =[m n] isa 1x2 integral matrix, it induces a continuous
function (actually a character) X: T? — T given by X(x, y) = x™y".
Clearly, X(Az) = (XA)(z) for any X, and 4 € GL(2,Z). Also,
since X is a homomorphism, X(zw) = X(z)X(w).

Let us suppose that 4 € GL(2,Z) is such that 4 # [, and
det(A — I;) = 0. Then the proof of Lemma 3.2 (uniqueness part)
shows that there exists an integral matrix X, = [m n] having rela-
tively prime entries such that

X4(4-1)=1[00],

and that X4 is unique up to sign. So X 4 = X4.
Now let us determine the affine quasi-rotations of T2.
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LEMMA 5.1. Let ¢(z) = aA(z) be an affine transformation of T?.
Then ¢ is a quasi-rotation if and only if the following conditions hold.
(1) A4#1,
(ii) det(4—1,) =0,
(iii) X4(a) #1.

Proof. Suppose these three conditions hold. Then for z € T2 one
has

Xq00(2) = Xy(ad(z)) = Xq(a)X4(A(2)) = X4(a) X 4(2),

so that X 09 = X (a)X4, where X (a) # 1 is a non-singular eigen-
value which is primitive as X4 has relatively prime entries. Since also
D(p) = A, ¢ is a quasi-rotation.

Conversely, suppose that ¢ is a quasi-rotation. By definition (i)
holds, and by Lemma 3.1 condition (ii) holds. It remains to check
(iii). By Lemma 3.2 ¢ has a primitive eigenvalue 4 # 1 so that
foo = Af, where f is unitary with D(f) having relatively prime
entries. Taking D on both sides gives D(f)(4 — I;) = 0. By the
uniqueness of X, we get that D(f) = £X,. Replacing f by f, if
necessary, we may assume that D(f) = X4 = [m n]. So let us then
write f as f(x,y) = x™y"e?F(x.¥) where F is real-valued. This
we may re-write as f(z) = X4(z)e**f(2)  where z € T?>. Thus the
equation fo @ = Af becomes

XA(¢(Z))e2m'F(¢(z)) — iXA(Z)esz(Z).

Now since X409 = X4 (a)X4, as we computed above, this equation

reduces to
2 i{F(9(2))-F(2)} = AX4(a),

which, by arguing as in the proof of Lemma 3.1, implies that A X 4(a) =
1. Hence X (a)=41#1. O

Let & (a, A) denote the crossed product C*-algebra associated with
the affine quasi-rotation corresponding to the pair (a, 4) satisfying
the conditions of the preceding lemma. The inverse of such a quasi-
rotation can easily be checked to correspond to the pair (4-!(a@), 471).

THEOREM 5.2 [15, Theorem 4.3.2]. Let (a;, A;) be a pair corre-
sponding to the irrational affine quasi-rotation ¢; of T, j =1,2.
Then the following are equivalent:

(1) Z(ay, A1) =F(az, 42),
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(2) @1 and ¢, are topologically conjugate via an affine transforma-
tion,
(3) The following conditions hold:
(1) Xyg,(a2) = Xy (a1)*',
(i) det(4;) = det(4,),
(iif) m(A4;,) = m(4).

Proof. By Lemma 5.1, 4; # I, and det(4; — I;) = 0, so that
X; = X, , with relatively prime entries, exists such that X;4; = X;
j=1,2.

In view of Corollary 4.2 condition (1) implies (3), as X;(a;) is
irrational. Clearly (2) implies (1). So we need to check that (3) implies
(2).

Assuming that (i), (ii), (iii) hold we shall construct an affine trans-
formation y(z) = kK(z) which intertwines ¢; and ¢,. By Corollary
2.6, A] ~ A, so choose K € GL(2, Z) such that KA4;K~! = 4,. The
equation XA, = X, becomes (X,K)A; = X,K . Since X, has rel-
atively prime entries then so does XK = +X;. Replacing K by
—K , if necessary, we may choose the £+ in X;K = +X; according to
whether X,(a,;) = X (a;)*!, respectively.

We need to choose k so that y o ¢, = ¢, 0 . The left-hand side
of this is

W o gi(z) = kK(a141(z)) = kK(a)K4,(z),
and the right side is

920 ¥(2) = a2 Ar(kK(2)) = ay Az (k) 42K (2).
These expressions are equal if and only if
(*) kK(ai) = ayA(k),

and it suffices to show that this equation has a solution k € T2.
To do this, first extend the equation X,K = +X; to

(=)x= (%)

for some 1 x 2 integral matrices R; and R, such that

(X
T’—(Rj)
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has determinant +1 (which is possible since X, has relatively prime
entries). Now apply 73 to both sides of (*) to get

(Rz)(k)< )’““*) (fﬁ)wz)(ﬁz)Az(k),
(R) 0 (%) @ = ()@ () w®.

where R, = RyA;. Note that R}, # R, ; for otherwise Ry(4,—1;) =0
which implies that 75(4, — ;) = 0 hence A, — I, = 0 as T; is
invertible. Thus the above equation becomes

(Xa(k), Ry(k))(X1(a1)=!, Ri(ar)) = (X2(a2), Ra(a2))(Xa(k), Ry(k)).

By condition (i) the first coordinates of both sides of this equation
are equal for all k. The second coordinates become

Ry(k)Ri(a1) = Ry(az)Ry(k),

or

or
(Ry — Ry)(k) = Ry(az)Ry(ay),

and this clearly has a solution k since R; — R/, # [0 0]. O

Therefore, the irrational affine quasi-rotation algebras % (a, A) are
completely determined up to isomorphism by the triple (X4(a),
det(4), m(A)), up to conjugacy of X,(a), where X4(a) is the primi-
tive eigenvalue coming from the tracial range, det(A4) = +1 is known
from the Kjy-group and m(A) is known from the K;-group.

COROLLARY 5.3. For irrational affine quasi-rotations of T2, we have:
M, ®%(ay, 4) =M @B (ay, A2) ifand only if k =n, X4 (a)) =
XAz(az):H , det(A4;) = det(4,), and m(4;) = m(4,).

As a final remark let us note that an argument due to Yin [19]
for the rational rotation algebras can be used to show Theorem 5.2
(and hence Corollary 5.3) for the rational case for the orientation
reversing quasi-rotations. Condition (3) in Theorem 5.2 implies (2)
in exactly the same way as in the proof. It only remains to check (1) =
(3). Let X4 (a;) = e*™%, j=1,2. Clearly, (i) and (iii) follow as
before, so we need to check (1). An isomorphism o¢:%(a;, 4;) —
%#(ay, Ay) induces one on their Kp-groups which on their generators
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(cf. Corollary 1.2(ii)) is of the form

o 1] =[1],
o.([P1]—[1]) = [P,] —[1], Dbeing elements of order two,
o«leg ] = r[11+ s([P2] — [1]) + t[eg,],

for some integers r, s, t. Taking traces of the last of these equations
gives 0, = r + t6,. Since the matrix of o, is

1 0 r
01 s},
0 0 ¢

and is invertible over Z one has that ¢ = £1; hence 6 = r + 6,
which yields (1).

This argument however fails for the orientation preserving case
since the above gives us conditions on certain integers that do not
necessarily imply that 8; = +£6, mod Z. This we do not know how
to prove since the role of the Bott projection here is not so clear.
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RANK-2 FANO BUNDLES OVER
A SMOOTH QUADRIC Q3

IoNAcIO SoLs, MICHAL SZUREK, AND JAROSLAW A. WISNIEWSKI

In the present paper we examine rank-2 stable bundles over Q;
with ¢; =0 and ¢; =2 or 4.

This paper is a continuation of [7] where rank-2 Fano bundles over
P3 and Q; were studied. Let us recall that a bundle & is called Fano
if its projectivization P(&) is a Fano manifold, i.e. a manifold with
ample first Chern class ¢;(P(£)). In the present paper we examine
rank-2 stable bundles over Q3 with ¢; =0 and ¢, = 2 or 4. These
are the cases whose knowledge was necessary to complete the classifi-
cation of rank-2 Fano bundles over Q3. They are very different: if
& 1is stable with ¢; = 0, ¢; = 2 then its first twist &(1) is spanned
by global sections (see Proposition 1), whereas if ¢, = 4 then for a
general & from a component in the moduli £(1) has no section at
all (Proposition 3). We complete the classification of rank-2 Fano
bundles over Q3. The results of §3 from [7] and of the present paper
can be summarized in the following

THEOREM. Let & be a rank-2 Fano bundle over Q3. If c1& = —1
then & is either @ & @(—1) or the spinor bundle E. If & =0 then
& is either @, or G(-1)®E(1), or any stable bundle with c; = 2
(see a corollary in §1 for a complete description of such bundles).

Let us recall that the spinor bundle £ on an odd-dimensional
quadric Qj,4; is the restriction of the universal 2”-bundle on the
Grassmannian Gr(2”, 2+!). Then E* = E(1). On an even-dimen-
sional quadric Q,,, v > 2, there are two spinor bundles, correspond-
ing to the two reguli of v-planes. The following characterization of
the bundles with no intermediate cohomology was proved in [1]:

THEOREM. For a vector bundle F on Q,, n>2,itis H'(F(l)) =0

forall 0<i<n, leZ,ifandonlyif F isadirect sum of line bundles
@(l) and of their tensor product with spinor bundles.

153
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1. Bundles with ¢; = 0, ¢; = 2. In this section we prove the
following

PROPOSITION 1. Let & be a stable bundle on Q3 with ¢, = 0,
¢y =2. Then &(1) is globally generated (and therefore is Fano).

Then, in view of the Proposition (3.2) from [7] we have:

COROLLARY. Any stable rank-2 bundle on Q3 with ¢; =0, ¢; =2
is the pullback of a null correlation bundle on P3 via some double cov-
ering Q3 — P3 (see [5] for a definition of the null correlation bundle).

To prove the proposition we apply a technique of “killing H!”,
developed by Horrocks, see the final acknowledgments in [2]. Namely,
starting from a bundle & with, say, H(#(—1)) # 0, we take a non-
trivial extension of #(—1) by @ which corresponds to this element of
the cohomology. Then the middle bundle of the exact sequence that
forms the extension has “simpler” cohomology than the initial one.
Eventually, we obtain a bundle with no intermediate cohomology and
we use classification theorems of such bundles, see [1]. The proof will
be divided into several steps.

Step 1. Using the information on the spectrum of stable bundles,
[3], we calculate the cohomology of &(1):

Al
0 0 01O
1 |1 (00 hi(Z(j))
0 0 1 |
0lo0|0]oO .
j=-2 j=0] " j

Step 2. Let us take a nontrivial extension

(1) 0—-&-1)—B—-¢—0

which corresponds to a non-zero element of Ext!(@, &(-1)) =
H'(£(-1)). The extension is non-trivial; hence the connecting ho-
momorphism &: H’(@) — H!(£(-1)) is a non-zero map. Then we
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may fill out the cohomology diagram for B(j) as follows:

\ !
0o [o0o]oO hi(B(j))
1 1 ol oO
00 [0] a
0|0 |oO N
Jj=-2 Jj=0 J

with a < 1.

Step 3. Let us take B’ = B*(—1). The Chern classes of B’ are the
following: ¢; = —1, ¢; =2, ¢3 = —2. The cohomology of B’ can be
easily derived from that of B and the result is

Ai

h'(B'(J))

(=] Ll (=] {en)

(=] {=] {e] =)

a
0
0

Il ol—|olo

j=—2 j=0] = j
We see that dim H!(B'(-1)) = dimExt!(#, B'(-1)) = 1, so that
we consider an extension

(2) 0—B'(-1)—-C(-1)—-#—0

corresponding to a non-zero element of H!(B'(-1)).

Step 4. We then calculate that C is a rank-4 vector bundle with all
Chern classes zero and the cohomology

Ai
0 0 0 .

a 0 0 O h'(C()))

0 0 0| b

0 0 0 R

j=-2 j=0 j
with a<1, b<1.
Step 5. Let

(3) 0—-C—-D—07—0

be a non-trivial extension (if » = 1) or the splitting one (if 4 = 0).
In both cases all Chern classes of D vanish and the cohomology of D
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is

Al'
S5—a 0 010
a 0 oo hi(D(j))
0 0 0160
0 0 0[5 .
j=-2j=0 J

Step 6. In a similar way we get rid of a (possibly) positive a. Let
us take

(4) 0—-D*—F—¢—0,

corresponding to a generator of H!(D*) = H?(D(-3)). The bundle
F is uniquely determined up to proportionality in Ext!(#, D*) =
HY(D*). 1t is a 6-bundle on Q3 with no intermediate cohomology,
with HO(F(-1)) vanishing and all Chern classes equal zero.

Claim. F is either #% or #? ® E @ E*, where E is the spinor
bundle on Q5.

Proof. It follows easily from the characterization of bundles with
no intermediate cohomology.

Step 7. If F is @9, then D and C in (4) and (3) must be trivial.
Dualizing (2) then gives the sequence

(5) 0—o(-1)—0*— B(1)—0

whose second exterior power is
(6) 0—-B—0%—B* —0

—notice that B* = A’[B(1)] because B is of rank 3 and ¢;(B) = -2.
Therefore &(1) is globally generated, because it is an image of B* (see
(1)).

Step 8. We now want to exclude the case F = @20 E®E* . Assume
this is the case. Let us look at the epimorphism F — & in (4). Its
dual is an embedding # c # ® & & E ® E*. Because H(E) = 0
and E* has no non-vanishing sections, see [1], then the embedding
map sends & into @ @ @ . Hence the bundle D* in (4) is equal to
GHEDE*. In the same way we conclude that C = E®E™, so instead
of (5) we get
(7 0—#(-1)—>E®E"— B(1) — 0.



RANK-2 FANO BUNDLES 157

Raising this sequence to the second symmetric power, making use of
the identity B* = A’[B(1)] again and recalling that
2 2 2
NE®E") = \E) e (E®E") o \E"
=@(-1)®&L(E)®E(1),
we obtain an analogue of (6):
(8) O-%B—yﬁ(l)@gﬂa/(i)@ﬁ(—l)—>B*—+O,

whose twist by —1 is
(9) 0—B(-1)—@a[&s(E)I(-1)®c(-2) — B*(-1) — 0,

which contradicts the cohomology tables from Step 2 and Step 3—
namely that B(—1) and B*(—1) have no sections.

2. Bundles with ¢; = 0, ¢; = 4. In view of the results of [7] the
following completes the proof of the theorem stated at the beginning
of the paper.

PROPOSITION 2. A vector bundle & on Q3 whichhas ¢; =0, ¢; =4
cannot be Fano.

Proof. First let us note that an unstable & with ¢; =0, ¢, = 4
cannot be Fano—this is proved at the beginning of §3 in [7]. So let
us assume that & is stable. Using the spectrum technique [3], we
calculate the cohomology of &(j) to be

Al
0 0 01 O
4 {210l o0 hi(&(}))
0 0 2| 4
o] o[ o] o X
Jj=-2 j=0 T

Consider the natural bilinear map
O: HY(2(-1)) x HY(#(1)) — H\(%).

We see that dim H!(£(-1)) = 2, dimH%&(1)) = 5 and moreover
dim H!(&) = 4. The bilinear lemma [4] gives the existence of s and
h such that (s, #) = 0. Hence there is a section of &|Q, over a
(not necessarily smooth) hyperplane section of the quadric. The sec-
tion vanishes at four points. These points are not necessarily distinct,
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but they are not collinear since otherwise the splitting type of & on
this line would be (—c, ¢) with ¢ > 2, contradicting the ampleness of
&(2). Let us take a conic C that passes through at least three of these
points, counted with multiplicities. Then &|C = @¢(-d) & Fc(d)
with d > 3, because the section has at least triple zero. But this im-
plies that there exists an effective 1-cycle C’ associated to the section
of &(-3)|C;thecycle C' is numerically equivalent to &z(_3)-p~1(C),
where Cg(_3) is the relative hyperplane divisor on P(&) associated
to &(-3) i.e. a class whose restriction to a fiber of the projection
p; P(&) — Qs is a hyperplane and p.&@(g(-3)) = &(—3). Then
H-C' =2, ¢ = —d, where H is the pullback of the hyperplane
divisor from Q3 and g is equivalent to {g(_3) + 3H . Because the
anticanonical divisor of P(&) is equivalent to 2z + 3H, we have

—Kp(e) - C' = (2¢ + 3H) - C'<0,
so that —Kpe) cannot be ample. O

REMARK. Although ruled out from our Fano list, the investigation
of rank-2 vector bundles & with ¢; =0, ¢c; =4 on Q3 seems to be
an interesting open problem. In particular:

does a general £(1) have a section?

We believe that the answer is no. So far we can only show

PROPOSITION 3. In the moduli space of stable bundles with ¢, =0,
¢y = 4 there is a component containing bundles with HO(£(1)) = 0.

Proof. Assume Z is the zero set of a section of such an &(1).
Because of stability, Z is not a surface while the indecomposability
of & shows that Z is not empty. Hence Z must be a curve. By the
adjunction formula we have

(10) Kz =dp(-1)|Z;

hence no connected component of Z may be a single line.
Since ¢;(&€(1)) = 6, we conclude that Z has at most three con-
nected components. Let us consider the bundles given as extensions

(11) 0 - —&(1) > Jc(2) —0
where C is the sum of three conics. Let us count how many bundles

can be obtained in this way. The conics in Q3 are in 1-1 corre-
spondence with 2-planes in P*, hence the dimension of the family of
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triples of conics is equal to 3-dim(Grass(2, 4)) = 18. The number of
non-isomorphic extensions of the form (11) is equal to the dimension
of
Ext'(Jc(2), @) = HY(&+(0c(2), €) = H)(@c),

i.e., to 3, see [5], Ch. I, §5.1. Because proportional extensions give
rise to isomorphic bundles, altogether we have a bundle family of
dimension 18 + 3 — 1 = 20. On the other hand, using the obvious
relation .+ (&) =& ® &* we calculate using (11) that

dim(H (&2 (&) =1, dimH (&())) =21,
dim(H?*(&«(E))) =0, dim(H?*(&(&))) =0.

Therefore a local deformation of a bundle given by (11) need not be
such. The bundles that do not arise from deformations of those given
by (11) must then come from curves C’s having at least four com-
ponents, which is not possible by (10). Hence &(1) has no section.
Because of the semicontinuity, the same holds for a generic bundle in
the same component. o
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RICCI CURVATURE AND VOLUME GROWTH

M. STRAKE AND G. WALSCHAP

We give an example of a complete manifold AM™ of nonnegative
Ricci curvature for which the volume of distance tubes around a to-
tally geodesic submanifold L' divided by the corresponding volume in
L xR™ goes to infinity. Recall that in the case of nonnegative sec-
tional curvature, this quetient is nonincreasing and bounded by 1.

1. Introduction. One of the fundamental tools in the study of Ricci
curvature is the Bishop-Gromov volume inequality, which states that
in a complete manifold M™ of Ricci curvature > (m — 1)k, the map

vol B,(p)
™ Vol (D;, &)

is monotonically nonincreasing. Here, B,(p) is the ball of radius r
around p € M, and (D,, &) is a ball of same radius in the simply
connected space of constant sectional curvature k¥ . Under somewhat
different assumptions, this inequality still holds when p is replaced by
a compact, totally geodesic submanifold L/ of M : The comparison
space now becomes (L x D,, gc), where for x = (xg, x;) in the
tangent space of L x D, at (p, u), g(x,x) = c2(|u|) &(xo, xo0) +
8x(x1, x1). (Here g is the metric on L induced by the imbedding
L — M, and ¢ is the solution of the equation cy + k¢, = 0, with
c(0) =1, c.(0) =0.) The volume inequality now reads (cf. [4], [3],
[6]):

() If the radial sectional curvatures of M are > x, then

vol B,(L)
vol (L x D, , g«)

is a nonincreasing function of r, with ¢g7(0) = 1. (A 2-plane
o C M, is said to be radial if it contains the tangent vector of
some minimal geodesic from g to L.)

(=) If all sectional curvatures of M are > k, then qr(r') = qr(r)
for some 0 < ' < r only if the normal bundle of L — M
is flat with respect to the induced connection, and B,(L) is
(locally) isometric to (L x Dy, g).

def
qr(r) =

161
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In this note, we show that () no longer holds in general if one only
assumes Ricys > (m — 1)k (see also [1] for a related result): In fact,
the quotient ¢;(r) may go to infinity as r — oo. Moreover, even if
the radial sectional curvatures are > k—so that () must hold— (#x*)
is no longer true if one replaces Ks > k by Ricy, > (m— 1)k . More
precisely, we have:

1.1. THEOREM. Let L = CP!, and M = CP2. Then
(a) The normal bundle E of L — M admits a complete metric of
nonnegative Ricci curvature such that
(r) & def  VolB,(L)
i vol(L x Dy, g)

goes monotonically to infinity as r — oo.
(b) There is a complete metric on M with the following properties:

(1) L is totally geodesically imbedded in M .

(2) Ricys > 3, and the radial sectional curvatures are > 1.

(3) qr(r) = def Ww%?_gﬁ =1 for r < g, provided ¢ is suffi-
ciently small.

2. Ricci curvature for connection metrics. Let L = CP! — CP?
with the standard metric of curvature 1 < K < 4. As in [5], we iden-
tify a distance tube B,(L) around L with [0, r] x $3/ ~, where all
the Hopf fibers are collapsed to a point at {0} x.S3. Consider the class
do? of metrics on S3 obtained by multiplying the standard metric by
f2(r) in the Hopf fiber direction, and by A2(r) on its orthogonal com-
plement. If f is an odd smooth function with f'(0) =1, and 4 is
even and positive, then the metric dr?+da? on (0, r]xS> extends to
B.(L). The standard metric corresponds to f(r) = (1/2)sin2r and
h(r) = cosr. Using the same vector fields X;, 0 < i < 3, as in [5]
(where X, is radial, X; is tangent to the Hopf fiber, and X,, X3 are
orthogonal to it), we obtain for R;; := Ric (X;/|X;|, X;/|X;]):

] h"
(2-1) Roo=—-€;—27,
N _f” flhl f2
(2-2) Ry = =% =270 + 255,
" f'h' 4h 2 _ 2f2 _ h'2h2
(2'3) R22 = R33 = _71— - fh + h4 ’

(2-4) R;j=0, i#].
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The proof is straightforward and will be omitted.

This class of metrics is actually a special case of the following con-
struction: Let (L!, £) be a Riemannian manifold, and R* - E 5 L
a vector bundle with inner product ( , ) and Riemannian connec-
tion V. Fix 0 < ry < oo, and consider the disk bundle E" =
{ueE| (u,u) <rg}. If 7 denotes the vertical distribution de-
fined by 7, and # the horizontal distribution determined by the
connection, define

glx, x) =h*(u|) g(n.x, mx) (xe#ZNT,E),

where 4 is an even, smooth, positive function on (—ry, ry). The
fibers of E’ are endowed with a metric given in polar coordinates by

dr’ + f*(r)dao?

where do? is the standard metric on the sphere, and f is an odd,
smooth function with f’(0) = 1. We then obtain a metric g on E"
by declaring # and 7~ to be mutually orthogonal. The fibers of
the bundle are totally geodesic submanifolds in this metric, and the
projection 7 restricted to a sphere bundle of radius r becomes a Rie-
mannian submersion with base (L, #%(r) ). One can easily compute
the Ricci curvatures by using O’Neill’s formula for Riemannian sub-
mersions and the Gauss equations (cf. also [2]): If 8, denotes the unit
radial vector field (dual to dr), v a unit vertical vector orthogonal to
Or, and x a unit horizontal vector, then

hll

2-5) Ric(d,, 0) = ~1 % — (- L.
(2-6) Ric(dy, x) = Ric(d,, v) =0,
) B f" 1— f12 flhl
Ric(v,v) = — 7 +(k —2) 7 -1 7h
(2-7) !
+ Z(Ax‘_v , Ax V),
i=1
" 2 !
Ric(x, x) = = 5 = (1= 1)z = (e = 1)
(2-8)

!
+ RicY(m.x , m.x) 22 Axxi, AxXi),
i=1

(2-9) Ric(v, x) = {(64)x, v).
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Here, {x;} is an orthonormal basis of #, A is the O’Neill tensor
of the submersion with divergence 04 = ZLI Dy A(x;, ) (D is the
Levi-Civita connection of (E™, g)), and Ric" is the Ricci tensor of

(L, K2 (r)g).
Moreover, if V is a Yang-Mills connection, then (cf. [2], p. 243):
(2-9%) Ric(v, x) =0.

In the special case when E is the normal bundle of CP! — CP2,
let V denote the connection on E induced by the Levi-Civita con-
nection of the symmetric space CP2. Then V is Yang-Mills since
the curvature tensor RV is parallel. In particular, (2-9°) holds, and
it is straightforward to check that (2-5)—(2-9) reduce to (2-1)-(2-4).
Notice that the A-tensor can be expressed in terms of RV, cf. [6].

3. Proof.

Proof of 1.1(a). The volume of a distance tube B,(L) with respect
to the class of metrics described in §2 is given by:

vol B,(L) = / vol S,(L) dt
0

= C-vol(L) /h’ Of 1 @)dt,

where S;(L) is a distance sphere around L, vol (L) := vol (L, h%(0)g),
and C is the volume of the standard sphere S¥~! c R . It thus suf-
fices to find functions f and # such that (2-1)-(2-3) yield Ric > 0,
and A!/(r)f=1(r)/rk=t = B2(r)f(r)/r — o0 as r — oo. Let f(r) :=
r/(1+ )12 and A(r) := (r/f(r))*, where a is any constant in the
interval [1/2, 1]. Notice that g;(r) - o0 as r - oo if a > 1/2, and
qr(ry=1 for a=1/2.
A straightforward calculation shows that (2-1)—(2-3) become:

_ =32a-1) 20 r

(3-1)  Roo= (1+r2) 1o (2 ( +1)1+r2)
= (4= pa(r),

where ¢.(r) = (3(2a — 1) + 2a(a + 1)r?) /a(1 + r?). Since ¢, is an

increasing function on [0, co) with lim, o @,(r) = 2(a+ 1) < 4, we

conclude that Ry o> 0.

2
3-2a f>0

(3'2) Rl,l—( )2 +2h4_
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_3a a r2
(3-3)R2,2 —R3,3 - (1 +r2)2 + 1+7r2 (1 _al +r2)

fON2 2 (£ a2
s (5) (5 -nt
> (1+77)7%(4 = (Walr) + 6a(r))),

where o(r) i= 2r2/(1+r2)1+2  and 6a(r) := (3a+a2rd)/(1+r2)2~e.
One easily checks that the maximum of y, equals

n(a) = 2/a(l + 1/a)'** < n(1/2) = 4/3V3,

for « > 1/2. Moreover, 6, is a decreasing function if a < 1, with
0,(0) = 3a. Thus:

Ry =Rz 3> (14+r})"%4-(3+4/3V3)) >0,

thereby completing the proof of 1.1(a).

Proof of 1.1(b). When A = cos, (2-1)-(2-3) become:

. f/l

1 Ryo=2-=—,

(i) 0,0 7

.. __f" ,f'sin f?
(i1) R, = 7_+2fcos+2m’

f'sin  4cos?—2f2 — sin’ cos?
fcos cos? )

(iii) Ry2=R33=1+

We will choose f so that f(r) = sinr for r < e, f(r) = sinrcosr
for r > m/4,and R; ; > 3. Define k := f/sin. (i) and (ii) transform
into:

. . K' _k'cos
(") R0,0—3——k——2m,
- _ k" k' (cos sin , sin’
(ll) R1’1_3—7C—_2_E(;ig—ﬁ>+2k EB—S_Z

If ¢ > 0 is sufficiently small, there exists a function k such that k = 1
on [0, ¢], k =cos on [n/4, /2], and k" < 0. Then Ry o, R;,1 >
3. To show that R, , > 3, observe that, since f < sin,

F % (4cos? —2f2 - sin? cos?)/ cos*

. . def
> (4 cos? —2sin? —sin’ cos?)/ cos* £ G.
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Now, the minimum value of G = (5/cos?)—(2/cos*)+1 on the inter-
val [0, /4] is G(n/4) = 3. Since R; —F = 2+(k'sin)/(kcos) > 1,
the result follows.

We now proceed to show that the radial sectional curvatures are
>1: Let x € T,L, and consider a unit-speed geodesic y originating
at p and orthogonalto L. If E denotes the parallel field along y with
E(0) = x, then J := hFE is a Jacobi field along y, cf. [3]. Therefore,
R(E, )y = —(h"/h)E, so that (R(E, 7)7, E) = 1. On the other
hand, if v is orthogonal to both 7(0) and 7,L, and if F denotes
the parallel field along y with F(0) = v, then R(F, y)y = —(f"/f)F,
and

(R(F, )7, F)=~f"/f=1-(k"/k) - 2(K'[k)(cos / sin).

This last expression is > 1 and identically 1 on [0, ¢]. The same is
therefore true for all radial curvatures.

Finally, observe that the comparison space in [4] or [3] has the
same volume growth as (L x D,, g). It follows that g, (r) = 1 for
our choices of f and # when r<e.

4. Remarks.

4.1. In 1.1(a), the maximal growth rate for the volume of B,(L)
obtained by our method is of order r3.

4.2. The maximal distance from L with respect to the metric g
from 1.1(b) is n/(2/k) = /2, where x is the infimum of the radial
sectional curvatures and the Ricci curvature. Nevertheless, (M, g) is
not symmetric, cf. the remark on p. 322 in [3].

4.3. As the general formulas of §2 show, one can produce similar ex-
amples on other vector bundles. It is, however, essential to have some
information about the divergence of the A-tensor, cf. (2-9), (2-9).
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A RIESZ THEORY IN VON NEUMANN ALGEBRAS

ANTON STROH AND JOHAN SWART

An operator 7T is called a Riesz operator relative to a von Neu-
mann algebra %/ if T — AJ is Fredholm relative to %/ for each
A # 0. Properties of Riesz operators are studied and a geometrical
characterization of these operators are given. This characterization is
used to show that a Riesz type of decomposition holds.

Introduction. The main theme of this paper is to introduce Riesz
operators relative to a von Neumann algebra and to obtain a Riesz
type of decomposition for these operators.

The theory of compact and Fredholm operators relative to a von
Neumann algebra has been studied in detail by various authors (cf.
[3], [4], [7], [8], [10], etc.). In the present paper Riesz operators are
defined in a natural way via the Fredholm operators relative to a von
Neumann algebra &7, i.e. T will be called Riesz relative to & if
T — Al is Fredholm relative to .« for every 4 #0.

After some preliminaries in §1 we develop the basic results on Riesz
operators in §2. These results are similar to results known for the clas-
sical case and will be used in the sequel. Section 3 contains a geomet-
rical characterization of the Riesz operators. This may be considered
as the main result of this paper, since it allows one to use the tech-
niques of [4] and [S] to obtain the required Riesz decomposition in
§4.

Whereas in the classical case the theory of Riesz operators has an
intimate connection with spectral theory, it should be noted that in
our representation we do not use spectral theory at all. Actually one
cannot hope to obtain any results on the spectrum of a Riesz operator
relative to a von Neumann algebra. In finite von Neumann algebras
for instance all operators are Riesz. One can thus find Riesz operators
with spectral properties very different from the classical case.

1. Preliminaries. Let L(H) be the algebra of all bounded linear
operators on a Hilbert space H . Throughout the paper ¥ will denote
a concrete von Neumann algebra on H. We denote by % the ideal
generated by the projections which are finite relative to &/ (cf. [11],
Chapter V for properties of the projection lattice #(«/) on &/ ). The

169
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ideal of compact operators % relative to ./ is the uniform closure of
& . Let n: &/ — &/ /% be the canonical quotient map. An operator
T € & is called a Fredholm operator (relative to &) if n(7T) is
invertible. For any 7 € .&# we shall denote by N7 the null projection
and Rr the range projection (cf. [3], (3.1) and (3.2)). It follows from
[4], Theorem 1 and [7], Theorem 2.2 that T is Fredholm iff Ny is
finite and Ry is cofinite relative to & (cf. §4 for the definition of
a cofinite range projection). The set of all Fredholm operators in &/
will be denoted by ®. We refer to [3] and [4] for the definition of the
index function on ® with values in a partially ordered abelian group.
Let ®, denote the class of Fredholm operators 7 with index zero
(i.e. Ny~ Np+).

For T € & we denote the spectral radius by (7)) and we shall call
the spectrum of #n(7T) in & /% the (WOolf) essential spectrum of T
and denote it by o¢(T).

2. Riesz operators. An operator T € & will be called a Riesz
operator (relative to &) if Al — T € ®@ for every A # 0. It is clear
that 7T is Riesz iff 6¢(T") = {0}, which is also equivalent to

1/n
1 i n _ = =
tim (Jjaf |77 - K1) =r(a(T) =0
(cf. [7], 3.10). Since & is dense in .Z we may replace .Z with & in
the last characterization. We shall denote the set of all Riesz operators
by &# and if the reference to & is necessary we denote this set by
().

REMARKS. 1. Since for a finite von Neumann algebra .&¥ we know
that @ = o/ it is clear that then also # = & . The theory of Riesz
operators in this case is trivial.

2. For any compact K € & one has r(n(K)) = 0 from which it
follows that . C % . There are many cases where this inclusion is
strict.

3. In purely infinite von Neumann algebras the Riesz operators
coincide with the quasinilpotent operators (recall that in this case .7 =
{0}).

We denote by [S, 7T'] the commutator of S and T, ie. [S, T]=
ST-TS . By using the well-known property that in any Banach algebra
the relations r(7'S) < r(T)r(S) and r(T + S) < r(T) + r(S) hold
for any two commuting S and T, one easily obtains the following
proposition.
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2.1. ProprosITION. (a) If Se #, T € & and [S,T] € %, then
ST, TSeZ.

WIfS, TeZ and [S, T % then T+aS € # forany a €C.

(c) If a sequence (T,) of Riesz operators is uniformly convergent to
Tes andif [T,, T)e % forall n€EN then T€ % .

It follows from 2.1 that the closed algebra generated by a Riesz
operator is contained in % .

2.2. PROPOSITION. For T € &/ we have that T € & iff T" € %
for any (and hence for all ) n€N.

Proof If T € # then T" € # for any n € N follows trivially from
2.1. Conversely if 7" € % it follows by definition that

lim inf ||T"% — K||}/"k = 0.
k—oo Kex

Since
T)) = lim inf |T* — K||\/*
r(n(T)) = lim inf | I
is finite one clearly has

lim inf ||T* - K||V/* =0. u]
k—oo Kex

From the fact that .Z is a two-sided *-ideal in ./ we have for any
T € & and K € % that r(n(T)) = r(n(T*)) and r(n(T + K)) =
r(n(T)). Hence we obtain:

2.3. ProrosITION. (a) Let T€ & and K€ % . Then T € % iff
T"eZ.
(b) Z# is stable under compact perturbations.

If T is a normal operator in ¢/ it follows that +(n(T)) = ||7(T)||a /5 -
Hence we have:

2.4. PrRoOPOSITION. For a normal operator Te # iff T € % .

It seems that the following result is not known even for the classical
case.

2.5. ProrosiTION. If T € &/, S € #Z and [S,T) € X then
o?(T+8)=0%T).
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Proof. For any two commuting elements a, b in a Banach algebra
one knows that g(a+b) C g(a)+0o(b), in particular o(n(T)+=n(S)) C
o(n(T))+o(n(S)). By assumption o(n(S)) = {0}. Hence a¢(T +.5)
Cc 0¢(T). Similarly a¢(T)=a¢(T+S-S)Cao®(T+S). O

The above-mentioned proposition may be used to prove a character-
ization of Riesz operators in von Neumann algebras which is similar
to a result due to Schechter (cf. [9], Theorem 12).

2.6. COROLLARY. T € Z iff T+ S € ® forall S € ® for which
[S,Tex.

Proof. Let T € # and S € ® with the property that [S, 7] € %,
then we know that 0 ¢ o¢(S) = d®(T +S),s0 T+ S € ®. Since
[AI, T]1= 0 the converse is trivial. o

For Riesz operators one obtains the following functional calculus.

2.7. PROPOSITION. Let f be a holomorphic function on an open set
U containing o(T) with f(0)=0. Then

@ If TeZ# then f(T)e X

(b) If f(T) € £ and f does not vanish on o(T) \ {0} it follows
that Te % .

Proof. (a) From our assumptions it follows that f(7) = Tg(T)
where g is holomorphicon U and [T, g(T)] =0. Then (a) follows
directly from 2.1(a).

(b) Since 0¢(T') C o(T) the functional calculus in &/ /% shows that
n(f(T)) = f(=n(T)), and by the spectral mapping theorem f(a¢(T)) =
a(f(T)) = {0}. By hypothesis f does not vanish on a(7) \ {0},
leaving ¢¢(T') = {0} as the only possibility. ]

In any unital #*-algebra & it is known that a(xy) \ {0} =
o(yx)\ {0} and o(uxu*)\ {0} = o(x)\ {0} hold for x,y € &
and u € & unitary. The following proposition therefore follows:

2.8. ProrosiTION. (a) TS € % ifand only if STE X .
(b) If S and T are unitary equivalent, then Se€ #Z if T € % .

One can easily see from the next proposition that if a von Neumann
algebra contains non-compact quasinilpotent operators, then % is
properly contained in &% .
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2.9. ProrosITION. If K € Z and Q € & is quasinilpotent, then
K+Qe<Zz.

Proof. This clearly follows from
Iz(@+ K)"||'" = l=(@)"I'/* < |Q"|'/*  forallneN. O

By the well-known West decomposition theorem (cf. [6], 3.33) the
converse of 2.9 holds in the case where & = L(H). It is an open
problem whether this is true in general von Neumann algebras. A
partial converse can be obtained by using a result of Akemann and
Pedersen [1]: If T € &/ with T" € # for some n € N (note that in
this case 7 € # by 2.2),then T = K + Q where K € # and Q is
nilpotent. This follows from the fact that [1] 4.3 implies that there
exists a K € # such that (T -K)"=0.

2.10. PRrOPOSITION (Generalized Fredholm alternative). Let T €
#. Then (I-T) € ®y.

Proof. By definition (I — AT) € ® for all 4 # 0. Since the index
map on @ is locally constant (cf. [4], Lemma 6), {I — AT|A € [0, 1]}
is contained in the same connected component of Fredholm operators
and the result follows. O

For any subset B C &/ we define the perturbation class of B by
PB)={Te«|T+Se€Bforall SeB}.

In 2.3(b) we have seen that % is contained in the perturbation class
of % . The next proposition shows that one actually has equality:

2.11. ProrosITION. The perturbation class of # is the ideal % of
compact operators.

Proof. Let Q(«/ /%) be the class of quasinilpotent elements of
& [% . From a theorem due to Zemanek (cf. [2], BA2.8) we have:

rad(& /Z) = {rn(T)|T € & and n(T) + Q¥ /%) C Q(¥ |7 )}
={n(T|Tesx/ and T+S e Z forall S Z}.
Since & /% is a ¥*-algebra rad(«/ /%) = {0}, it then follows that
& =n"Yrad(¥ |.%))
={TeLdT+SeZforalSeZx}
= P(#). m)
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2.12. THEOREM. The ideal % of compact operators is the largest
two-sided ideal consisting of Riesz operators only.

Proof. We first show that every Riesz projection is finite. Let E be
a Riesz projection. Then lim,_,«(infxey ||E — K||)1/" = 0 and hence
E € % . Since any compact projection is finite we have E € &% . Let
J be any two-sided ideal contained in % . From the first part of the
proof it then follows that 7 C ¥ =.% . |

In the last two results of this section we show that the class of Riesz
operators behaves well under reduction with respect to central projec-
tions as well as under decompositions of the von Neumann algebra.
These results will be needed later in an important counterexample.

Similar results for the class of compact operators in &/ were ob-
tained by Kaftal (cf. [8], 2.1, 2.2).

Let E be a central projection in the von Neumann algebra .« . We
shall then use the following notation: & := & E and %g = ZE.

2.13. LeMMA. With the above notation one has that Ry = ().

Proof. Let T € #E and A # 0 be given. There exists an S € %
such that 7 = SE. Then S, := Al — § is invertible modulo .7,
i.e. there exists an S} such that §;S8] € I +.% and SS;, € I +%
hence ES;ES; € E+ % and ES}ES; € E + %g. We know that
Z () = Zg and therefore AE — T (= ES;) is invertible modulo
FZ (#g). Hence T € Z(«). Conversely, suppose 7 € Z (&) and
A #0. Then S) := E - 1/AT € ®(«¢). Thus there exists S} € o
such that

SAS£€E+%E and SiSAGEﬁ-%E.
Let 4;=S;+1—-FE and B; =S8, +I1—-E. Then 4;, B; € & and
A;B,el+% and B;A,el+%.

Thus [ = 1/AT = A; € ®(&) for all A # 0 and therefore T € #
and since T = TE, we have that T € #g . a

Let & = Z?; 1% be the direct sum of von Neumann algebras -
We may identify the identity of .4 with a central projection E; € &/
and & with &/ E;. Denote {T € #: TE; € Z()} by %, % ().

For L C I we may identify Y &, .% with a closed subalgebra of

© ;% in an obvious way.
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2.14. PROPOSITION. Let &/ = Y2 o4, Then #() C Y2, (o)
and equality holds if at most finitely many E; are infinite.

Proof. The inclusion follows directly by application of the previous
lemma. Suppose then that E; is finite for all i ¢ J, where J is
some finite subset J C 1. LetT € Y%, # (%) and 4 # 0. Then if
T=Y2,T, Si,:=E;—1/AT; € ®(%4) from which it follows that
there exist S} ; and K; ;, K] ; € Z(#) such that

SiaSi,=Ei+K;; and S;,;S;,=E;+K]; foreveryiel.
For i ¢ J we may choose S| ; =0 and K| ; = -E;.

Let S; = Xi;Si,2 and S = 2,8} ;. The last series is an
element of & since it actually reduces to a finite sum by our choice
of §! ,.

i,

Then clearly, S;S; € I+ Y 2,7 (%) =1+%(«) (cf. [8], 2.2) and
similarly S!S, € I + % (&). Since S; = I — 1/AT it follows that
TeZ#(). O

3. Characterizations of Riesz operators relative to a von Neumann
algebra. Smyth obtained a geometric characterization for Riesz oper-
ators on a general Banach space (cf. [2], 0.3.5). In proving this result a
somewhat laborious machinery of vector sequence spaces was needed.
We shall prove a similar result for general von Neumann algebras
which gives an elegant proof of Smyth’s result for the L(H)-case.

For an operator 7 in a von Neumann algebra o/ the following
property (referred to as property A) will be used to characterize the
Riesz operators relative to & .

A. For every ¢ > 0 there exists an n € N, a finite projection
P; € #(&/) and a bounded set N, C P,(H) such that for each
x € Uy there exists a y € N; such that ||7T"x — y|| < &".

(Here and in the following Uy will denote the unit ball of H.)

3.1. LeMMA. If T € &/ has property A then T™ also has property
A for all m eN.

Proof. Without loss of generality we may assume 7™ # 0. For
¢ > 0, put 6 = ¢/||T™!||. By assumption there exist an n € N,
a finite projection P; and a bounded set N5 C Ps(H) such that for
each w € Uy there exists a z € Ny such that ||7T"w — z|| < 6". Let
N; = |[T™ !||"Ns and P, = P;. Then for x € Uy it follows that
| T™"x — y|| < &” for some y € N,. o
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3.2. THEOREM. Let T € /. Then T € Z if and only if T has
property A.

Proof. Let T € £ and ¢ > 0. Then since

i/n
lim (inf ”T”—F”) =0
Fes

n--00
there isan n € N and an F; € ¥ such that
(1) |1T" — F|| < &".
Let P, = RFE and N, = F;(Uy), then P, is a finite projection and
N; is a bounded subset of P.(H). By (1) ||T"x — F.x|| < &", for all
x € Uy . This proves property A.

Conversely let T have property A. We are going to show that there
exists a subsequence of {(infxey ||T” — K||)'/"}, which converges to
zero, implying that the spectral radius of n(7") vanishes.

Let ¢ > 0. Then there exist an n € N, a finite projection P, €
P(s&) and a bounded set N; C P;(H) such that for every x € Uy
there exists a y € N, such that

NT"x —yll <e”.
Thus ||T"x — P:T"x| = infyep @) [|T"x — w|| < &”. This holds for
every x € Uy, hence
|T" - P, T"|| < &".
Since P; is finite and therefore P, 7" € % (&%), it follows that for any
€ > 0 there exists an n € N such that (infxey |T" — K|)1/"* <.
We now find the zero converging subsequence recursively. There

exists an n; € N such that (infgey |7 — K||)!/" < 1. Since T™+t1
has property A by 3.1, there exists an m; € N such that

l/m,
) (Kig;; Tty - Kn) < (12

Let ny = (n; + 1)my. Then clearly n; < n, and from (2) it follows
that

1/n,
(inf T —K||> <1/2.
Kex

Repeating this argument one finds a monotone increasing sequence of
positive integers ny < ny < --- < g < --- such that

l/n,
(I%IEI;HT'(—KH) <1/k forevery k eN. O
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REMARK. It should be noted that in the case where & = L(H),
property A coincides with the notion of a finite ¢”-net for 7"(Uy)
(cf. [2], §0.3 for the definition of an e-net).

From the proof of 3.2 we have:

3.3. CorOLLARY. T € % if and only if for every &€ > 0 there exist
an n € N and a projection Q € P(«) such that ||QT"|| < ¢" and
I - Q is finite.

Proof. If T € &% it has property A. Now if we put Q =1—- P, in
the converse part of the proof of 3.2 the condition holds. Clearly the
condition implies property A and the result follows. 0

3.4. COROLLARY. Let S, T € & be commuting. If T € # and
S(HYC T(H) then Se % .

Proof. Let ¢ > 0 be given. Under the conditions of the theorem
there exists an a > 0 such that for any n € N one has

(1) S"(Uy) C o"T"(Uy)
(cf. [2], 0.4.1, 0.4.3).

Since T € &% there exist an n € N, a finite projection P, € (&)
and a bounded set Ny C P.(H) such that for each x € Uy there exists
a y € N, with
2) 1T7x - yll < (¢/20)".

Let x € Uy, then it follows from (1) that there exists a z € Uy such
that ||S"x —a"T"z|| < " /2.

By(2) there exists a w € N, such that ||[@"T"z — o"w| < &"/2".
Thus ||S"x — a"w| < &". By noting that the set o"N; C P,(H) is
bounded the corollary follows. O

4. Riesz decomposition. In [5] a Riesz type of decomposition was
obtained for compact operators in a von Neumann algebra. With our
characterization 3.2 and its Corollary 3.3 in hand we can now use the
techniques of [3] and {5] to obtain a Riesz type of decomposition for
Riesz operators. It should be noted that all proofs are similar to the
proofs in [3], [S]. Hence we shall only give attention to the essential
differences.

For T € &/ let

Nn:=N([_T)"; Fn:;Nn+1—Nn, n=0,1,2,...,
Rn:=R([—T)"; Gn::—Rn—R,H.], n=0,1,2,....
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Note that (N,) is non-decreasing (i.e. N+ N, = N, for all r € N)
and (R,) is non-increasing (i.e. R,Rp4+r = Ry4, forall r eN).

The range projection Ry will be called (relatively) cofinite if /—Rp
is finite and if there exists a projection Q € & such that Q(H) C
T(H) with Ry — Q finite. In L(H) this coincides with the classical
definition of cofiniteness.

4.1. LEMMA. With the above notation
(a) Nn+erNn = Tan;
(b) FnTan=Fn,
(¢) Rn TkRn+r = TkRn+r,
(d) GnT*Gp, = Gy,
for n=0,1,2,...; r=0,1,...; k=1,2,....

Proof. (a) and (b) follow by inducticn (on k) and by using the
relation (I — N,)TN,,; = F, which follows from the properties of
the projection N, (cf. [3]). Similarly (c) and (d) follow by using the
relation (I — R,,1)TR, = G, which follows from the properties of
the range projection. O

4.2. THEOREM. Let T € # . Then the following hold:

(a) N, is relatively finite and R, relatively cofinite.

(b) If Noo = sup,ey Nn and Ry = infren Ry then both Noo(H) and
Ro(H) are invariant under T* for any k €N.

(¢) Noo is relatively finite and Noo ~ I — Ry .

(d) inf{Ne, Reo} =0 and sup{Noo, Roo} =1.

Proof. (a) Clearly (I — T) € ®. By ([7], 2.2) N; is relatively finite
and R, is relatively cofinite. For n € N, n > 1 it follows from 2.1
that (I — T)" = I — Ty where Ty € &# and as before it follows that
N, is relatively finite and R, relatively cofinite.

(b) This follows from 4.1(a) and (c¢) for » = 0 and taking the strong
operator limit on both sides.

(c) By using 3.3 and 4.1 the proof for the relative finiteness of N,
for the compact case may be carried over virtually word for word by
only replacing 7" with 77" . From 2.10 and the fact that ®; is a semi-
group, it follows that N, ~ I — R, and hence N, ~ I — R, follows
similarly as for the compact case, cf. [3], Theorem 2, (i).

(d) This again follows along the lines of [3], Theorem 2 (iv) and
[5], Theorem 3 (ii) by only noting that (I — T)k = I — T, where
T(k) EZ. O
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It is well-known that both the sequences (N,) and (R,) eventually
become stationary in the classical case. The following example shows
that this is not always the case in general von Neumann algebras.

ExAMPLE. Let
o0
®
o =Y L(Hy)

n=1
where H, = H is a separable Hilbert space. Let 7;, € L(H) be
defined by

k+1

Ty (Z xi¢i) = X161+ »_(Xi = Xi—1)®i,
i=1 i=2

where {¢;|i € N} is any orthonormal basis for H. It is easy to see
that

N(I-Ty)# NI -Tp)?*# - # NI - Tp)k* = N(I - T,)*+
forall k,reN. Let

[e ] [o o]
T=Z®In where I, = I for all n € N and T:=ZeTn.

n=1 n=1

Then T is compact and hence Riesz relative to .« . However

NI-T)*G NI -T)~" forallk,reN.
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THE CLASSIFICATION OF
FLAT COMPACT COMPLETE SPACE-FORMS
WITH METRIC OF SIGNATURE (2, 2)

MiING WANG

Those flat compact complete space-forms with metric of signature
(2,2) are classified up to finite covers. The simply transitive subgroups
of R*xSO(2, 2) are classified up to conjugation.

1. Introduction.

(1.1) If T € R*x SO(2, 2) and T acts on RP*4 freely and prop-
erly discontinuously with compact quotient, then X = RP*4/T" is a
flat compact complete space-form with metric of signature (p, q).
Recently D. Fried [3] has classified those flat compact complete space-
forms with metric of signature (1,3) upto finite covers. Ravi S. Kul-
karni pointed out that Fried’s method can be applied to the case
(p, q) =(2,2). The basic idea of Fried’s method is in the following
theorem:

(1.2) THEOREM. Suppose X is a flat compact complete space-form
with fundamental group T C R* x SO(2, 2). Then there is a uniquely
determined subgroup H of R*xSO(2, 2) that acts simply transitively
on R* and HNT = n has finite index in T .

(1.3) In §2 we classify those subgroups of R*xSO(2, 2) that act on
R* simply transitively, up to the conjugacy of R* x O(2, 2). Every
such subgroup, as a Lie group, is isomorphic to one of the following:

t
R*, RxNil®, Nil*, Rx{sz(% eq,);teR},
R x {R* x SO(2)}.

All of them, except the last one, correspond to I'’s. Their uniform
lattices are known, cf. [3] and [7].

(1.4) To prove Theorem (1.2), we first prove in §3 that I is virtually
solvable. This result confirms a conjecture by Milnor in a special case.
In [6], it is conjectured that the fundamental group of a complete
affinely flat manifold is virtually polycyclic. Our result, combined with

181
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Fried’s result, shows that this conjecture is true for compact pseudo-
Riemannian 4-manifolds.

(1.5) In §4 we complete the proof of Theorem 1.2, using the theory
of crystallographic hull developed by Fried and Goldman, cf. [4]. In
§5, we give our classification. By comparing our list with Fried’s, we
obtain an interesting fact: as differential manifolds, they are the same
coset spaces of the form H/I", where H is a Lie group isomorphic to
R*, RxNil®, Nil* or Rx {R?x (%’eg,); t € R} and T is a uniform
lattice of H . These Lie groups have simply transitive representations
as affine motions and when the signature is (2,2) (resp. (3,1)), the
images of the representations are R*xSO(2, 2) (resp. R*xSO(3, 1)).

(1.6) Notations and some properties of SO(2,2) and so(2, 2).
Throughout this paper we will call {e;}, 1 <i < 4, a standard basis
s.t. the metric Q, w.r.t. this basis, has the form

Q(v, v) = v1v3 + V04,

where v = Z}‘z 1 vie; . The full group of orientation-preserving isome-
tries is R* x SO(2, 2) and

50,2 = {sesLai‘e(§ ¢)e= (7 o)}

where I = (}?). The infinitesimal isometries are R* x so(2, 2) and

(1.6.1)  so(2,2) = {XEgL,(R);*X(? é)+(? g>X=O}

ay ap 0 d
a a —d 0
= (2)1 22 —ay —an ;a[j,d,CER

- 0 =—ap —an
(1.6.2) so(2,2)=L;&®L,,where L; ~sl;(R), i=1,2;and

((a b

L= T ¢ —a 4 —c ca,b,ceRY,
| -b a
((a 0 0 d

Ly = { 8 ‘Cl,, :Z: g ;a,d ,ceR
L \—¢ 0 0 -4

L,, L, are permuted by an element of O(2, 2).
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(1.6.3) It is easy to show that any Cartan subalgebra of so(2, 2) is
conjugate under O(2, 2) to one of the following:

( [a )
(1) q b ca,b,eRY,
—-a
\ —b J
(/0 a 0 b
-a 0 -b 0}
(2) 4 O b 0 a ’a)b’€R>3
(\-b 0 —-a 0 J
a b
-b a )
(3) —a b ;a,b,eR
-b -a

An immediate corollary is

(1.6.4) If X is in a Cartan subalgebra of so(2, 2) and detX =0,
then X must conjugate under O(2, 2) to

a
0
(4) —a ,
0
or
0 a 0 a
—a 0 —-a 0
(5) 0 a 0 a
—a 0 —-a 0

(1.7) We identify Aff(n), resp. aff(n), with

{(6‘ Z) ;AeGL4(R),veR4},

{(g 8) ;X€g14(R),'U€R4},

w.r.t. a given basis. Let P; be the natural homomorphism taking an
affine transformation (or an infinitesimal affine transformation) to its
linear part. Let L(G) be the Lie algebra of a Lie group G and A(G)
be the algebraic hull of G. We will need the following well-known
lemma.

resp.
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(1.7.1) LemMA. If G C Aff(n) s.t. G acts freely on R", then every
A € P(G) has 1 as an eigenvalue.

(1.7.2) LemMA (Kostant and Sullivan, cf. [S)). If G isasin (1.7.1),
then every A € P(A(G)) has 1 as an eigenvalue.

(1.7.3) CoRroLLARY. If G is an in (1.7.1), then every X €
P(L(A(G)) or X € L(A(P)(G)) has 0 as an eigenvalue.

2. Simply transitive subgroups. We will classify subgroups of R* x
SO(2, 2) that act simply transitively on R*. Our classification is up
to the conjugation under R*xO(2, 2). It is well known that a simply
transitive group of affine motions must be solvable, connected, simply
connected and of dimension 4, cf. [1]. We will start from a special case
when the groups are unipotent. The following lemma from Auslander
and Scheuneman plays the key role in this section.

(2.1) LeMMA. Let U be a nilpotent Lie group which has a faithful
representation p: U — Aff(n), let p. be the induced monomorphism
of Lie algebras

p.L(U) — {(’g 8) . X € gl (R), v eR”} = aff(n),

and let P, be as in (1.7), let P; be the projection from an element in
aff(n) to its translation part. Then p(U) acts on R" simply transitively
if and only if

(1) Pyo p.(L(U)) is nilpotent, and

(2) Pio pu(L(U)) is a linear isomorphism of L(U) onto R".

For a proof, cf. [1]. So unipotent simply transitive subgroups are
exactly the following U’s s.t.

(2.2) L(U)={(X(()v) g) ;UER”},

where X (v) is alinear function of v and P(L(U)) = {X(v); v € R"}
is nilpotent.

(2.3) LEMMA. There is a vector vy € R* such that
(i) B(L(U))(vo) =0,
(ii) Q(vo, vo) = 0.
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Proof. If V = {v € R*; P(L(U))v = 0}, then V'~ is invariant. By
Engel’s Theorem on V<, V+ meets V. |

Let {e;} be our standard basis. Then we choose vy = e; since
0(2, 2) istransitive on {v; Q(v, v) = 0}/v ~ tv, where t € R—{0}.

(2.4) CoOROLLARY. W.r.t. the above standard basis, X € P|(L(U))

has the form
0 b

-b 0

X(w) = 0
0

b

0

0
0
0
0 —-a

SO O8

where a = a(v) and b = b(v) are linear functions of v.
To find a(v) and b(v), we compute the commutator of L(U).
X)) v XY v'\] _ [ X(@") V"
(23) Ko o>’(o 0)]=U 0" o)

where v" = X(v)v' = X(v')v, X(v") = X(v)X(v') - X(v)X(v) = 0.
So

a(v")=b(w")=0.
Write
4 4
(2.6) aw)=> aw;,  b)=)_ bu;.
i=1 i=1

Then we have
4 4
(2.7) 0= aw!, 0=) b},
i=1 i=1

where v]’s are linear functions of a;, b; and vvj, 1<1i, j <4,
and all coefficients of viv} must be zero. We obtain

(2.8) LEMMA.

(i) a1 =b=0,

(ii) axbs + aﬁ =0,
(iii) azby, + asa; =0,
(iV) byby + b4a4 =0,
(v) b% + bsay =0.
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(2.9) COROLLARY.
(i) ba(by+a4) =0,
(i) ax(by+a4) =0,
(ii1) (b —as)(ba+aq)=0.

(2.10) Now we can get some necessary conditions for the nontrans-
lation unipotent simply transitive subgroups. If b, + a4 # 0, then
by = a; = 0. By (2.8) (ii) and (v), b? = aZ = 0 and we get a contra-
diction. So b, + a4 = 0, and we have three subcases:

(2.10.1) b =a4 =bs=a, =0, but (as, b3) # (0, 0), i.e.,

a(v) = azvs
{ b(U) = b3’U3.
(2.10.2) by +as =0 but by #0, a4 #0. Then by (2.8) by # 0,
a 76 0 , i.e.
a(v) = ayvy + asvs + asvy
{ b(v) = byvy + byvs + bavy,.

(2.10.3) b, =0, a4 =0, (az, by) # (0, 0). By (2.8), bsa, =0, so
{ a(v) = av, + asvs
b(v) = bsvs,

or
{ a(v) = azvs
b(v) = b3v3 + bavy.

(2.11) THEOREM. Up to conjugacy under R* x O(2, 2), the non-
translation unipotent simply transitive groups U of R* x SO(2, 2),
have the following Lie algebras:

L(U) = {(Xg’) 8) ;ueR“},

where
0 a(v) 0 b(v)
vo- [0 0 0
0 0 =—-aw) O
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a(v) and b(v) are listed in the following table:

Type of L) ) o) | ot Lie agebra
I-1 vy Uy N; @ R
12 vy ) N, ® R
13 vy 0 N, ® R
II-1 Uy + U, + vy, (£20) —U, — Y, N,
11-2 —Uy + v, + vy, (120) —V, + Y, N,
I3 v, v, N,

The equivalence classes are uniquely determined by the type of L(U)
and the parameter t (in Type II).

Proof. The discussion of the conjugacy under R* x O(2, 2) is long
and tedious. We will only write down a brief one for subcase (2.10.2).
We give the following lemma without proof.

(2.11.1) LemMA. If a(v) 20, b(v) #£0, a'(v') #0, b'(v')#0,
and if there is a matrix A = (a;j) € O(2, 2) such that

0 a(v) 0 b(v) 0 d) 0 b'(v")
41 0 0 -bwv) O A= 0 0 -b'(v") 0
0 O 0 0 10 0 0 0 ’
0 0 =-a(wv) O 0 0 —a'(v") 0
then either
2
aa ax2aszs az az2043
a ') = L22y) 4+ ar + —==a; + aq » VA
(v') a2 {a” 2 a2, A
+ﬁvg
ap
O b a 1 a
P(v') =2y +{ —2_by+ by + —2—by 3 }
@) ay 2 {6111022 2 aflazz ’ a;a; S
+ b42 v}
\ apas,
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where ay1ax, # 0; or

( b 2
44 agra a agoa
a(v') = 22y) 4§ 2By, 4 A2p, oy TTBp g
an a a an
b
+a—2"U‘I‘
(2) ¢ 1t
a a 1 a
b'(’U')=—4’U£+ 23 a + — az + 43 PR
an a11a42 ai; s a;1daq
a
+ 4 v}
( ajiay;

where ajias #0.

Write @'(v') = Y7, alv} and b'(v') = ¥4, bjv;, then from (2.11.1)

2
a4b2 a
1t N 4
Clzb4 =a4b2 = '2'2——' = —-"1—2— <0,
11 11

since a4 = —by # 0. So we can choose a;; such that a)b, = a,b} =
—1,1i.e. as/a;; = £1. Next we use (1) (resp. (2)) if as/a;; =1 (resp.
—1), and choose a;; (resp. ag; ) to reduce

a, a,
b, b,
1 1 .
(_1 _1> 1fa2a4>0,

-1 1 .
(_1 1) if ayas < 0.

Now a3, by have the form

to

or

a asn
a'3=zl+%a3 ay = z3 + —5~b3
ar an
1 » of 1 ’
b§=:EZl+T——'—b3, b§=:i:22+ 5 as,
i1 922 ai1442

where z; (resp. z;) depends on a3, a43 (resp. a3, as3) and z;,
i = 1,2 can assume any real number. We can choose z; so that
b3 = 0 and we can choose the sign of ay, (resp. a4 ) so that a} > 0.
So we can find an 4 € O(2, 2) such that

(5 DG OGY
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is of Type II-1 or Type II-2. We can replace (¢?) by (£¥) and
show that the translation part doesn’t contribute to the classification.
We omit the rest of the proof. a

(2.12) To handle the general case, namely when the simply tran-
sitive group of affine motion is non-unipotent solvable, we need the
following lemma from Auslander, cf. [1].

(2.12.1) LEMMA. Let H be an n-dimensional, connected, simply
connected, solvable Lie group acting simply transitively as affine mo-
tions on R". Let A(H) be the algebraic hull of H and let U be the
unipotent radical of A(H). Then U operates simply transitively as
affine motions on R".

Now all such nontranslation U’s are known from (2.11), and we’ll
study them first.

(2.12.2) LeMMA. Let H, U be as in (2.12.1) and assume that U
is not the translation group T. Then H=U .

Proof. W.r.t. the standard basis {¢;}, 1 <i <4, we know

0 a(v) 0 bv)
0 0 -=bwv)y O
0 0 0 0
0 0 =—a(wv) O
Notice that 4(H) is contained in the normalizer of U, we have

[L(A(H)), LU)IC L(U),  [L(P(A(H))), L(R(U))] € L(P(U)).

L(P(U)) = v e RS

Since for
ayr A4 0 d 0 a(v) 0 b(’U)
_ arz1 an —-d 0 _ 0 0 '—b(’U) 0
Y=10 ¢ -4y =ay|> X0 0 o o |
—c 0 -ap -ap 0 0 =—a(w) O
we have
[Y, X]
—a(v)ay +b(v)c a(v)(an — ax) 0 b(v)(an + axn)
_ ( 0 a(v)ay + b(v)e —b(v)(ay + an) 0 )
N 0 0 a(v)ay — b(v)c 0
0 0 —a(v)(air — az) —a(v)an — b(v)c
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So

{ —a(v)ay; + b(v)c =0,

a(v)ay +b(v)c=0,

1.e.
a(v)az =0
{ b(v)c=0

for any ay;, ¢, a(v) and b(v), v € R*.

By (2.11), we can always find a v so that a(v) # 0, so we must
have ay; = 0. Similarly ¢ = 0, unless b(v) = 0. So we have two
cases.

Case 1. Type of L(U) is I-1,1-2 or IL.
L(P;(A(H))) is contained in

ap ap O d
0 ays —d 0
0 0 —a 0
0 0 =-—ap -axn

;ai, an, ayn,d €R

Case 2. Type of L(U) 1is I-3.
L(P;(A(H))) is contained in

ap app O

0 ar 0 0
0 (4 —aj 0
—c 0 —ap -axn

;all’aIZ:aZZ,CER

It’s easy to show that matrices in Case 1 and Case 2 are conjugate
under O(2, 2). We will only write down a proof for Case 1; a proof
for Case 2 can be obtained similarly.

Againlet Y € L(P/(A(H))). Thenby (1.7.3) detY = 0,50 a;1a»n =
0,ie. a;;=0o0r a»p=0.

If a;; =0, then an element in L(A(H)) has the form

an a0 dw) v v

Y 0 0 —d 0 (%) 1

v L)
=10 0 -a; 0 wv3]|, forsomev=

0 0 U3

0 0 —ai 0 [ v

0 0 0 0 0 4
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By subtracting an element (*{")?) € L(U), we have

(8 )

ai; ap - a(v) 0 d - b(’U) 0
0 0 —d + b(v) 0 0
= 0 0 —aj 0 0 | € L(A(H)).
0 0 —apy +a(v) 0 0
0 0 0 0 0
For any (¥()v') € L(U), we have
(CRPICE
0 aa(’) 0 a, b(v')  a, v, +(a,; — a@))v, + (d — b(v))v,
0 0 —a,;b(v") 0 —(d ~ b(v))v,
=10 0 0 0 —allv; € L(U).
0 0 —a,a(v') 0 —(a,;, — a(v))vy
0 0 0 0 0
But we know that
0 aja(v) 0 ab(v') anvg
0 0 —a“b(v’) 0 am;é
0 0 0 0 a11’l)§ e L(U).
0 0 —aja(v’) 0 avy
0 0 0 0 0
So we have

(1) anvy = anvy + (a2 — a(v))v; + (d — b(v))vy;
(2) anvy = —(d - b(v))vy;
(3) anvy = —ay1v5;
(4) anvy = —(a2 —a(v))v;.
From (3) we get a;; = 0. Then (2), resp. (4), implies d = b(v), resp.
a;p =a(v),ie. Y =X(@). So (¥¥)eL(U).
If a;; = 0, let (gg) € L(A(H)). By subtracting an element
(X ¥) € L(U), we have

(2 )

0 a-12-a(v) 0 d—-bv) 0
0 a —(d = b(v)) 0 0
=1{0 0 0 0 0 | € L(A(H)).
0 0 —(az—a()) =-an O
0 0 0 0 0
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Then for any (X((;’ ) %) € L(U), we have

Y-Xw) O X)) v
0 0)° 0 0
0 —ana(v) 0 anb(v') (a2 —a(v))v; +(d — b(v))v,
0 0 —anb(v') 0 anv; — (d — b(v))v;

=|o 0 0 0 0 e L(U).
0 0 ana(v’) 0 —(ai2 — a(v))v} — axnv,
0 0 0 0 0

Let a(v) = > a;v;, b(v) = Y biv;, 2 <i <4 asin (2.6) (a; =
by =0) and let

(@12 — a(v))vy + (d — b(v))v,

" = 42205 - (d - b(v))vé
- 0
—(a12 — a(v))vy — axnvy

Then

—ana(v') = a(v") = ay(anvs — (d — b(v))vs)

+as(—(ar2 — a(v))vy — anvy),
axnb(v') = b(v") = by(axnv; — (d — b(v))v3)
+b4(— (a2 — a(v))vy — anvy),
i.e.
— an(axvy + a3v3 + ag + vy) = ax(anvy — (d — b(v))v})
+a4(—(a12 — a(v))vy — axnvy),

a3 (byv; + b3vy + bavy) = by(anv; — (d — b(v))vs)
+b4(—(a12 — a(v))vy — anvy),

i.e.

{ 2aya3v; + (a3az; — as(a;z — a(v)) — az(d — b(v)))v
2axb4vy + (b3azy + ba(arz — a(v)) + ba(d - b(v)))v

w~ W~

=0,
0

Letting v;’s vary, we have
(1) axa; = 0
(2) axnby =
(3) asaxn - a4(a12 —a(v)) — ay(d - b(v))
(4) byax + by(ary — a(v)) + by(d — b(v))
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If ay; # 0, we must have a, = by = 0 by (1) and (2). According to
(2.10), this implies b, = a4 = by = a; = 0. Then (3) and (4) lead to

{ azap =0,

byay =0,

ie. a3 = b3 = 0. So U = T, and we have a contradiction. So
ay; = 0. We always have a;; = ayp = 0, i.e. A(H) is unipotent;
so H is unipotent. But any unipotent connected Lie group is Zariski
closed, so H = A(H). U, as the unipotent radical of H must be H
itself. m

(2.12.3) Now consider the case when the unipotent radical A(H) is
precisely the group T of translations of R*. Suppose H # T, i.e. H
is not unipotent.

(2.12.3.1) LeMMA. Pi(H) is abelian.

Proof. Pi(H)~H/Ker(P|g))=H/(HNT)C A(H)/T ,but A(H)/T
is abelian (cf. [2], A(H)/U(H) is abelian, since A(H) is solvable and
algebraic). ]

(2.12.3.2) LemMA. dim Pj(H) = 1; P)(H) is diagnolizable in C.

Proof. P)(H) is a connected abelian subgroup of SOq(2, 2), so
dimP(H) < 2. By (1.7.3) detX =0 for every X € L(P(H)), i.e. 0
is an eigenvalue of X . Since X €5s0(2, 2), so

ai; a2 0 d
X = ar; ax —d 0

0 c —ay; —ax

- 0 =-ap -an

)

and
det(X — AI) = A* + (2dc - 2ayyay) — a?| — a3,)A?
+ (—ayax + appaz) + dc)?
=%+ {—dapay - (ar; — app)*}2%,
since 0 is an eigenvalue. So the eigenvalues of X are {0, 0, 0, 0}
or {0,0,4,-A}, A # 0, A€ R or v=1R. If dimP(H) = 2,

then by (1.6.2) s0(2,2) = L; & Ly, L; ~ sl(R). So L(P(H)) =
RX, + RX, where X; € L;, i = 1,2. But by (1.6.2)
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det(X, — AI) = A* + 2(a? + bc)A? + (a? + bc)?, and
det(X, — AI) = A4+ 2(b'c — a')A? + (b'c' — a'?)2.

So zero is an eigenvalue of X;, i =1, 2, if and only if all the eigen-
values of X; are zero. This means P;(H) is unipotent and leads to
a contradiction. So dimP(H) = 1, L(P(H)) = RX and X has
eigenvalues {0,0,4, -4}, A#0, A€ R or vV/—IR. Since X is an
infinitesimal isometry, it is diagnolizable. O

(2.12.3.3) CoRrOLLARY. L(P)(H)) is contained in a Cartan subal-
gebra of so(2, 2) and is conjugate under O(2, 2) to

a 0
0

(1) —a
0 0
0 a 0 a
—-a 0 —-a 0
(2) 0 a 0 a
—a 0 —-a 0

Proof. By (1.6.4). o

Since H is simply transitive, the map P,: L(H) — R* is a linear
isomorphism, so in (2.12.3.3) we have a = Z?zl a;v; , where

is the corresponding translation part. Since 7T is the unipotent radical
of A(H), we have [L(H), L(H)] € L(T) = R*. By computing the
commutator and using the fact that H is simply transitive, we must
have a(v) = avy + asvs, (a2, a3) # (0, 0) in Case (1) and a(v) =
ai(vy — v3) + a2(vy — v4), (a1, az) # (0, 0) in Case (2). Finally, by
considering the conjugation under R* x O(2, 2), we get

(2.12.4) THEeOREM. If H C R* x SO(2, 2) acts simply transitively
on R* and H is not unipotent, then H is conjugate under R*x0(2, 2)
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to one of the following:
(i) Type 11I-1:

a(v) 0
0 v
—a(v)
0 0

where a(v) =tv, +vs, t>0 and L(H)~R&{R?xR(} %)}.
(ii) Type 11-2:

0 a(v) 0 a(v)
—a(v) 0 —a(v) O v

0 a(v) 0 a(v) ’
—a(v) 0 —a(w) O

where a(v) = t(v;—v3), ¢t >0 and L(H) = R&{R>xR( % })}. The
type and the parameter t determine the equivalence classes uniquely.

(2.13) Combining (2.11) with (2.12.4) and denoting H = T, as
Type 0, we complete the classification of simply transitive subgroups
of R* »xSO(2, 2). We summarize our result in the following table.
We denote

( ( 0 a(v) 0 b(v)
0 0 -b(w) O
A@a,b,v)=3[lo o o o | Y[;ver},
\ \ 0 0 =-a(v) 00 0
( { a(v) .
B(a,v) = { —a(v) U1,veRr'},
0 0
(\ 0 0
( 0 a(v) 0 a(v)
—a(v) 0 =—a(v) O
C(a,v) = { 0 aw) 0 aw ]| Y|;ver
\ —a(v) 0 =—a(v) O 0
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Table of equivalence classes of simply transitive subgroups of R* x
SO(2, 2) (given in the form of subalgebras of aff(n) w.r.t. a standard
basis).

isomorphism type
t)i;z;(;f affine form of L(H) as abstract
Lie algebra
0 {(88) sve R}, R*
a(v) = vs,
I-1 A(a, b, v), R N
@09 { o e
a(v) = V3,
I-2 A(a, b, v), R N
@ 5.0, ] b(v) = ~v3 oM
a(v) =3,
I-3 Ala, b,v), R® N
(a v) { b(v) = 0 SAY
a(v) = v, +v4 + tvs,
II-1 A(a, b, v), N.
(a U) {b(’U)“—‘—’Uz—U4, t>0, 4
a(v) = —v2 + V4 + tUs,
11-2 Aa, b, v), N.
(@,b,v) {b(v)z—vz+v4, >0 4
a(v) = v,,
1I-3 A N,
@b {0 4
II-1 B(a,v),a(v)=tv+vs,t€R Ro{R*xR(}2)}
I11-2 Cla,v), a()=tv; —v;3),t>0 Ro{R*xR(5%})}

The type of L(H) and the parameter ¢ determine the equivalence
classes uniquely.

3. T is virtually solvable. A group with a solvable subgroup of finite
index is called virtually solvable.

(3.1) TuEeoReM. If ' c R*xSO(2, 2) and T acts freely and prop-
erly discontinuously on R* with compact quotient, then T is virtually
solvable.

Proof. Let m = P(I') and A(m) be the algebraic hull of I'. The
identity component A4g is of finite index in A(x). We will show Ay
is solvable. The following lemma is due to D. Fried.

(3.2) LeMMa. If Ay fixes a vector v € R* s.t. Q(v, v) # 0, then
Ag is solvable.

For a proof, cf. [3].

Assume that Aj is not solvable. As in (1.7.2), for every g € A(mn),
det(g — I) = 0. This shows det = 0 on L(A4p) and dimAy <
dimSO(2, 2). So Ap contains a semisimpleconnected subgroup S
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such that dimS = 3 and L(S) ~ sl;(R). By (1.6.2) det # 0 on /;
so L(S)# L;, i=1,2. So L(S) must be a maximal subalgebra of
s0(2,2),s0 Ag=S. Let P;: L(S) — L;, i =1, 2 be the projection
map, then P;(L(S))=L;, i=1,2.

(3.3) Claim. There is a nonzero vector v € R* such that

(i) Qv,v)#0;

(i) Ag(v) =v.

To prove the claim, let 0 # X € L(A4g) such that RX is a split Car-
tan subalgebra of L(A4y). Then 4 = Pi(RX)®P,(RX) is a split Cartan
subalgebra of so(2, 2). By (1.6.3) & is conjugate under O(2, 2) to
{diag-(a, b, —a, -b);a,b € R}. Since detX = 0 we can rescale
and permute coordinates so X = diag-(1,0,-1,0). Let {X, Y, Z}
be the basis of L(A4) such that [X, Y]=2Y,[X,Z]=-2Z,[Y, Z]
= X and X = diag-(1,0, —1, 0). Then ad X has three real eigen-
values on so(2, 2): {2, 0, —2}. Let E; be the corresponding eigen-
spaces, then

'(0 c 0 e
E; = { 83 —Oe g ;c,e€ER},
\0 0 —c 0
'(0 00 O
E =] g 28_0(1 ;d, f,e€R}, and
L\-f 00 0
'(cd—ef 0
—cd -
[E2, Eo) = | DS s ,
k\ 0 Cd+ef
c,d,e, feR
So there are ¢, e, d, f € R such that
0 c 0 e 0 00 O
00 — 0 d 00 O
Y=1lo00 0 0> 2|0 f o0 -a
00 —c O -f 00 O
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and [X, Z]= X implies

{cd—ef:l,
cd+ef =0,

ie. cd =—ef = %, cdef #0. Let v = %ez - %e‘;. It’s easy to check
that Q(v,v) =L #0, 4p(v) =v.

Combining (3.3) with Lemma (3.2), we have a contradiction, so Ay
must be solvable. D

4. Proof of Theorem (1.2). The principal tool is the following theo-
rem from [4].

(4.1) THEOREM (Fried and Goldman). Let T" C Aff(n) be virtually
polycyclic and suppose that T" acts properly discontinuously on R".
Then there exists at least one subgroup H C Aff(n) containing T such
that:

(a) H has finitely many components and each component meets T';
(b) H/T is compact;

(¢) H and T have the same algebraic hull in Aff(n);

(d) if T' has a subgroup T'y of finite index such that every element
of P(T"y) has all real eigenvalues, then H is uniquely determined by
the above conditions;

(e) the identity component Hy of H acts simply transitively on R"
and HyNT is a discrete cocompact subgroup of Hy and is of finite
index in T.

Such a subgroup H in (4.1) is called a crystallographic hull for T".
Since a discrete solvable subgroup of Lie with finitely many compo-
nents is polycyclic and we proved in §3 that I" in (1.2) is virtually
solvable, by (4.1) we need only to check for the uniqueness of H.
By (4.1)-(d), we need only to show that P;(I") has a subgroup of fi-
nite index with real eigenvalues only. Since H; must occur in our
table of simply transitive motions and all these simply transitive mo
tions, except Type III-2, have linear parts with only real eigenvalues,
we need only to check Type III-2. By Bieberbach’s theorem (cf. [8]),
any discrete subgroup of Type III-2 meets 7" in a subgroup of finite
index. a
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5. Classification of I".

(5.1) LEMMA. Let T be a uniform lattice in a simply transitive
group H C R* xSO(2, 2). Then H is the identity component of the
crystallographic hull of T if and only if H is not of Type 11I-2.

Proof. If H is of Type III-2, then I" has a subgroup of finite index,
say I';, such that I'y ¢ T'. So T' is virtually abelian. By [4], the
crystallographic hull of a virtually abelian affine polycyclic group is
itself virtually abelian, so H doesn’t arise from any I".

In the unipotent cases, the algebraic hull of H is H itself. So
A(T"), the algebraic hull of I', is contained in H. Since H}, the
identity component of the crystallographic hull H' of I', acts simply
transitively on R*, the dimension of Hj must be four, and then by
(4.1)-(C) we have

H) C H' C A(H') = AT) C H.

So H=H};then H = H.

The only remaining case is Type III-1. Since I' is not unipotent,
Hj , the identity component of the crystallographic hull H' of I", must
be nonunipotent solvable, i.e. H) is of Type IlI-1 and I' € H N Hj.
Then it’s easy to show that H, = H . o

(5.2) CoroLLARY. Up to finite covers, every flat compact complete
space-form with metric of signature (2,2) is of the form H/T", where
H is a simply transitive subgroup of R* xSO(2, 2) of Type 0, Type ,
Type Il or Type I11-1 and T is a uniform lattice of H .

(5.3) Uniform lattices. The uniform lattices depend only on the
structure of H as a Lie group and do not depend on its embedding in
R4*xSO(2, 2). Since Type0 ~ R4, Typel ~ RxNil®, Typell ~ Nil*
and Typelll-1 ~ R x {R? (%’ eQ,); t € R}, as Lie groups, they are
exactly the same group as that listed in [8], and D. Fried gave a list of
their uniform lattices there. C. T. C. Wall also studied them, cf. [7].
Here we only write them down to complete our classification.

(5.3.1) The uniform lattices of H are semidirect products Z3xZ,,
where A € SL(Z) has a characteristic polynomial

det(t—A) = (t - 1)(? = bt + 1),
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where b > 2 is an integer, and A4 and b satisfy:

(i) Type 0: A=1,b=2;
(i) Type . (A-01)?=0,A#1,b=2;

(iii) TypeIl: (A-1)2#0,(4-1)3=0,b=2;

(iv) Type III-1: b > 3.
(Cf. [3] and [7] for a proof.)
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