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ASYMPTOTIC BEHAVIOUR OF SUPERCUSPIDAL
CHARACTERS OF p-ADIC GL3 AND GL4:
THE GENERIC UNRAMIFIED CASE

FioNA MURNAGHAN

This paper describes the singular behaviour of the characters of ir-
reducible supercuspidal representations of n of G = GL,(F) around
1 in terms of the values at 1 of certain weighted orbital integrals.
The weighted orbital integrals are computed when » =3 or 4 and #
is generic and unramified.

1. Introduction. Let 7 be an irreducible supercuspidal representa-
tion of G = GL,(F), where F is a p-adic field of characteristic 0.
The character ©, of = is a locally constant function on the regular
set Greg consisting of all x € G such that the coefficient of A” in
the polynomial det(4 + 1 — Adx) is nonzero. It is well known that,
if d(m) is the formal degree of m and x € Gy is elliptic and close
to the identity, ©,(x) = cd(n) for some constant ¢ depending only
on normalizations of Haar measures. For other x € Gy near 1, the
value of ©,(x) is unknown. Kutzko [K] has given a formula for 6,
when 7 is prime, but it involves a sum over double cosets in G and
cannot easily be evaluated.

The two objects of this paper are as follows. The first is to describe
the singular behaviour of the character ©, of n around 1 in terms
of the values at 1 of certain weighted orbital integrals. To do this, we
compare results of Howe and Arthur giving asymptotic expansions for
O, . The second is to compute the weighted orbital integrals required
to give a formula for ©, when n = 3 or 4 and 7 is generic and
unramified.

Howe showed that

Or(expX) = > co(m)is(X),
A

for X € = Lie(G) close to zero and such that exp X € Greg. (A5)
denotes nilpotent Ad G-orbits in £, cs(n) is a constant, and s is
the Fourier transform of the orbital integral over & . In the case of
GL,(F), the functions i, are known. The behaviour of ©,(x) as
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Xx € Greg approaches 1 is determined by the homogeneity properties
of those fis’s for which cs(m) # 0. These results are outlined in §2.

In §3 we state results of Arthur [A3], [A4] showing that a weighted
orbital integral has a germ expansion valid on a neighbourhood of 1,
and that O, itself is a multiple of a weighted orbital integral of a sum
of matrix coefficients of 7.

The equality of Howe’s and Arthur’s expansions for O, yields one
of the main results of this paper—a formula for each constant cs(7)
as a multiple of a certain weighted orbital integral evaluated at 1. We
derive this formula in §4. It holds for all » and any supercuspidal
representation of GL,(F).

In §§5 and 7, we consider a generic, unramified, irreducible super-
cuspidal representation 7 of GL3(F) or GL4(F). Such a represen-
tation is known to be induced from a representation of some open
subgroup of G. The particular sum of matrix coefficients appearing
in the weighted orbital integrals is defined in §5 using results of Kutzko
which give the character of the inducing representation. §6 contains
a description of the normalizations of measures and the evaluation
of the weight factor for the weighted orbital integrals. In §7, we ob-
tain explicit expressions for the constants cs(7) as polynomials in the
order g of the residue class field of F.

The equality of Arthur’s expansion and Harish-Chandra’s general-
ization of Howe’s expansion to a reductive p-adic group can be ex-
pected to yield information about the character ©, of any supercus-
pidal representation z#. However, the functions fs, which are not
known in general, may be difficult to compute, and the germ expan-
sion for weighted orbital integrals is more complicated than that for
GL,(F).

I would like to thank Paul Sally for helpful discussions and James
Arthur for explaining his results about weighted orbital integrals.

2. Fourier transforms and characters of admissible representations.
Throughout this section, G will be the F-points of a connected, re-
ductive F-group. Let 7 be an irreducible admissible representation
of G. ©; denotes the character of 7. We summarize results of
Harish-Chandra and Howe relating the values of ©, near smgular
points in G to certain Fourier transforms.

Recall the deﬁnmon of the Fourier transform on the Lie algebra &
of G. For f € C>(£), the function f € CX(&) is given by:

/t// BX,Y)f(Y)dY, Xeg,
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where B is a nondegenerate symmetric G-invariant bilinear form on
Z, v is a nontrivial character of F and Ad Y is a Haar measure on
the additive group of £. The map f +— f is a bijection of C*(¥).
The Fourier transform of a distribution T on £ is defined by T'(f) =
T(f). Let Zieg be the set of semisimple elements X in & such that
det(ad X)g,» # 0, where # is a Cartan subalgebra containing X .

THEOREM 2.1 [HC2, Theorem 3). Let T be a G-invariant distri-
bution on & which is supported on the closure of Ad G(w) for some
compact set w C & . Then there exists a locally integrable function ¢
on & such that

L T(f) = [ or(X)f(X)dX, f € C(2).

2. ¢t is locally constant on Zieg.

Let Xo € & and ¢ = AdG(Xp). If Gy, is the stabilizer of Xp in
G,let dx* be a G-invariant measure on Gx \G. Then

Mm=/GﬂMfmww

Xo

converges for f € C®(¥) and f — ug(f) is a G-invariant distribu-
tionon .

CoROLLARY 2.2 [HC2]. There exists a locally integrable function
fg: & — C which is locally constant on %eg and

wm=éwavwwx
Jor feCX(¥).

Let () be the set of nilpotent G-orbits in &. If g is the order
of the residue class field of F,|.| denotes the norm on F which
satisfies || = g~! for any prime element @ of F. For y € G, let
G, be the centralizer of y in G, and let &, be the Lie algebra of G, .

ProrosiTION 2.3 [HC2]. For ¢ € (#;), X € & and t € F*,
fe(2X) = |t|74m7 fe(X).

Proof. For f € C*(%), define fi(X) = f(t7'X), X € &. It is
well-known that pe(f:) = |¢|4im? ks(f). This, together with (f,) =
|g|dim (F) _, -1, broves the proposition.
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THEOREM 2.4 [HC2, Theorem 5]. Let y be a semisimple point in
G . For any irreducible admissible representation n of G, there exist
unique complex numbers cz(m), one for each nilpotent G,-orbit @ in
%y, such that

2(7exp X) Z co (M) 0p(X

for X € &, sufficiently near 0. Here Vg is the Gy-invariant measure
on @, and Vs is the Fourier transform of vs on &,.

REMARK. The case G = GL,(F) and y =1 is due to Howe [H].

The functions {ix|@ € (#;)} are linearly independent on V' N,
for any neighbourhood ¥ of 0 in & [HC2, Theorem 4]. Therefore
the functions {iiz|cs(m) # 0} determine the singular behaviour of ©,
near 1. Very little is known about the constants cs(7) in general. If
m is supercuspidal with formal degree d(x), then, if {0} denotes the
trivial nilpotent orbit, c;py(n) = cd(n) where ¢ # 0 depends on the
normalization of measures. Howe [H] proved that, if n is a super-
cuspidal representation of GL,(F), then cs(n) = 1 for the regular
(maximal dimension) nilpotent orbit & . Moeglin and Waldspurger
[MW] have shown a relation between cs(m), for n admissible and
some @, and dimensions of certain Whittaker models. As far as the
functions f» themselves are concerned, there is some information
available in [MW] for induced nilpotent classes, and for G = GL,(F)
the [ ’s are known due to Howe (see Lemma 4.1).

3. Weighted orbital integrals and characters of supercuspidal repre-
sentations. We state several results due to Arthur which will be used
in later sections. Theorem 3.4 relates the character ©, of a super-
cuspidal representation 7 to a weighted orbital integral of a sum of
matrix coefficients of 7. Theorem 3.5 gives a germ expansion for
weighted orbital integrals. A vanishing property for weighted orbital
integrals of cusp forms is stated in Proposition 3.9. In Proposition
3.7, we derive a formula for the weighted germ gAGJ corresponding to
the trivial unipotent class in a Levi subgroup A .

Our notation follows that of Arthur [A2]-[A4] except in one re-
spect: the boldface letter G will be used to denote an algebraic group
defined over F, and G = G(F) will be the F-rational points of
G. By a Levi subgroup M of G, we mean M = M(F), where
P = MN is a parabolic subgroup of G. If Ay is the split com-
ponent of M, then Ay, = Am(F). Let F (M), resp. Z(M), be
the collection of parabolic, resp. Levi, subgroups of G which contain
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M . Given a parabolic subgroup P = P(F), Mp and Np denote its
Levi component and unipotent radical, respectively. Let #(M) =
{P € $(M) | Mp = M}. The chambers in the real vector space
a, = Hom(X(M)r, R) parametrize the set #(M), where X(M)fg
is the group of characters of M which are defined over F.

We now review the notation required in order to define the weights
vyr occurring in the weighted orbital integrals. Given M, choose a
special maximal compact subgroup K of G which is in good position
relative to M. For P € #(M) and x = np(x)mp(x)k(x), with
np(x) € Np, mp(x) € Mp, and k(x) € K, set Hp(x) = Hy(mp(x)).
Here Hys: M — a,, is given by:

eHum)t) = |y(m)|, meM, xeX(M)g.

Let 21?4 be the kernel of the canonical map from a,, onto a;. There
is a compatible embedding of a; into g,, resulting from the embed-
dings of X(M)r and X(G)r into the character groups X(A4p) and
X(Ag) of Awm and Ag, respectively. Therefore, a, = a$ @ ag.
Fix a Weyl-invariant norm |- || on g, , where My C M is a mini-
mal Levi subgroup. The restriction of || - || to each of the subspaces
ay, M € Z(M,), yields a measure on a,,. We take the quotient
measure on a$, ~a, /ag.

Let P € #(M). The roots of (P, Aps) will be regarded as charac-
ters of Ajs or as elements of the dual space a3, of a,;,. Let Ap be
the set of simple roots of (P, Ay). If a € Ap, the co-root oV is de-
fined as follows. Choose a minimal Levi subgroup My c M. If p isa
reduced root of (G, 4y), the co-root BV is an element of the lattice
Hom(X(4wm,), Z) in g M, For Py € #(M,), with Py C P, there is
exactly one root g € Ap such that B|dy, = c. aV is defined to be the
projection of BV onto 4§, . Set A} = {a"|a € Ap}. The lattice Z(A})
in gf, generated by Ay is independent of the choice of P € #(M)
[A4, p. 12]. For x € G, vps(x) is equal to the volume of the convex
hull of the projection of the points {~Hp(x)|P € (M)} onto a$ .
Set 6p(4) = vol(a$,/Z(Ay))~! Ioea, MaV), A € ia;,. Then, [A2, p.
36]

up(x) = lim Yo e HHEMgp)t,  Aeiay,,
PeP(M)
and, [A2, p. 46]
(3.1) wa(x)=1/r Y (—AHp(x))0p(A)",
PEeP(M)
where r = dim(A4s/Ag).
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For y € G, define D(y) = Dg(y) = det(1 — Ad(g))z/z , where o is
the semisimple part of y. Let f € C*(G). For a Levi subgroup M,
set Ap g = {a € Arr | Go € MO}, The weighted orbital integral is
defined for ye M. If G, C M, then [A3, p. 234]

(32 Ju(y, f) = D) /G SO o)

More generally, for any y € M [A3, §5],

(33) Ju(r, H=lim > riz(v,a)ilar, f),  a€Au g,
=l Lez M

where ri,(y,a), L € #(M) is a certain real-valued function. We
remark that f +— Jy(y, f) is not an invariant distribution on C*(G).
If y; and p, are conjugate in M, then Jy (y1, f) = Ju(y2, f),
so Jy(@, f) is well-defined for any conjugacy class & C M. The
restriction of f — Jy(y, f) to the space of cusp forms is G-invariant.

Let M., be the set of » in M which lie in some elliptic Cartan
subgroup of M . Recall that an admissible representation n of G is
supercuspidal if its matrix coefficients are compactly supported modulo
Ag .

THEOREM 3.4 [Ad4]. Let n be a supercuspidal representation of G .
Suppose f is a finite sum of matrix coefficients of m. For y € My N
Greg, Where M is a Levi subgroup,

(=)l 400, ()| D()| /20 (y) = Iu(7, f).

REMARK. 1. Although f is not in C(G), the weighted orbital
integrals of f still converge because supp f is compact modulo 4.

2. The corresponding result for reductive Lie groups appears in
[A1].

3. In Theorem 3.4, and, with the exception of the proof of Propo-
sition 3.9, in the remainder of the paper, if y € Gy, the integral in
Ju(y, f) is taken over A, \G instead of G,\G. The weight factor
vy 1s invariant under left translation by elements of M, so this is
equivalent to multiplying the original definition (3.2) by the measure
of A M\Gy .

The measures on Ag\G, Ay \G, and a,,/a; must be normalized
correctly in order for Theorem 3.4 to hold. Let k3, = Ay, NK . Given
measures on a,,, d;, and a,,/a; defined using the restriction of
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a fixed Weyl-invariant metric on g,, , as above, the compatibility
requirement for the measures is as follows [A4, p. 5]:

voly, (rka) = vol(ay/Hu(Aum)),
vol, (kg) = vol(ag/Hg(Ag)).

The measures on A)/\G and Ag\G are the quotient measures in-
duced by the measures on G, 43, and Ag.

If y € Grg N M, the weighted orbital integral Jy(y, f) has a
germ expansion on neighbourhoods of semisimple points in M . The
weighted germs are uniquely determined up to orbital integrals on
M . Suppose ¢; and ¢, are functions defined on an open subset X of
oM, which contains an M-invariant neighbourhood of the semisim-

ple element o. ¢; is (M, g)-equivalent to ¢;, ¢1(y) (M) da(y), if
¢1(y) — ¢2(y) = JM (v, h) for y € ZNU, where U is a neighbour-
hood of ¢ in M, and h € C°(M). Let (g% ) be the finite set of
orbits in 0%, under conjugation by M(g) = MO(F),. Let ye M.
Generalizing the definition of Lusztig and Spaltenstein [LS], Arthur
[A3, p. 255] defines the induced space of orbits y$, = y in G as the
finite union of all G°(F)-orbits in G which intersect yNp in an open
set for any P € #(M).

THEOREM 3.5 [A3, Prop. 9.1, Prop. 10.2]. 1. There are uniquely
determined (M , a)-equivalence classes of functions y — gAG{(y, o),
? € 6 M, N Greg parametrized by the classes & € (G?/La) such that, for
any f € C¥(G),

@, NS ghv. e, .

LeZ(M) 6€(ot, )

where Ji (@, f) def Ji(ou, f) forany cue@.
2. Let t€ F* and w € (%) . Set d°(w) = (1/2)(dim Gy —rank G).
If x =exp(X), let x' =exp(tX).

M,1 G
gG (v, w) YV ) S S gk, wer(u, 0[uC : w),
LeZ (M) ue(#,)

where the cp(u, t) are certain real-valued functions and [u° : w] is 1
if weu%, 0 otherwise.

LEMMA 3.6. Let © be a supercuspidal representation of G and f
a matrix coefficient of m. Then ©,(f) = d(n)~1 f(1), where d(n) is
the formal degree of = .



114 FIONA MURNAGHAN

Proof. Let (, ) denote a G-invariant inner product on the repre-
sentation space ¥ of m. Let ¢, e;, ... be an orthonormal basis for
V. f(x) = (v, z(x)w), some v, w € V. We use the orthogonal-
ity relations for matrix coefficients of supercuspidal representations
[HC1, p. 5] to evaluate

©:(f) =tra(f) = tr( J(x)m(x) dx*)

A\G

—-Z/ (v, n(x)w)(n(x)e;, e;) dx*
—Zd )" v, e)(ei, w)
—d( )"Hv, w) =d(m)~ f(1).

PROPOSITION 3.7. Assume G is connected. Let y € Mg N Greg. If [
is the F-rank of G and d(Stg) is the formal degree of the Steinberg
representation of G, then

g8y, 1) WY (—1)0=dim 4| D (5))112 4 (Stg).

Proof. Let m be a supercuspidal representation of G. Choose a
matrix coefficient f of n such that f(1) # 0. By Lemma 3.6,

O:(f)#0.
First, let y € Gy N Greg - From [R], the leading term in the Shalika

germ expansion of Jg(y, f) is (—=1)U—4m4)|D(y)|V/2 £(1)/d(Stg) .
We also have, by Theorem 3.4,

J6(7, f) = ©x(NID)*Ox (7).

The leading term in Harish-Chandra’s asymptotic expansion of
ID()|'2@5(p) is cgoy(n)|D(y)|!/?, because figop = 1. By {0}, we
mean the trivial nilpotent orbit in &. Thus the leading term in
Je(7, &) is also equal to O (f)|D(y)|/2coy(r) , which means

croy(m) = (=1)~4m4) £(1)/87(f)d(Ste)

which, by Lemma 3.6, equals (—1){/~d4m4a)d(7)/d(Stg).
Now let y € Mgy N Greg . From Theorem 3.4 and Theorem 3.5(1),

ID()|2@n(y) = (- 1)dim(AM/AG) ()" s(v, f)
(Ml (- )dlm(AM/A) Z Z gM(y oL@, f)

Lez (M) o€,



SUPERCUSPIDAL CHARACTERS 115

We will show that gAGl(y , 1) is the only term occurring in the above
expansion having the same homogeneity as |D(y)|!/2. Given this, we
then have

(—1)(1_dimAc)d(7z:)

Pl LI

OLY (_pydimu/400, (1)1 £(1)gS (7, 1),

which, using Lemma 3.6, yields the desired expression for gfl(y, 1).

Let L € #(M) and u € (%). Since [u®:1]=1« L =G and
u=1,and cg(1, t) =1 (see [A3, §10] for the definition of c;(u, ?)),
Proposition 3.7(2) reduces to:

M,1 im G—
gﬁ(?’, 1)( o )|t|1/2(d1mG rankG)gAG{(y’ 1).

Let w e (%), w # 1. The power of |f| in || ®eL(u, 1), u € (%)
such that [u%: w] =1, is less than d9(1). Therefore, all other terms
in the above weighted germ expansion for |D(y)|1/?20,(y) have smaller
homogeneity than g@(y, 1).

LeMMA 3.8 [A3, Cor. 6.3]. Let Ly € & (M). Then

JL‘('})Ll ’ f) = h_I’T} Z rfl(y’ a)JL(aY: f) > ae AM,reg-
T Lez(L)

REMARK. ‘]Ll(yLl > f) d=e:f Ei JL(% ’ f) > where yLl = Ulﬁl .

Recall that a locally constant function ¢ on G is a cusp form
if, for all x € G and all proper parabolic subgroups P = MN of
G, [y¢(xn)dn = 0. The following is a generalization of the well-
known fact that orbital integrals of cusp forms vanish at nonelliptic
semisimple points in G.

PROPOSITION 3.9. Let f be a cusp form on G such that supp f is
compact modulo Ag. Suppose y is a semisimple element in a Levi
subgroup M and y ¢ Mgy. Then Jy(y, f) =0.

Proof. This is due to Arthur. We give a rough outline of the proof.
Using results about products of (G, M)-families from §§6 and 10 of
[A2], it is possible to show that, for M, C M,

vp(x) = > an]‘QIl (x), xe€GaG,
{QeF (M), Q#G}
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where ’UAQ{‘ (x) = lim;_,g Z{PEQ(M‘”PCQ}e"‘(Hr("))Hg(l)‘l and ag €
R. Here, Gg(/l) is defined in the same way as 0p, but with respect
to the set A2 of simple roots of (PN My, Ap) and the associated set
{a¥|a € AD}.

Because y ¢ M., there is a Levi subgroup M| propertly contained
in M with y € M,. Assume that M, = G,. Then

Iu(. ) = D)2 /M\Gf(x“‘yx)vM(x) dx

=|D(y)|'/? > ag f(x“yx)v,%l (x)dx.
(Qes (M), 026} 'M\G

Note that M, = M17 . By [A2, (8.1)], the integral corresponding to Q

in the sum above is equal to J g‘-’(y , fo), where J AA;Q is the weighted
orbital integral for the Levi subéroup M, of My, and Jo: My —C
is given by fo(m) = dg(m)'/? [y [ f(k~'mnk)dkdn. Since f isa
cusp form, fp =0 for Q#G. '%herefore, Ju(y, /)=0.

For general y, and a € Ays g close to 1, the element ay is not
elliptic in any L € (M), and L,y = Gg,. Thus the above argument
shows that Jy(ay, f) =0. From (3.3), Jy(y, f)=0.

4. Some results for G = GL,(F). Assume 7 is an irreducible
supercuspidal representation of G = GL,(F). The main result of
this section, Theorem 4.4, expresses the constant ¢s(n), & € (/) , as
a multiple of a certain weighted orbital integral of a sum of matrix
coefficients of 7. Because of the one-to-one correspondence between
the set (#;) of nilpotent G-orbitsin & and the set (%) of unipotent
conjugacy classes in G, we can view ¢s(7n) and fs as corresponding
to @ € (%s). We begin by defining some notation which allows us
to state our results in terms of unipotent conjugacy classes. For & €
(%), let (@) ={P=MN|@ =1§}. If P P@), let np
be the admissible representation of G induced (unitarily) from the
character 6;1/ 2 of P, and let ©p denote the character of np. If
P, P, € #), then P, and P, are conjugate in G, and 7p and -
mp, are equivalent, so ©p =Op . Let B5 denote the common value
Op, PeRP(0).

For a Levi subgroup M of G,set % (M)={LeZ(M)|o =1¢}.
If L, L, e %(M) and K is a special maximal compact subgroup in
good position relative to M , then L; = kL,k~! for some k € K and
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[A3, p. 235] Jp (1, f) = JL (1, f%), where f*(x) = f(kxk™!). As-
sume f is a cusp form. Then Jy (1, f%)=J. (1, f),s0 J. (1, /) =
Jr (1, f). We denote the common value by Jg(1, f). Similarly, let
d(St(€)) be the formal degree of the Steinberg representation of any
L € % (M,), where M, is a minimal Levi subgroup. We note that
Zs(My) # & forany @ € (%) . Finally, we set ws = |Ng(A)/Zg(A)],
for 4 equal to the split component of any P € #(&¢), and Ng(A)
(resp. Zg(A)) the normalizer (resp. centralizer) of 4 in G. Let
K = GL,(#F), where &r is the ring of integers in F. K is a special
maximal compact subgroup of G. For convenience, we consider only
those Levi subgroups M which are in .#(M;), where M, is the sub-
group of diagonal matrices in G. For all such M, G=PK =KP if
PeP(M).

LemMMmA 4.1 [H]. Measures can be normalized so that [is(logy) =
Qs (), for y € Greg in a sufficiently small neighbourhood of 1.

REMARK. In §6, we normalize measures on G and its Levi sub-
groups. We will assume that the measure on the Lie algebra & has
been normalized so that Lemma 4.1 holds.

LEMMA 4.2. Let M be a Levi subgroup of G. If y € MggiNK N Greg
and @ € (%g), then

fe(logy) = D) Pwe > |DL(y)]V2
LeZ,(M)

Proof. Let P, = LN, € #(@) with A, the split component of
L, . We have simply rewritten van Dijk’s [D] formula for the induced

character: | "
_ Dys(7)]
Os(r)= Y. sapl”zmw,
SEW (4, ,4,,) ’

where W (Ay, Ay) = {s: 41 = Ay | sl —-1,a° =a’,y € G}, and
Ségl/z(y) = Jal/z(y‘lyy). épllK =1 and y can be taken in K, so
sa,:ll/z(y) =1. W(Ay, Ay) =D & %(M) = D. Assume % (M) #
& and L; € % (M). Define a map s — L from W(A4,, Ay) to
Z(M) by: L =1L =yLiy~'. If L € %(M), then L = L] for
some y € K and a — a’ maps A; bijectively onto A;. Since
M cL,A; ¢ A. Thus a — a” defines an s € W(A;, Ay) which
maps to L. Suppose L = L;z for some s, € W(Ay, Ap). Then
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Ap = yAy~! = yod1y5t, so y3ly € Ng(4y). Clearly s = 5, &
23 'y € Zg(A4;). Thus s — L is onto and wg-to-one, which proves
the lemma.

LEMMA 4.3. Let f be a cusp form on G which is compactly sup-
ported modulo Ag.
1. If ue (%y), and u# 1, then Jy(u, f)=0.
2- JM(I ’ f) = lima—'l JM(a: f)s a EAM,reg-

Proof. 1. There exists a Levi subgroup M; C M such that u = 1%I .
By [A3, Corollary 6.3},

JAGl(u’f)=‘lzlin Z r]If{(19a)JL(a’f)’ aEAM[,reg-
LeZ (M)
Because a € Apy, rg and M; # L for each L € (M), a is not
elliptic in L. Therefore, by Proposition 3.9, Ji(a, f) =0.
2. For Le M), L # M, we have Jy(a, f) = 0, since a €
Ap reg 18 Dot elliptic in L. By definition, [A3] r% (1,a)=1. Thus

Tu(1, fy=lim 3 riz(1, a)Jp(a, f)
0 Lez(M)

= lim Jy(a, f).
a—1

Let n be a supercuspidal representation of G. We now express the
coefficients cs(n) in the asymptotic expansion about 1 of the charac-
ter ©, in terms of the weighted orbital integrals at 1 of the matrix
coefficients of 7.

THEOREM 4.4. Let f be a finite sum of matrix coefficients of the
supercuspidal representation n. Assume f(1)# 0. For @ € (%),

(1, pd)
(T) = AU F(D)

Proof. Let y € My, ¢ N Greg . Recall [HC1] that the matrix coeffi-
cients of 7 are cusp forms. Applying Theorem 3.4, Theorem 3.5(1),
and Lemma 4.3(1),

(M, ,1) _ _ _
8:(y) X7 (=1)"10(NTIDMITE Y sk (v, DIF(, )

LeZ (M)
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Writing the sum over L € .#(M;) as a double sum over &€ € (%;) and
L € % (My) and using Proposition 3.7 to substitute |Dy(7)|/2/d(St;)
for g,{“lo(y , 1), we obtain

0:(y) " (=110, (N DT Y a1, £)/d(SKE))
se,
X( > IDL(J?)II/Z)-
Le%,(M,)

For y € My o1 N Greg close to 1, we also have:

(46) O = 3. co(m)its(logy)

o)

D 1/2
= Z Co(m)we Z ————————||Dl‘((yy))lll/2 .
oE,) Lez,(M,)

The two expressions (4.5) and (4.6) differ by an orbital integral on
My = Ay, , that is, by ¢ | D(y)|~1/2, for some constant c. Let &g be
the regular unipotent class in G. By Lemma 4.3(2), Ju (1, f) =
J@m(l, f) = lim,, Jpr (a, f,a € A, ,reg- Multiplying (4.5) by
(=1)"10,(f)|D(a)|}/? and letting a — 1, we get

Jo (1, f)[d(St(Greg)) + €,

which must equal J%(l , f). Since M; is abelian, the Steinberg
representation of My is just the trivial representation, so d(St(Zreg)) =
1. Therefore ¢ =0.

The functions 3, i) IDL()|Y2/|D()|V?, @& € (%), are lin-
early independent on any neighbourhood of 1 intersected with A, reg.
Therefore, the equality of (4.5) and (4.6) implies:

_ (=Dl ()1, f)
Co(m) = 'wgd(St(ﬁ)()y '

From Lemma 3.6, ©,(f) = f(1)/d(n).

REMARK. 1. It follows from the definition of the Steinberg charac-
ter, that is, the character of St; (see [Ca]), that

co(Stg) = (=1)""9@card 2 (M),
where d(@) =dim Ay, M € % (M,).
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2. If n = Ind,G,(t ®id), P = M N, t asupercuspidal representation
of M, then, using van Dijk’s formula in [D] which expresses @, in
terms of ©., it is possible to write cs(n), & € (%g), terms of the
constants ¢, (1), @ € (%) -

3. If = is in the discrete series of G and 7 is not supercuspidal or
a twist of Stg, there is no formula for cs(n), @ # {1}.

5. Characters of inducing representations. To find the constant ¢s(7)
for a supercuspidal representation © of G = GL,(F), we must eval-
uate Jy(1, f) for f equal to a sum of matrix coefficients of 7 such
that f(1) # 0 (Theorem 4.4). Here, we outline how to produce such a
function f. It will be shown in Lemma 6.1 that only the values of f
on the unipotent set %; are required to compute Js(1, f). Lemma
5.2 gives a formula for the values of f on %; for m generic and
unramified.

Carayol [C] has constructed an infinite family of irreducible uni-
tary representations of K A; which are called very cuspidal. To each
such representation ¢ is attached a positive integer 4, the level of
o. Given any (unitary) character y of F*, the representation n =
Ind$ 4,0 ® x odet is irreducible and supercuspidal. We will say that
any such 7 is generic and unramified.

The reason for this terminology is as follows. Let p be the residual
characteristic of F. If (p, n) = 1, the irreducible supercuspidal rep-
resentations of G are parametrized by conjugacy classes of admissible
characters of extensions of degree » over F. For definitions and a
general description, see [CMS]. Let 6 be such a character. In this
setting, those supercuspidal representations which correspond to the
case where 0 is generic over F and the extension of F is unrami-
fied are precisely the generic and unramified representations defined
above. We remark that Carayol’s construction is valid for arbitrary
D, and thus we do not place any restriction on p.

LeMMA 5.1 [C]. Let H be an open subgroup of G. Suppose ¢ is a
matrix coefficient of a representation g of H. For x € G, define ¢(x)

to be 9(x), if x € H, and 0 otherwise. Then ¢ is a matrix coefficient
of Ind¥o .

Let n = Indg 40®x0 det be generic and unramified. By Lemma
5.1,if y, isthe character of o, then jf, is a sum of matrix coefficients
of Indg 4,05 and we may take f = J,x odet as a finite sum of matrix
coefficients of 7#. Note that f(1) = dimo # 0. This particular f
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is chosen because [, f(k~'uk)dk = f(u), for u € #%g, which will
simplify the computation of Jg(1, f) (see Lemma 6.1).

Let @ be a prime element in F, and let & = wdp. If j isa
positive integer, define K; ={k € K | k € I + M,(#})}.

LEMMA 5.2. If o is a very cuspidal representation of KAg having
level h, then, for ue %; NK,
s, (1)1
n(n=1)(h=1)/2(_ 1 )r+5,( J-1, i K
q" h q ifue Ky,
Xo(u) = ; hol
0, otherwise.

For u € Ky_y, sy(u) is the number of blocks in the Jordan form of
w ="y — 1) viewed as a matrix over Or|Pr .

Proof [K, Lemma 6.6). The proof given by Kutzko is for n prime,
but in fact uses only the very cuspidal property of ¢ and therefore is
valid for arbitrary n.

6. Weights for GL4(F). To compute the coefficients cy(7), it is
necessary to evaluate Jy(1, f) for f equal to a suitable sum of matrix
coefficients of 7. Proposition 6.5 gives explicit integral formulas for
Ju(1, f) for non-minimal Levi subgroups M of GL4(F).

On G = GL,(F), we take the Haar measure with respect to which
K = GL,(#Fr) has measure one. The Haar measure on K is the
restriction of this measure to K. If P = M N is a parabolic subgroup
with G = KP, the measures on M and N are normalized so that
the measures of M N K and NN K equal one. Then we have

/G(o(x)dx=/K/M/N¢(mnk)dkdmdn, p € C(G).

LEMMA 6.1. Let f be a cusp form on G which is compactly sup-
ported modulo Ag. Then, if G=KP and P=MN,

D1, f) = lim [ feuu(mdu, 6 € dur,ms
where n € N is defined by u=a"'n"lan and
- / Fk—txk)dk,
K

for xeG.
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Proof. From Lemma 4.3(2) and (3.2),

= lim |D(a)|'/2 / folaxyuy(x)dx,  a€ Ay g
a—1 M\G

The quotient measure on M\G is dx = dndk, and [A2] vy (mnk) =
vy (n) for me M, ne N, and k € K. Therefore,

Ju(1, f) = lim |D(@)|!/? / fi(n~'anyvyg(n) dn.
a—1 N

Since n — a“'n~lan,n € N,a € Ajp g, is an invertible poly-
nomial mapping from N to N, we can make the change of vari-
ables u = a~'n~lan. This introduces the factor |D(a)|~1/26p(a)!/?.
fx 1is locally constant on G, and therefore is invariant under left
and right translation by some open compact subgroup of G. Thus
fx(au) = fx(u) forall u € N if a is sufficiently close to the identity.
Also, 6p|KNP=1.

We now describe, for GL,(F), the normalizations of measures
on a,,dg, a$, Au, Ag and Ap/Ac required by the compatibility
conditions of §3. Fix the Weyl-invariant inner product ((x;, ..., X»),
P1seeesVn) = log"quISiSn Xiyi on Q. The corresponding
measure is log™" gdx; ---dx, , where dx; denotes the standard Haar
measure on R. On a,, we take the measure coming from the restric-
tion of the above inner product to a,,. Suppose M is conjugate to

i=z1 GLn (F). The embeddings of X(M)r and X(G)r into the
character groups X(A4y) and X(A4g) result in the embedding x —
(xny/n, ..., xn/n) of a; into a,,. It is compatible with the canon-
ical projection (X, ..., X;) = 3 <<, X from g, onto a;, whose
kernel is denoted by 4.1?4- This results in the decomposition a,, =
af ®ag.

Let kpr = Ay N K. The function Hjs maps Aus/kys bijectively
onto a lattice in a;,. As stated in [A4, p. 5], the measure of &,
in Ays must equal the volume of a,,/Hys(Ap). The measures on
Ay\G, AG\G, and a,,/a; ~ a§, are the ones induced by those on
G, AM, AG: Qs and ag.

The next lemma gives the measures of the xj,’s. We will use these
to determine the formal degree d(St(#)) which appears in the formula
for cy(m). Note that, in order to be consistent, the measure of MyN
K = Ay, N K must equal one. This determined our choice of inner
product on a M, -
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LEMMA 6.2. Let M be conjugate to [];_; GLn (F). With the above
normalizations, the measure of Ky is /iy ny.

Proof. For m € M, Hy;(m) = (log|detm,|, ..., log|detm,|). Thus
Hy(Ap) = nylogqZ x --- x n loggZ. The measure on g;, ~ R" is
(log™"q//A1 - 7ny)dxy ---dx,. The volume of a,,/Hys(Ay) is there-

fore /n,---n,.

In order to evaluate vy (x),x € G, we need to compute
vol(a$,/Z(A})) for P € #(M). As noted in [Ad, p. 12], Z(A}) is
independent of the choice of P € #(M). Let up = vol(a$/Z(A})).

LEMMA 6.3. up = +/n/(n;---n,)log™" ' g.

Proof. Let P = MN € (M) be chosen so that N is upper trian-
gular. Then AY = {a;, ..., a,_1}, where a; has | in the i th position
and 0 elsewhere. Define variables y;, ..., y, by

yiey+ -+ ye(ng/n, oo, nme/n) = (X1, .0, Xp).

Then, since dy;,---dy, = dx;---dx,, the measure on a,, is
(log™"q/\/ny ---7;)dy; - - - dy,. The measure on g is (log™'g/\/n) dx
and x € g; embeds in a,, as (xn;/n,..., xn/n). The quotient
measure on gfl is given by (log™"*'g\/n/(n;---n,)dyi---dy,_.

Let u € supp fx. We want to compute the value of v,,(n), where u =
a~'n~lan,a € Ay rg. If a € Ay, then a = diag(arln, ..., aln),
with g; € F*, and I, the n;x n; identity matrix, 1 <i <r. Let #F
be the maximal ideal in the ring of integers @ . For each positive
integer d, define Ay g = {a € Aprreg | @ € 1 + PE, |a; — aj] =
g4, i# j}. We will compute vy (n) for a e Ay, 4 for large values
of d, and to evaluate Jy(1, f), we will let d — oco. The next lemma
gives the values of vy,(n) for certain non-minimal Levi subgroups of
GL4(F). We take n in the corresponding upper triangular unipotent
subgroup. For x € F*, v(x) is defined by |x| =g~ ¥,

LEMMA 6.4. Let ue€ NNK,a € Ay, q, and n be given by u =
a~'n~lan.
1. Let M = GL3(F) x GL{(F). If

o~ 00
— N =

0
1
0
0

SO O -
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is such that max{|x|, |y|, |z|} # 0, then
va(n) = % (d - min{v(x), v(»), ¥(2)}),

for large d .
2. Let M = GLy(F) x GLy(F). If

u =

oo o~
oo —o
o—< &g
- O N X

such that wz — xy # 0 then
vy(n)=2d —v(wz — xy),

for large d .
3. Let M =GL,(F) x GL,

~~~

F)x GL(F). Let

1 0 X1 W1
"= 01 X2 V2
00 1 =z
00 0 1

Define
A =min{v(x;), v(x2)},
B = min{v(x1y2 — X21), ¥(2) + 4}.

If A#0,B #0, and d is large, then

vpr(n) = 3v2d?* — d(2V24 + 2V2v(2) + V2B)
+ %Bf— —V2(B — 4)* + V2Bu(z).

REMARK. Let Py = Ay Ny be the Borel subgroup of GL,(F) such
that N is the subgroup of upper triangular unipotent matrices. For
x € GL,(F), we use the following fact to find Hpo(x). Suppose
x = nak, with n € Ny, a = diag(a;, ..., an) € Aum,, and k € K.
Then, for 1 <7 < n,|a;---an| is equal to the maximum of the set.
of norms of determinants of (n —i+ 1) x (n — i+ 1) matrices which
can be formed from the last » — i + 1 rows of x. For example,
|an—1an| = maxlg#jﬁn{lxn—l ,ixn,j—xn,ixn—l,j|} M P=MN,MEe
Z(M), N C Ny, then Hp(x) = (logla; - an|, ... logla, _11--an|).
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Proof of Lemma 6.4. 1. Let P € ##(M) be the opposite parabolic

subgroup. It is not hard to see that Hp(n) = —Hp(n'"'), where t
denotes transpose. If a € Ay, 5 = diag(a;, a1, a3, a;) then

1 00 (1-ajla)~'x
010 (1-ailay)ly
001 (1-ailay)!z
0 00O 1

Using the above remark, we obtain

Hp(n"') = logmax{1, ¢%|x|, ¢°ly|, ¢°|z{}(~1, 1)

= —logg(d — min{v(x), v(y), v(z)})(1, -1), d large.
By definition, wvp(n) is the volume in 4§, of the convex hull
of Hp(n) = 0 and Hz(n), which is, by Lemma 6.3, equal to

Z(d - min{v(x), v(y), v(2)}).
2. We note that, if a = diag(a;, a1, a2, a2) € Ay 4,

1 0 0 0

nt = 0 1 00
| -(1-alay)tw —(1-arlay)ly 0 0
~(1-ajla)~'x —(1-aj'ay)™'z 0 0

Then

H_F(n) = IOgmaX{L q2d|wz '—xyL qdl'l.U|, quX|, qdlyl, qdlzl}(ls _1)
=logq(2d —v(wz — xy))(1, -1), d large.

To obtain 2, proceed as above for 1.

3. Let a = diag(a;, a1, a2, a3) € Ay, 4. The characters a =
(1,-1,0),8=(1,0,-1) and y = (0, 1, —1) of Ay, are viewed
as elements of the dual space a},. Given u as in the statement of
the lemma,

1 0 % »
1 % 7
"= 80 ; y22 ’
00 0 1
where
%i=(1-a7la) ™ x;,
Pi=1-a'a) i+ a0y (1 - a7 'az) " xi2), i=1,2,
2= (1-ay'a;) 'z
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Define A = min{v(x;, v(x3)} and B = min{v(x;y; — x2¥1), v(z) +
A} . For u in an open dense subset of the unipotent radical, 4 and B
are nonzero. For d sufficiently large, the values Hp(n), P € (M),
are given by the table below.

Ap log™! gHp(n)

{a, 7} 0
{~a, -y} (2d-B)a"+(2d-v(z)—-A)yY
{a,-B} (=d+v(z))a’+(2d-v(z)-A)pY

{~a, B} (d - 4)a¥
{-8,7} (2d - B)BY + (-=d + A)yY
{B, -7} d-v(z)yY

For the pairs {—a, —y}, {—a, B} and {B, —y}, Hp(n) can easily be
computed using the remark preceding the lemma. We describe the
case {f, —y}. If P € #(M) has simple roots {f, —7}, then

1 0 a3 s
_ 0 1 c3 ¢4
MN=3100 1 o
00 C43 1
Note that
1 000
n=n 0100
“TPlo 01 z
0001

where np € Np. Also, ( (1) f ) is the product of (; ?) and diag(d;, ;)
with a matrix in GLy(&Fr), where |6, = |d2]~! = |2|, for large d.
Therefore, Hp(n) = log(q?|z|)(0, 1, —1).

The values Hp(n) for {a, —f} and {-f, y} are determined by
the values for the other parabolic subgroups by using the following
property (see [A4, p. 5]): If P, P € (M) are adjacent, and 7 is
the simple root of (P, Ap) in Ap N (—Ap/) which determines the
wall shared by the chambers of P and P’ in a,,, then for any
x € G, —Hp(x) + Hp/(x) is a nonnegative multiple of 7V. That is,
{-Hp(x) | P € (M)} forms a positive orthogonal set for M .

To compute vy(n) we use formula (3.1):

up(x)=1/rl > (=A(Hp(x)))"6p(A)7",
{Pez(M)}
A€ igju, r= dim(AM/Ag) s
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where 0p(A) = uj} Ilaea, A(@¥). Setting A = (ity, it, it3) with

t1, ty, t3 distinct real numbers, uy = V2 log‘2q, and computing
1/2 3 peaiaryy (A(Hp(n)))*0p(4) 7!, after some algebra, we obtain the
desired expression for vys(n).

PROPOSITION 6.5. Let f be a cusp form on GL4(F) with supp f C
KZ . Given M, define the variable u€ NN K as in Lemma 6.4.
1. If M = GL3(F) x GL(F),

Iu(1, f)==2/V3 /N frwmin{v(x), v(y), v(2)} du.
2. If M = GLy(F) x GLy(F),
In(1, f) =~ /N fewv(wz - xy) du.

3. If M = GLy(F) x GL{(F) x GL{(F), and A and B are as in
Lemma 6.4,

In(1, f)=V2 /N fi(W) (B2~ (B - 4)* + Bu(z)) du.

Proof. Let d > 1 and a € Ay, 4. Forn € N such that u =
a~'n~lan, set 0y (n) equal to

(2/V3)(d — min{v(x), v(y), v(2)}),
2d —v(wz — xy),
3v2d? — d(2V24 + 2vV2v(z) + V2B) + B*/V2
—V2(B - A)? +V2Bv(z),
in cases 1, 2 and 3, respectively. By Lemma 6.4, for all u € N n

K, lim,_ (vp(n) — 9p(n)) = 0. Results of Arthur [A3], imply that
limg_, o [y fx(U)(var(n) — Gpr(n))du = 0. Thus

It )= Jim ([ fewonmyduct [ feuom(n) = oum)du)

= lim [ fx(u)¥p(n)du.

d—oo JN
Because f, hence fx, is a cusp form, we have [, fx(u)du =0. In
the first two cases, ¥,/(n) is a constant multiple of d plus a term
which is independent of d. Thus the lemma follows immediately in
these cases.
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To prove 3, we first observe that, for large values of 4, vpm, (n) is
a multiple of 2d — 4 — v(z), where M; = GL3(F) x GL(F). In the
notation used in the proof of the third part of Lemma 6.4,

10 % 0\ /1 00 j-%2
01 % 0)[0 1 0 ,-%2
00 1 0ff0o01 3
000 1/\000 1

vp,(n) is therefore a multiple of logmax{l, ||, |} — %12|, |[V2 —
X 2|} .

2| = ¢9|z|,
Ji — %i2] = ¢%ly; - (1 —aytas)'xiz|,  i=1,2

We assume that x;z #0,i=1, 2, and 4 is large. Then |j; — %;Z| =
a*|x;z].

Ju (@, f) = dp(a)'/? [y fx(au)vp, (n) du. This is obtained by the
same change of variables used in the proof of Lemma 6.1. a € 4y, 4
is not elliptic in M, , so, by Proposition 3.9, Jy (a, f)=0. Byan
argument similar to the one above for Jy(1, f), we get:

lim Jug (@, /) = Jim [ fictuyoas(n) du
= lim /N fiew)(2d — 4 - v(2)) du
- /N fe(u)(d +v(2)) du.

Thus [, fx(u)(A+v(z))du=0.

Similarly, if M, = GLy(F) x GLy(F), we can show that vy (n) is
a multiple of 2d — B for large d, so [y fxk(u)Bdu=0.

Looking at the formula for ,(n) given at the beginning of the
proof, we see that

/ (@) op(n)du = / fe(WV2(B2)2 — (B - 4)* + Bu(z)) du.
N N

7. Calculation of c,(n) for GL3(F) and GL4(F). We now com-
pute the coefficients cs(7) for a generic unramified supercuspidal rep-
resentation 7 of GL3(F) or GL4(F).

Let M =], <;<, GLy (F). Let Stjs be the Steinberg representation
of M. If G=GL,(F), the formal degree d(St;) of St is given by
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[CMS]:
n—1
d(Stg) =1/n (H(qk - 1)) volZ\G(Z\KZ)‘l.
k=1
Here Z = Agis the centre of G. We are assuming that volz\g(Z\KZ)
= volg(K)/volz(K N Z). With the measures normalized as in §6, we
have

n—1

(7.1) d(styr) = [T /v [ (@* - D).
i=1 k=1

If 7 = Ind¥,0, then, by [C, p. 211], the formal degree d(n) =
volz\G(Z\KZ)~!dim¢ = \/ndimo .

THEOREM 7.2. Assume G = GL4(F). Given any character x of
F*, let m = Indgza ® x odet be a generic unramified supercuspidal
representation of G, where o has level h. If M is a Levi subgroup,
let & =19,.

1. If M =G, co(n) = —4q0h-1
If M = GL3(F) x GL{(F), cs(n) = 4¢3~
If M = GLy(F) x GLy(F), cs(n) = 2¢*—1)
If M = GLy(F) x GL{(F) x GL{(F), cg(n) = —4g"~1.
If M is minimal, cs(n)=1.

nhw

Proof. 1 and 5 are due to Howe [H]. Let 7, be defined as in §5.
The function f = ji; ® y o det is a sum of matrix coefficients of
n. Note that f(u) = j,(u) for any unipotent element u € G, so
Jo(1, f), hence cs(m), is independent of x. Since dimao = f(1),
and n =4, d(n) = 2f(1). Putting this together with Theorem 4.4,
we obtain cy(n) = —2J5(1, f)/(wed(St(@))). In cases 1-4, wy =
1,1, 2 and 2, respectively. The values of f on the unipotent set are
given in Lemma 5.2. Substitution of these values into each formula for
Jo(1, f) given in Proposition 6.5 (note that fx = f), and evaluation
of the integral results in:

L f(1)=¢%""D(g3 - 1) - 1)(g - 1),

2. (=2/V3)g**D(g* - 1)(g - 1),

3. —q*"D(g-1)2,

4. 2V2¢"1(g-1).
The calculations are fairly short in cases 2 and 3, and lengthy in case
4. We do not include them here. Using (7.1) to evaluate d(St(&))
completes the proof.
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REMARK. For arbitrary n, and n and f as in the theorem, if
M =GL,_(F) x GL{(F), it is easy to compute

Iu(l, ) =—f(D)(Vng= D8 /(Vn =T)(1 — g=("7Vy),
which results in ¢ () = (—=1)"2ng*~D(=2A-D/2 for @ = 1§, .
PROPOSITION 7.3. Under the same assumptions as Theorem 7.2, ex-

cept that G = GL3(F), co(n) = 33D, —3¢"~1 and 1 for M =
G, GLy(F) x GLy(F), and M,, respectively.
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