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It is very well-known that two real Banach spaces are isometric if
and only if they are linearly-isometric or that two uniform algebras
are linearly-isometric if and only if they are isomorphic as algebras.
These and similar classical "isometric" results have been extended by
£ . Behrends, M. Cambern, J. Gevirtz, R. Rochberg, the author and
others to "almost isometric" cases. Proofs of the extended results are
usually quite technical. In this note we show that using ultraproducts
of Banach spaces we can in some cases deduce an "almost isometric"
result from the classical one in just a few lines.

0. It is a well-known classical result of Ulam that an isometry T
from a real Banach space X onto a real Banach space Y with Γ(0) =
0 is automatically linear. More recently, in 1982, Gevirtz [5] proved
that this result is stable:

THEOREM. Let T be a map from a Banach space X onto a Banach
space Y with Γ(0) = 0 such that

{\-e)\\x-y\\<\\Tx-Ty\\<{\+ε)\\x-y\\, forx,yeX,

then

\\T(x + y) -Tx- Ty\\ < ε'{\\x\\ + \\y\\)9 forx,yeX

where e' —• 0 as ε —• 0.

The proof of the above result repeats, roughly speaking, the basic
idea of Ulam's proof but is much longer and much more technical.
The intent of this note is to draw attention to the method of ultra-
products of Banach spaces. Using this method we can extend in just
a few lines some "isometric" results to "almost isometric" cases. This
includes the theorem of Gevirtz.

1. In this section we give a definition of the ultraproduct of Banach
spaces and list some basic results. We refer to the paper by Heinrich
[6] for a more extended exposition.

We denote by N the set of all positive integers and by & a non-
prime ultrafilter of subsets of N. That is, we assume that & is a
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proper subset of 2N which does not contain a one point set and such
that

ifAB

Ae^ or B e^ iΐAuBe^.
Throughout this paper we assume & is fixed.

DEFINITION. Let (an)™=ι be a bounded sequence of complex num-
bers. We write

limαn = g if Vε > 0 3A e SΓ Vn e A \an - g\ < ε.

It is easy to observe that lim^r an exists for any bounded sequence of
complex numbers. To get a useful alternative definition let p e jffN\N,
where βN is the maximal compactification of N. Since a = (an)%Lι
is a continuous bounded function on N it can be uniquely extended
to a continuous function a on βN. We have ά(p) = lim$ran where
& is the set of all neighborhoods of p, restricted to N.

DEFINITION. Let {Xn)%L\ be a sequence of normed spaces and let
m(Xn) be the space of all norm bounded sequences (xn)%Lι with
xneXn. We introduce a seminorm || ||^r on m(Xn) by HCx^^H^ =
lim^ ||JCΠ|| . The ultraproduct Y\^Xn of (Xn)%Lι is the quotient space
of the space m(Xn) mod ker|| \\&-.

DEFINITION. Let Xn, Yn, n e N, be sequences of normed spaces
and let Tn: Xn -> Yn be a sequence of maps such that

(1) II^(*«)H < K\\xn\\ ϊorneN, xneXn

(We do not assume that Tn are linear.) Let Π ^ Tn denote the map
from YlpXn into U^Yn defined by Π^ Tn{[xn\r) = [Tn(xn)]r.

For (xn)%L\ € m(Xn) we denote by [xn]f the corresponding ele-
ment of ΠJΓ Xn If Xn are equal to a fixed normed space X then
Π^r X = Vίgr Xn is called an ultrapower of X.

From (1) it follows that Π ^ Tn is well-defined and that

(2) Π 7 " ^ * * ^ ) - ^ll[^nl^lk> [Xn]τ G Π Z w

Note that if Xn is not only a Banach space but also a Banach algebra
then we can carry this multiplicative structure to Π ^ Xn by defining

= [Xn ' yn]f , for [Xn]r , |>n]^- € f j
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Here is a list of some basic properties of ultraproducts:
1° Tl$rXn is a Banach space, that is Y[^Xn is complete even if

theXw are not.
2°. A map from X into Π ^ X defined b y x π [χ]#- (mapping x

onto the sequence constantly equal to x) is an isometric embedding
of X into Up X. This map is surjective if and only if X is finite
dimensional.

3°. If Tn: Xn —• Yn are all linear then Π ^ Tn is a linear map with

4°. If Tn: Xn -> Yn is a sequence of invertible maps with

then ΓU Tn is invertible and (ΓU Tn)~ι =
5°. If XΛ = C(ΛΓΛ) then ΓU*« = C(K), where # is compact.
6°. If Λfπ are closed subalgebras of C(Kn), then Π^ JΓ* is a closed

subalgebra of C(tf).
7°. With any element [x£[sr of WgrXl we can associate a lin-

ear functional on W^Xn by putting [JC^]y([xπ]) = lim^rx*(xn) for
[^«]^ e ΓV AΓΛ. This defines a linear isometric embedding of Π ^ ^
into (Π^^«)* which is surjective if the spaces Xn are superreflexive.

Proofs of properties l°-7° are easy exercises, we show here only
3° and 4° to get some additional information about the structure of
the algebra U^An C Y[<?C(Kn). The algebra m{C(Kn)) consists of
all continuous bounded functions defined on (U^Li K n) > the disjoint
union of Kn . So m(C(Kn)) can be identified with the algebra of all
continuous funtions on S = β(\J'%Lι Kn) The kernel of the seminorm
||(Λ)||^ = l iπ^ | | / π | | on m(C(Kn)) = C(S) is a closed ideal. Any
closed ideal / in C{S) is of the form / = Jκ = {/ e C{S) : f\K =
0} where K = K c S. We also have C(S)/Jk = C(K). Hence,
UP C(Kn) can be identified with a subalgebra of C(K) where K c
β(\JKn)\\JKn. Now, since An is a subalgebra of C(Kn), Y[^An is
a subalgebra of C(AΓ).

2. In this section we give some applications of the method of ultra-
products. We start with the proof of the theorem of Gevirtz. Assume
the result is false. Then there are sequences of Banach spaces Xn and
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Yn , a sequence Tn: Xn -> Γw of surjective maps with 7^0 = 0 and

(3)

and sequences xneXn, yn e ΓΛ with

(4) ||Γn(xΛ + y π ) - ΓnxΛ - Γ ^ U > β'dl^H + | |yΛ | |), n € N,

where ε' > 0 is a fixed number.
Without loss of generality, by putting

and

in place of Γπ, xn and yπ , respectively, we can assume that \\xn\\ +
| | ^ | | = 1 for all neN.

Put

τ°°= Π T n : Π ^ " ^ Π Y n > Xoo = iXn^' y°°= [ ^ ^

By (3) and the property 4°, T^ is a surjective isometry. By the
theorem of Ulam Γoo is linear, but from (4) we get

||Γoo(Xoo + J>oo) - Foo( Xoo) - Tooty^Wr

= ]im\\Tn(xn+yn) - Γπ(xπ) - Tn{yn)\\ > ε' > 0

which is a contradiction.
To formulate the next result we need some definitions.
By a uniform algebra we mean a sup-norm closed subalgebra with

unit, of the algebra C(K) of all continuous complex functions defined
on a compact set K.

A linear map T from a Banach space X onto a Banach space Y
is called ε-isometry if | |Γ| | < 1 +ε and yΓ"1!! < 1 +ε.

A linear map T from a Banach algebra A into a Banach algebra
B is called ε-multiplicative if

(5) \\T(fg) - Γ ( / ) T(g)\\ < ε\\f\\ \\g\\, f , g e A .

It is well-known that, in general, a linear and multiplicative map
T: A -+ B need not be continuous [14]. It is also well-known that, if
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B is commutative and semisimple then a linear, multiplicative map
T: A —• B is automatically continuous [15]. The same is true for ε-
multiplicative maps. In [8, p. 37] it is shown that an e-multiplicative
map T from a Banach algebra^ into a uniform algebra is automati-
cally continuous, so by (5) we have | |Γ| | < 1 + ε. The general case of
a semisimple commutative algebra B follows easily from this by the
same arguments (closed graph theorem) as in the multiplicative case.

THEOREM 2. Let A and B be uniform algebras. If T\ A-+B is ε-
multiplicative then T is an ε1-isometry. If T\ A-+B is an ε-isometry
then f: A-> B defined by f(f) = (Tf)(Tl)~ι is ε"-multiplicative.
Here ε, εf, ε" tend to zero simultaneously.

This theorem was proved in 1979 by R. Rochberg [13] under some
additional assumptions about A and B. The general case was proved
in 1983 in [7] (see also [8, p. 35]). On the other hand, the isometric
case of this theorem, that is the case where ε = ε' = ε" = 0, is a
classical result proven in 1959 by Nagasawa [12]. Using ultraproducts
we can simply reduce the general case to the isometric one. We show
here, by contradiction, the implication in one direction, the second
being equally obvious.

Assume Tn: An —• Bn is a £ -isometry between function algebras
An and Bn.

The map ΠJΓ Tn: X\?An -* W^Bn is a linear surjective isometry
between function algebras so, by the classical result [15] Π ^ Tn{[\\^)
= [Tn(l)]$r is an invertible norm one element of Y\^rBn, with the
norm of its inverse equal also to one. Let Fn be an element of

, the space of all linear-multiplicative functionals on Bn . Since
Fn e 2tt(fl^ Bn), we have

1 = \imFn(Tn(l))

so for all sufficiently large n, Tn{\) is invertible in Bn with

lim| |Γ n (l) | | = l and lim IK^Cl))-11| = 1.

Hence, we can define^ map fn: An -* Bn by Tnf = {Tnf){Tn{\))-χ

and we have lim^ ||fB|| = 1 = lim^ \\f-χ\\.
Assume there are εQ > 0 and / „ , gn eAn, \\fn\\ = 1 = \\gn\\ such

that

WTnifn gn) - TnWn)TH(gn)\\ > to.



86 KRZYSZTOF JAROSZ

Then

(6) >eo>O.

On the other hand f ] ^ Tn is a linear isometry from f ] ^ Λn onto
Π^r 2?w which maps the unit onto the unit, so again by the Nagasawa
theorem it is multiplicative, which contradicts (6).

A linear projection P : X —• X is called e-LP-projection, 1 < p <
oo, if

(1 -β)||jc| | < (\\Px\\p + \\x -Px\\p)χlp < (1 + β)||jc||, xeX,

with the obvious modification for p = oo. //-projections and ε-Lp-
projections play important roles in studying structure, isometries and
small-bound isomorphisms of various Banach spaces. The main result
here is due to E. Behrends [2]. He proved that if dimX > 2 and
p φl then X admits a non-trivial U -projection for at most one p
and any two such projections commute. In [4] this result was extended
to ε-Lp-projection as follows.

THEOREM 3. Let X be a Banach space with dimX > 2. Let 1 <
P, Q < oc, p φly let P, Q : X —• X be ε-LP and ε-Lq projections,
respectively. Then

\P-Q\< e;(p) ond \\PQ - QP\\ < ε'{p), where ε1 -> 0 as ε -> 0.

Using the method of ultraproducts we can deduce the above the-
orem from the result of Behrends in what is now an obvious way.
It is enough to notice that Y[^Pn is an U-projection if Pn is an
jl'Lpn-projection and pn —• p, as n —• oo.

There are a number of open questions related to the problems dis-
cussed here. We conjecture just two of them.

Conjecture 1. Let A be a uniform algebra. Let F be a linear func-
tional on A such that

\F(f g ) - F { f ) F { g ) \ < ε\\f\\ \\g\\, f 9 g € A .

Then there is a linear and multiplicative functional G defined on A
such that

\\G - F\\ < ε', where ε' -> 0 as ε -> 0.

REMARK. The question whether an almost multiplicative functional
is close to a multiplicative one was raised in [8], in connection with the
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theory of perturbations of Banach algebras. It was noticed there that
any such functional is automatically continuous [8]. B. E. Johnson
[10] gave an example of a non-uniform, commutative Banach algebra
which does not have the property described in the above conjecture.
He proved [11] also that C(K) algebras and the disc algebra A(D)
have this property. The problem is open, for uniform algebras in
general, e.g. for H°°(D)—the algebra of all bounded analytic functions
defined on the unit disc.

Conjecture 2. Let X, Y be real Banach spaces such that there is a
surjective map T: X -* Y with

(l-e)\\x-y\\<\\Tx-Ty\\<(l+ε)\\x-y\\9 forx,yeX,

where 0 < ε < 8Q and βo is an absolute constant. Then X and Y
are linearly isomorphic.

REMARK. The above statement is known to be true for certain spe-
cial classes of Banach spaces like uniform algebras [9]. It is also known
that this is false, even for C(K) spaces, if we do not assume that ε
is close to zero. By the theorem of Gevirtz to prove the conjecture it
is enough to show that an almost linear map is close to a linear one.
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