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The main result in this paper is to classify the isomorphism classes
of certain non-commutative 3-tori obtained by taking the crossed prod-
uct C*-algebra of continuous functions on the 2-torus T? by the irra-
tional affine quasi-rotations. Each such quasi-rotation is represented
by a pair (a, A), where a € T> and A € GL(2, Z), and its as-
sociated C*-algebra is shown to be determined (up to isomorphism)
by an analogue of the rotation angle, namely its primitive eigenvalue,
by its orientation det(4) = +1 and a certain positive integer m(A)
which comes from the K;-group of the algebra and which determines
the conjugacy class of 4 in GL(2, Z).

Introduction. In this paper we study the C*-crossed products of the
continuous functions on the 2-torus C(T?) by certain transformations
¢ of T? which we call quasi-rotations. They are like rotations in
that they have an eigenvalue A = e2"¢ and a unitary eigenfunction
f € C(T?), and unlike rotations in that their degree matrix D(p) €
GL(2, Z) does not equal the identity matrix 7, . Clearly they contain
the rotation C*-algebra .

Recall that an affine transformation of a group G is a mapping
o: G — G of the form g(z) = aA(z), (for z € G), where a € G and
A € Aut(G).

Let &/ (¢) denote the associated crossed product C*-algebra
C(T?) Xa, Z, (cf. [9, 7.6]) where o, is the automorphism on C(T?)
associated with ¢ . We shall construct an integer-valued function m
defined on the 2 x 2 matrices 4 € GL(2, Z) which are of the form
D(p), for some quasi-rotation ¢, such that

(1) Zp(p(y)) is the torsion subgroup of K;(+/ (),
(i) m(A4) and det(4) determine the conjugacy class of 4 in
GL(2,Z).

When this is combined with the computation of the tracial range
on Ko(«(p)) (see §4) a classification of the isomorphism classes of
these algebras is obtained (Theorem 5.2) for the affine quasi-rotations
of T? associated with irrational 6. This is the main result, while for
the rational case a partial answer is given. The determination of the
strong Morita equivalence classes of these algebras has been studied
in [17].
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132 H. ROUHANI

The K-groups of the crossed products of C(T?) by any transforma-
tion have been computed elsewhere ([6]; and independently in [15])
using the Pimsner-Voiculescu six-term exact sequence. Here we shall
merely state the results (§1).

Some results concerning the non-affine quasi-rotation algebras are
given in [16].

1. K-groups. Every continuous function f: T? — T has the form
f(x,y) = xmyne2niF(x.y) for some integers m, n and some contin-
uous real-valued function F on T2. Call the 1 x 2 integral matrix
[m n] the bidegree of f and denote it by D(f). Let ¢ be a trans-
formation (i.e., a homeomorphism) of the 2-torus T2. Write ¢ as
¢ = (@1, ¢2). Define the degree matrix of ¢ to be the 2 x 2 integral

matrix D(y)
_ 1
20)= (g )

It is easy to verify that D(¢ o w) = D(¢)D(y) for any two transfor-
mations ¢, w of T2. Replacing ¥ by ¢! we see that D(¢p) €
GL(2,Z), i.e. detD(p) = +£1. This latter determinant determines
whether ¢ is orientation preserving or reversing. Let I, denote the
identity matrix in GL(2, Z).

THEOREM 1.1 ([6], Chapter 3; [15], Chapter 2). Let ¢ be a trans-
formation of T?.
(1) If detD(p) = 1, then

Z*  if D(p) =1,
Ko(#(p)) =4 Z*  if det(D(p) — L) =0and D(p) # I,
Z?  if det(D(p) - Ip) #0.
(2) If detD(p) = —1, then
Z:Z, if det(D(p)-1) =0,
ZoZ, if det(D(p)-1I,) #0.
(3) Write D(p)~! = (3 ) andlet J denote the quotient group

Ko(a (o)) = {

7207 y 2

=T Z+0,a-DZ  mDe T =D

Then
Z’eJ  if detD(p) =1,

Ki(« (o)) = { ZoJ  if detD(p)=—1.
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The proof of this theorem relies on the Pimsner-Voiculescu cyclic
six-term exact sequence for K-theory [11]. A closer look at the proof
yields the following corollary.

COROLLARY 1.2. Let ¢ be a transformation of T? such that
det(D(¢) — 1) =0,

and let P denote the Bott projection in M,(C(T?)). In this case there
is an x such that 6(x) is a generator of ket(a, —id,) in Ki(C(T?)),
where J is the connecting homomorphism in the Pimsner-Voiculescu
sequence J: Ko(/ (9)) — K (C(T?)).
(i) If detD(p) = 1 and D(p) # I, then Ko(¥/(p)) = Z3 is
generated by [11, [P]-[1], and x.
(ii) If detD(p) = —1, then Ko( (¢)) = Z? @ Z, is generated by
[1], [P)-[1] (which has order 2 in this case) and x.

This corollary focuses only on transformations such that
det(D(¢) — I) = 0 because these include the quasi-rotations.

2. Lemmas. In this section we shall construct the integer-valued
function m indicated in the introduction which classifies the con-
jugacy class of certain integral matrices in GL(2, Z) which arise as
D(¢p) where ¢ is a quasi-rotation. As it turns out these are the ma-
trices A which have eigenvalue 1, i.e. det(4 —I;) =0 (cf. §3).

Two matrices A, B € GL(2, Z) are conjugate if there exists S €
GL(2, Z) such that SAS~! = B. Let us express thisby 4 ~ B. It will
be shown later that for quasi-rotations ¢ and w of T?, if &/ (p) =
& (y), then D(p) ~ D(y) (cf. Proposition 2.8). If, in addition, ¢
and y are affine, it will follow that they are topologically conjugate
(i.e., there exists a transformation # of T2 such that hoy =@ oh).

The construction of m is divided up into two cases.

LEMMA 2.1. Let A € GL(2,Z) be such that det(4 — I,) = 0 and

detA =1, say
a b
A_(C d).

Let e =gcd(a—1, b), when b # 0, and define

et .
m<A>={W 770,
lc| if b=0.
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4~ (m(lA) (1))

Hence, A ~ B if and only if m(A) = m(B), for all matrices A, B
satisfying the hypotheses of this lemma.

Then

Proof. From (a—1)(d —1)—bc =0 and ad — bc = 1 one obtains
a+d=2and —(a—1)2=bc. If b =0, the lemma is clear. Suppose
that b # 0. Since e = gcd(a — 1, b), there exist integers s, ¢ such

that
(*57) ()
t—({—=)s=1,
e e
so that a1 _b_
S = ¢ € 1eGL2,2).
Ky t
One then checks that
1 0
SA4 = :_eﬁ ! S
b
(a-lé
SA = e e a b
c 2—-a
\ s ¢
((a—l)a+z (a—l)b+b(2—a)
_ e e e e
\ sa+ tc sb+1t2-a)
and
1 0 a-1 b a-1 b
— e e
) e e | =
S| st —e? (a-1 +5 t—e
b b

These can be seen to be equal using the relations —(a — 1)2 = bc and
(a— 1)t—bs=e. Thus

5457 = (s 1)~ (e 1) -

Henceforth we shall write m(¢) = m(D(¢p)).
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COROLLARY 2.2. Let ¢ be a transformation of T? with detD(p) =
1 and det(D(¢) — ) = 0. Then ¢ is topologically conjugate to a
transformation y with

Dy = (m(1¢) (1)>

Proof. Since D(g¢) satisfies the hypotheses of the previous lemma,
we have

2057 = () 1)

for some S € GL(2, Z). We can choose an automorphism ¢ of T2
(as a group) with D(o) = S. For example, if

- (m n) ’
P q
let a(x,y) = (x"y", xPy9). Letting ¥ =g opoc~!, we obtain

D) = D@D = () |- :

COROLLARY 2.3. Let ¢ be a transformation of T? with det D(p) =
1 and det(D(¢p) —I,) =0. Then
Kl ('537((0)) = Z3 @ Zm((a)-

Proof. Since by the preceding corollary y is topologically conjugate
to ¢, we can use Theorem 1.1 to obtain

Z2
Ki((p)) = K (o x~ 72
=73 @ Ly, O
Consequently, if ¢ and y are transformations of T2 satisfying the
hypotheses of the above corollary and if =/ (p) and & (y) are isomor-

phic, strongly Morita equivalent, or, more generally, have isomorphic
K,-groups, then m(¢) = m(y) so that D(¢p) ~ D(y).

LEMMA 2.4. Let 4 € GL(2,Z) be such that detA = —1 and
det(A — I,) =0, so that A has the form

k x
A=<y —k>’
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where k*+xy =1. Let e =gcd(k—1, x), when x # 0, and consider
the integer-valued function
m(A)z{gcd<e,€—(—]?—)—:_—l)) if x#0,
ged(2, y) if x=0.
Then m(A) e {1, 2}, and
i) mA) =1e4~"O D),
(i) mA) =24~ 9).
Consequently, for such matrices A and B onehas A~ B < m(A) =
m(B). (Hence there are two conjugacy classes in this case.)

Proof. Since (k — 1)/e and x/e are relatively prime integers and
xy=(1-k)(1+k)or (x/e)y =((1 -k)/e)(1 +k), it follows that
x/e divides k + 1; hence e(k + 1)/x is an integer (when x # 0), so
that m(A) makes sense.

To see that m(A) € {1, 2}, note that

m(A)le|(k —1) and m(A4)|(e(k +1)/x)|(k + 1).
Hence m(A)|(k + 1) — (k — 1) or m(A4)|2, as desired.

Now assume that m(4) = 1 and suppose that & # =+1, so that
x # 0. We shall seek an integral matrix

s=(2 )
(¢ a) (5 2= (Vo) (¢ a)

and ad — bc = 1. This implies that
ka+yb=c, xa-kb=d, kc+yd=a, xc—-kd=»b,
and one easily checks that the last two of these equations follow from
the first two. Substituting the first two equations into ad —bc =1 we
get a(xa — kb) —b(ka+ yb) = 1, or xa? — 2kab — yb? = 1, which
may be factored as
X k-1 ey _
{—éa——————e b] [ea+—k_ lb] =1,
where ey/(k — 1) = —e(k + 1)/x is an integer (since k # 1). There-
fore, the existence of S is guaranteed provided the equations
ia—k—:—lb= 1, ea+ib= 1,
e e k-1
have integer solutions a, b.

such that
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Multiplying the first of these equations by e and the second by
x/e and subtracting the two gives 2b = e — (x/e). Similarly, if we
multiply these equations by £ +1 and k — 1, respectively, we obtain
2a = (e(k+1)/x)—((k—1)/e). To show that b exists we must show
that e and x/e have the same parity, i.e., either both are even or
odd. This may be shown as follows.

Assume that x/e is odd and e is even. Then x iseven and kK —1
is even (since 2le|(k—1)). So k+1 is even. But then 2|(e(k +1)/x)
since x/e is odd, and hence, 2|m(A4) =1, a contradiction. A similar
contradiction argument follows if x/e is even and e is odd.

To show that a exists one shows that e(k + 1)/x and (k —1)/e
have the same parity. If (k — 1)/e is even, then x/e is odd. Since
k—1 iseven, k+ 1 is even and so e(k + 1)/x is even since x/e is
odd. Conversely, if e(k +1)/x is even then since 1 = m(A4), e must
be odd. Now as k+ 1 iseven, sois kK — 1, and so (k — 1)/e is even
since e is odd.

Now we assume that m(4) =2 and k # +1, so that x # 0. Then
e and e(k + 1)/x are even so that the matrix

e(k+1)
2x
k-1
e

has integer entries and determinant 1. Using the relation xy =
(1 —k)(1+ k) one can easily check that

10
SA—(O _1>S.

Now the cases when k& = 1 are easily handled by similar argu-
ments as above. o

S =

VX NI

The matrices satisfying the hypotheses of Lemma 2.4 are the “ori-
entation reversing” square roots of the identity matrix. Using this
lemma we can show that there is a quick way to find the conjugacy
class of A when its entries have known parity.

COROLLARY 2.5. Let A satisfy the hypotheses of Lemma 2.4.
(1) k even = m(A4)=1.
(2) Suppose k is odd. Then

(1) x or y isodd = m(A4) =1,

(i) x and y are even = m(A) =2.



138 H. ROUHANI

Proof. If m(A) # 1, then m(A4) =2 so that 2|e|(k — 1) and hence
k is odd. This proves (1). We now prove (2).

(i) Without loss of generality suppose x is odd. Since m(A4)le|x,
it follows that m(4) = 1.

(ii) Suppose that x and y are even. Since k — 1 is even, e is
even. We assert that e(k + 1)/x is even, so that m(4) = 2. To see
this, write y = (e(k + 1)/x)((1 — k)/e) where we may assume x # 0
(if x =0 then k = +1 so m(A4) =2). If x/e is even, then (1 —k)/e
is odd (being relatively prime), so y is even implies that e(k + 1)/x
is even. Now if x/e is odd, then k + 1 being even it follows that
e(k +1)/x is even, and hence m(4) =2. O

Setting m(I) = 0, we may now summarize the contents of Lemmas
2.1 and 2.4 as follows:

COROLLARY 2.6. Let A, B € GL(2, Z) be such that det(A — ;) =
det(B—-1,) = 0. Then A ~ B if and only if detA = detB and
m(A) = m(B).

COROLLARY 2.7. Let ¢ be a transformation of T? such that det D(p)
= —1 and det(D(p) —I,) =0. Then
Kl (MW’)) = Z2 52 Zm((p)-

Proof. Arguing as in the proof of Corollary 2.2 ¢ is topologically
conjugate to a transformation ¥ of T2 such that

(},) ifmw=1,

_ 10
o= ((1) Pl) if m(p) =2.

On applying Theorem 1.1(3) to y we obtain
K1 (# (9)) = Ki(+/ (v))
Z2

L) e ((—1, NZ+ (1, —1)z) if m(p) =1,

~ 2 |
ze ((0,0)Z+(0,—2)z> if m(p) =2,
=Z'e Zon(g)-

Combining the results of this section together with those of the
previous one we arrive at the following result.



QUASI-ROTATION C*-ALGEBRAS 139

PROPOSITION 2.8. Let ¢, and ¢, be transformations of T? such
that det(D(¢;,) —1I,) = 0, i =1,2. If &(¢1) and /(p,) have
isomorphic Kj-groups (i = 0, 1), then detD(gp;) = detD(¢,) and
m(p1) = m(92), so that D(p1) ~ D(92).

Proof. Since they have isomorphic Ky-groups, Theorem 1.1 implies
that det D(¢;) = det D(¢,). Since they have isomorphic K;-groups,
we may combine Corollaries 2.3 and 2.7 to get m(@;) = m(¢;). By
Corollary 2.6 we deduce that D(¢,) ~ D(¢,). O

REMARK. The quantity det(D(¢)—1I,) turns out to be the so-called
Lefschetz number of ¢, which is defined in algebraic topology as
the alternating sum of the traces of the induced maps of ¢ on the
cohomology groups of the underlying space (in our case T?). The
Lefschetz fixed point theorem states that if ¢ is a diffeomorphism
on a smooth manifold which has no fixed points, then its Lefschetz
number is zero. In our case, for the 2-torus, the Lefschetz number is

det(D(¢) — I,) = 1 — trace(D(¢p)) + det(D(9p)).
(see Bott and Tu [1, Theorem 11.25].)
3. Quasi-rotations.

DEFINITION. A transformation ¢ of T? is said to be a quasi-
rotation if D(¢) # I, and if ¢ has a “non-singular” eigenvalue 4 # 1.
That is, 3f € C(T?) invertible such that fog = Af.

Taking the supremum on both sides of fop = Af yields |A| = 1.
Thus f/|f| is a unitary eigenfunction with eigenvalue A. Hence we
will always assume, without loss of generality, that f is unitary. It
is easy to show that the affine quasi-rotations have eigenvalues which
are automatically non-singular.

Crossed products of C(T") by affine rotations of T”,i.e. D(p) =
I, , have been classified by Riedel [13, Corollary 3.7].

LEMMA 3.1. Let ¢ be a quasi-rotation with non-singular eigenvalue
A# 1 sothat fop =Af, where f € C(T?) is unitary. Then

(1) D(f)#100],
(ii) det(D(p)—I,) = 0.

Proof. Assume that D(f) = [0 0] so that one can write f(x,y) =
e2miF(x,¥)  for some continuous real-valued function F on T?. The
relation fo ¢ = Af then becomes

P2mi(F(p(x,9)=F(x,9) = .
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Thus F(p(x,y)) - F(x,y) =c, for all (x,y) € T?, where ¢ is a
real constant. By induction this becomes

F(p®W(x,y)) - F(x,y) = ke,
for every positive integer k. But since the left-hand side is bounded,
it follows that ¢ =0 and so A =1, a contradiction.
Upon taking degrees on both sides of fo ¢ = Af we obtain

D(f)D(p) = D(f), or D(f)(D(p) — I2) = 0, where D(f) # [0 0].
Therefore, det(D(¢) — ;) =0. a

DEFINITION. Let ¢ be a quasi-rotation of T? and 4 a non-singular
eigenvalue of ¢ . We call A a “primitive” eigenvalue if it has an asso-
ciated unitary eigenfunction f € C(T?) such that D(f) has relatively
prime entries.

LEMMA 3.2. Every quasi-rotation ¢ of T? has a primitive non-
singular eigenvalue (# 1), which is unique up to complex conjugation.

Proof. Suppose that fop =Af, A# 1,and f € C(T?) is a unitary
with D(f) = [m n] # [0 0] (by Lemma 3.1). Let d = gcd(m, n).
Choose a unitary g € C(T?) such that g = f, where g¢ is the d-
fold pointwise product of g. Thus g90¢9 = Ag?,or [(gop)Zl¢ =A.
By continuity, (g o ¢)g = Ao for some dth-root 4; of A. Hence
gop = Ayg and Ay # 1 is primitive since the entries of D(g) =
[(m/d) (n/d)] are relatively prime.

To prove the uniqueness part suppose that in addition to go¢ = Agg
(Ao primitive) we have ho ¢ = uh, where y is primitive and D(h)
has relatively prime entries. Taking degrees on both sides of these
two equations we get D(g)(D(¢)—1;) =0, and D(h)(D(¢)—15) =0.
Since D(p) — I, # 0, it follows that D(g) and D(h) are rationally
dependent, that is, there are non-zero integers a and b such that

aD(g) + bD(h) = [0 0].
But since D(g) and D(h) have relatively prime entries it follows
that D(g) = £D(h), and so D(gh*!) = [0 0]. From the above two
eigenvalue equations we have
(gh*") o 9 = (Aou™")(gh™").

Since gh*! has zero bidegree, Lemma 3.1(i) implies that Agu*! =1
Hence, u = 43", as desired. o

ExaMpLEs. 1. Let A =¢e2"? 0 < 0 < 1, and consider the Anzai

transformation ¢g4(x, y) = (Ax, xy). Since D(gg) # I, and uogpy =
Au where u(x,y)=x and A # 1, @y is a quasi-rotation. In fact, it is
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clear that ¢y is affine. If @ is irrational, then @4 is minimal on the 2-
torus (using the minimality criterion in [8, p. 84], or [15, Prop. 1.1.4]).
Hence the associated crossed product C*-algebra &/ (gg) is simple (cf.
Power [12]) and has a unique faithful tracial state since @4 is uniquely
ergodic, i.e. has a unique invariant Borel probability measure (cf. [5,
Prop. 1.12] or [15, Lemma 1.3.4]). The isomorphism classes of these
algebras (for 6 irrational) were studied by Packer [7], and also by Ji
[5] in his more general setting of Furstenberg transformations of -
tori. Here we shall classify these crossed products within the slightly
broader family of those associated with affine quasi-rotations.

2. Furstenberg [4, p. 597] proved that a minimal transformation ¢
of T? which is not homotopic to the identity, i.e. such that D(p) # I,,
has an irrational eigenvalue 4, so that any (non-zero) eigenfunction
will automatically be invertible. Hence ¢ is a quasi-rotation.

3. There are only two orientation reversing affine quasi-rotations
of T2 up to topological conjugation (by Lemma 2.4 above). The first
one is of the form (x, y) — (ay, bx), with degree matrix

(1 5)

having primitive eigenvalue A = ab (say A # 1) and eigenfunction
f(x,y) =xy. The second one has the form (x, y) — (Ax,y), with

degree matrix
1 0
0 -1/’

and has primitive eigenvalue A (say 4 # 1) and eigenfunction u(x, y)
=X.

4. In [16] certain techniques of Furstenberg have been used to con-
struct a (non-affine) quasi-rotation y which does not have topolog-
ically quasi-discrete spectrum. This settled a question of Ji [5, pp.
75-76] in the negative; namely, whether in general a transformation
of the form (x, y) — (e#*®x, f(x)y), where f: T — T is continuous
with degree +1, is topologically conjugate to the Anzai transforma-
tion ¢y or to its inverse. The latter has topologically quasi-discrete
spectrum and so cannot be topologically conjugate to ¥ . An interest-
ing question in this regard is whether the associated crossed product
C*-algebras are isomorphic. They have the same K-groups, same tra-
cial range, have unique tracial states, and are both simple.

4. The range of the trace. In this section we wish to compute the
range of the trace for the algebras ./ (¢) for any quasi-rotation ¢.
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This computation follows closely that of the irrational rotation alge-
bras studied by Rieffel [14] and Pimsner and Voiculescu [11].

Let us note that almost every C*-crossed product of a commutative
unital C*-algebra by Z has a tracial state. If X is a compact metric
space and ¢ is a transformation of X, then a theorem of Krylov and
Bogolioubov (cf. [18, p. 132]) ensures that there is a Borel probability
measure 4 on X which is g-invariant, that is, u(p~1(E)) = u(E)
for every Borel subset £ of X. The map

=/deﬂ

is a tracial state on C(X) which is a-invariant, where « is the au-
tomorphism of C(X) associated with ¢, i.e. a(f) = fop~!. This

A

means that 7 induces a tracial state £ on C(X) x4 Z.

THEOREM 4.1. Let ¢ be a quasi-rotation of T2 with primitive eigen-
value A = e**%. Then for any tracial state © on % (p) we have

7.Ko( (¢)) = Z + OZ.

Note that we did not assume that # is irrational, only that it is not
an integer.

Proof. Let f € C(T?) be a unitary such that fop = Af and D(f)
has relatively prime entries. This f induces a C*-homomorphism
p: C(T) — C(T?) given by p(g)=go f.

If we let B denote the automorphism on C(T) associated with
rotation by 4, namely, f(g)(x) = g(Ax), for g C(T) and x €T,
then p is an equivariant homomorphism between the C*-dynamical
systems (C(T), B, Z) and (C(T?), a,, Z). To see this we verify that
pof =ayop asfollows:

ap(p(8))(2) = p(g)9~'(2)) =go fop
= B(g)(f(2)) = p(B(g))(2),

for all z € T? and g € C(T).

Using the naturality of the Pimsner-Voiculescu sequence, this p
induces a morphism between their associated Pimsner-Voiculescu se-
quences yielding the commutative diagram

— Ko(C(T)) o Ko(C(M)x5Z) 5 K (C(T) —
1 p, . b, , 1o,
— K(C(T2) 5 Kol (p) > K(C(TY) —

“(2) = g(Af(2))
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where p: C(T) xg Z — & (p) is the induced homomorphism
from p.

If 6 is irrational one can construct the Rieffel projection e in
C(T) xp Z = o4 having trace 6 (cf. [14, pp. 418f]). If ¢ is rational
one can still construct the Rieffel projection in the same way and it can
be shown that 7/(e) = @, for any tracial state 7’ on & (cf. Elliott [3,
Lemma 2.3, pp. 170-171]). In both cases one has Jg[e] = [fo], which
is the generator of K;(C(T)), where fy(z) = z, z € T. Since the
diagram commutes, one has

dola(e)] = dyp.le] = p.dole] = p.Lfo} =[],

and since D(f) has relatively prime entries, [f] is generator of
ker((ay)« —ids) in K{(C(T)). Hence the projection pj(e) yields a
generator in Ky(«(¢)) which, along with the two generators as in
Corollary 1.2 (having traces 0 and 1), gives the range of the trace as

T.Ko(# (9)) =Z + 1(p(e))Z
=Z+17(e)Z
=7+ 0Z,

where 7/ = 70 p is a tracial state on 2. O

REMARK. One could use Pimsner’s computation of the tracial range
[10] to prove the above theorem using the concept of the determinant
associated with a trace. But for our purposes the above short proof
suffices.

Now let us look at some of the consequences of this theorem and
the results of the preceding section.

COROLLARY 4.2. Let ¢; be a quasi-rotation of T? with primitive
eigenvalue Aj = ™ j=1,2.If Z(p)) = A (92), then

(1) Z+6,Z=7Z+ 6,Z,

(2) detD(p;) = detD(p3),

(3) m(p1) =m(p2).
Consequently, D(¢,) ~ D(@3).

Proof. The preceding theorem yields (1), and Proposition 2.8 yields
(2) and (3). O

COROLLARY 4.3 (Packer [7, p. 49]; Ji [5, p. 39]). For each irrational
number 0 < 6 < 1 and each non-zero integer k, let Hy ; denote
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the crossed product C*-algebra of C(T?) by the Anzai transformation
o(x,y) = (e*"0x, xky). Then

Hy = Hy o |k|=|K'| and ¢ €{6,1-6}.

Proof. (Note that if k =0, then Hy ; = % ® C(T) and the con-
clusion easily holds.)

(=) In this case the tracial ranges being equal (by the preceding
corollary) implies that 8’ € {6, 1 — 6}, as the latter are irrational.
Since these algebras have isomorphic K;-groups, Corollary 2.3 shows
that |k| = |k'|. The converse easily follows. u|

Let us recall that the natural action of the group GL(2, Z) on the
irrational numbers is given by:

a b 0_a0+b
c d)” " cB+d

CoROLLARY 4.4. Let ¢; be an irrational quasi-rotation of T2 with
primitive eigenvalue ; = e j=1,2 (ie 0; is irrational). If
&/ (91) and & (9,) are strongly Morita equivalent, then

(1) 6, = A6, for some A GL(2, Z),

(2) detD(g,) = detD(g,),

(3) m(p1) =m(p2).

Consequently, D(¢,) ~ D(@3).

Proof. Conclusions (2) and (3) follow from Proposition 2.8 since
strongly Morita equivalent C*-algebras have isomorphic K-groups.
Theorem 4.1 allows one to apply Rieffel’s argument [14, Proposition
2.5] to derive (1). O

COROLLARY 4.5. No s is isomorphic to any C(T?) x, Z. For 6
irrational, no 4 is strongly Morita equivalent to any C(T?) x, Z.

Proof. Assume that & = C(T?) x, Z. Then Ky(C(T?) x, Z) =
Ko(4) = Z?, and the proof of Theorem 1.1(1) shows that
Ko(C(T?) x, Z) is generated by the classes [1] and [P], where P
is the Bott projection. These, however, have traces equal to 1, and
so looking at their tracial ranges yields Z = Z + 6Z. Thus 6 € Z
and hence &4 = C(T?) which is isomorphic to C(T?) x, Z, and
being therefore commutative implies that o = id. Thus, C(T?) =
C(T?) xiq Z = C(T?) ® C(T) = C(T3), a contradiction. A similar
argument shows the second assertion of the corollary. O
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The second assertion of this corollary is still true for 6 rational, but
it requires a little more work which we defer to a future paper [17].

Let us now extend Theorem 4.1 to matrix algebras over & (¢p).

If A is aunital C*-algebra, then any tracial state 7 on M, ® A has
the form (1/n)tr® 7’ for some tracial state 7 on A4, where tr is the
usual trace on matrices (for instance see [5, Lemma 3.3]). Further-
more, if all tracial states on 4 induce the same map on Ky(A4), then
all tracial states on M, ® A induce the same map on Ky(M,® A4) (cf.
[S5, Lemma 3.5]). In fact one has in this case

T.Ko(M, ® A) = %TQKO(A) ’

for all tracial states 7, 7/ on M, ®A4 and A, respectively. This yields
the following.

COROLLARY 4.6. Let ¢ be a quasi-rotation of T? with primitive
eigenvalue A = ™% Then

1
T.Ko(Mn ®  (9)) = ;(Z +6Z),
Sor any tracial state T on M, ® /(p).

COROLLARY 4.7. Let ¢; be a quasi-rotation of T? with primitive
eigenvalue A; = e, j=1,2. If My (91) = M, @ (92), then

(1) n=k,

2) Z+6,Z=2Z+6,Z,

(3) detD(g,) = detD(p3),

(4) m(p1) =m(p,).

Proof. It will suffice to prove (1) since the other conclusions will then
follow from Corollaries 4.2 and 4.6. For brevity denote B; = #/(9;),
Jj =1,2. The proof of (1) is easy if §; is irrational, but requires
a little more work otherwise. To do so it suffices (by symmetry) to
prove that if M, can be unitally embedded in M, ® B;, then kin.

Recall that Ky(B,) is generated by a projection e € By of trace 6,
and two other classes [1] and x = [P] —[1].

Let {eg.‘)},-, j=1,...n be the standard matrix units for M,, so that
Ko(M, ® B;) has independent generators [e{” ® e], [¢!” ® 1], and
eWox =[P -["el].

Suppose that g: M, — M, ® B; is a unital embedding and o.:
Ko(My) — Ko(M, ® By), where Ko(M;) = Z[e!¥)]. Then

o[ = alel? @ e] + blel? ® 11+ (el ® x),
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(k)

for some integers a, b, c. Now since I = ) ;e;;’ is the sum of

equivalent projections, we get from

Lol=o(l) =) ale)

i
that [I, ® 1] = k[o(e!¥)] € Ko(M, ® B;). Thus

n[eg’;) 1=, ®1]= ka-*[eilf)]

and therefore n = kb. a

REMARK. The argument in the above elementary proof can also be
used to show a similar result for the rotation C*-algebras 24 . Recall
that Rieffel [14] showed this for @ irrational, while in [3] and [19] it
was shown for rational § and n=k=1.

5. Main Theorem. Before embarking on the main result let us intro-
duce some notation and characterize the affine quasi-rotations. Later
a partial result is given for the rational affine quasi-rotation algebras.

If A€ GL(2, Z), say
(00
P q

then its action on T2 is defined by A(x,y) = (x™y", xPy4). This
actually gives the group isomorphism Aut(T?) = GL(2, Z). It is easy
to check that

Ay (4z2) = (4142)(2),

forall 4,, A €GL(2,Z) and z € T?.

Now if X =[m n] isa 1x2 integral matrix, it induces a continuous
function (actually a character) X: T? — T given by X(x, y) = x™y".
Clearly, X(Az) = (XA)(z) for any X, and 4 € GL(2,Z). Also,
since X is a homomorphism, X(zw) = X(z)X(w).

Let us suppose that 4 € GL(2,Z) is such that 4 # [, and
det(A — I;) = 0. Then the proof of Lemma 3.2 (uniqueness part)
shows that there exists an integral matrix X, = [m n] having rela-
tively prime entries such that

X4(4-1)=1[00],

and that X4 is unique up to sign. So X 4 = X4.
Now let us determine the affine quasi-rotations of T2.
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LEMMA 5.1. Let ¢(z) = aA(z) be an affine transformation of T?.
Then ¢ is a quasi-rotation if and only if the following conditions hold.
(1) A4#1,
(ii) det(4—1,) =0,
(iii) X4(a) #1.

Proof. Suppose these three conditions hold. Then for z € T2 one
has

Xq00(2) = Xy(ad(z)) = Xq(a)X4(A(2)) = X4(a) X 4(2),

so that X 09 = X (a)X4, where X (a) # 1 is a non-singular eigen-
value which is primitive as X4 has relatively prime entries. Since also
D(p) = A, ¢ is a quasi-rotation.

Conversely, suppose that ¢ is a quasi-rotation. By definition (i)
holds, and by Lemma 3.1 condition (ii) holds. It remains to check
(iii). By Lemma 3.2 ¢ has a primitive eigenvalue 4 # 1 so that
foo = Af, where f is unitary with D(f) having relatively prime
entries. Taking D on both sides gives D(f)(4 — I;) = 0. By the
uniqueness of X, we get that D(f) = £X,. Replacing f by f, if
necessary, we may assume that D(f) = X4 = [m n]. So let us then
write f as f(x,y) = x™y"e?F(x.¥) where F is real-valued. This
we may re-write as f(z) = X4(z)e**f(2)  where z € T?>. Thus the
equation fo @ = Af becomes

XA(¢(Z))e2m'F(¢(z)) — iXA(Z)esz(Z).

Now since X409 = X4 (a)X4, as we computed above, this equation

reduces to
2 i{F(9(2))-F(2)} = AX4(a),

which, by arguing as in the proof of Lemma 3.1, implies that A X 4(a) =
1. Hence X (a)=41#1. O

Let & (a, A) denote the crossed product C*-algebra associated with
the affine quasi-rotation corresponding to the pair (a, 4) satisfying
the conditions of the preceding lemma. The inverse of such a quasi-
rotation can easily be checked to correspond to the pair (4-!(a@), 471).

THEOREM 5.2 [15, Theorem 4.3.2]. Let (a;, A;) be a pair corre-
sponding to the irrational affine quasi-rotation ¢; of T, j =1,2.
Then the following are equivalent:

(1) Z(ay, A1) =F(az, 42),
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(2) @1 and ¢, are topologically conjugate via an affine transforma-
tion,
(3) The following conditions hold:
(1) Xyg,(a2) = Xy (a1)*',
(i) det(4;) = det(4,),
(iif) m(A4;,) = m(4).

Proof. By Lemma 5.1, 4; # I, and det(4; — I;) = 0, so that
X; = X, , with relatively prime entries, exists such that X;4; = X;
j=1,2.

In view of Corollary 4.2 condition (1) implies (3), as X;(a;) is
irrational. Clearly (2) implies (1). So we need to check that (3) implies
(2).

Assuming that (i), (ii), (iii) hold we shall construct an affine trans-
formation y(z) = kK(z) which intertwines ¢; and ¢,. By Corollary
2.6, A] ~ A, so choose K € GL(2, Z) such that KA4;K~! = 4,. The
equation XA, = X, becomes (X,K)A; = X,K . Since X, has rel-
atively prime entries then so does XK = +X;. Replacing K by
—K , if necessary, we may choose the £+ in X;K = +X; according to
whether X,(a,;) = X (a;)*!, respectively.

We need to choose k so that y o ¢, = ¢, 0 . The left-hand side
of this is

W o gi(z) = kK(a141(z)) = kK(a)K4,(z),
and the right side is

920 ¥(2) = a2 Ar(kK(2)) = ay Az (k) 42K (2).
These expressions are equal if and only if
(*) kK(ai) = ayA(k),

and it suffices to show that this equation has a solution k € T2.
To do this, first extend the equation X,K = +X; to

(=)x= (%)

for some 1 x 2 integral matrices R; and R, such that

(X
T’—(Rj)
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has determinant +1 (which is possible since X, has relatively prime
entries). Now apply 73 to both sides of (*) to get

(Rz)(k)< )’““*) (fﬁ)wz)(ﬁz)Az(k),
(R) 0 (%) @ = ()@ () w®.

where R, = RyA;. Note that R}, # R, ; for otherwise Ry(4,—1;) =0
which implies that 75(4, — ;) = 0 hence A, — I, = 0 as T; is
invertible. Thus the above equation becomes

(Xa(k), Ry(k))(X1(a1)=!, Ri(ar)) = (X2(a2), Ra(a2))(Xa(k), Ry(k)).

By condition (i) the first coordinates of both sides of this equation
are equal for all k. The second coordinates become

Ry(k)Ri(a1) = Ry(az)Ry(k),

or

or
(Ry — Ry)(k) = Ry(az)Ry(ay),

and this clearly has a solution k since R; — R/, # [0 0]. O

Therefore, the irrational affine quasi-rotation algebras % (a, A) are
completely determined up to isomorphism by the triple (X4(a),
det(4), m(A)), up to conjugacy of X,(a), where X4(a) is the primi-
tive eigenvalue coming from the tracial range, det(A4) = +1 is known
from the Kjy-group and m(A) is known from the K;-group.

COROLLARY 5.3. For irrational affine quasi-rotations of T2, we have:
M, ®%(ay, 4) =M @B (ay, A2) ifand only if k =n, X4 (a)) =
XAz(az):H , det(A4;) = det(4,), and m(4;) = m(4,).

As a final remark let us note that an argument due to Yin [19]
for the rational rotation algebras can be used to show Theorem 5.2
(and hence Corollary 5.3) for the rational case for the orientation
reversing quasi-rotations. Condition (3) in Theorem 5.2 implies (2)
in exactly the same way as in the proof. It only remains to check (1) =
(3). Let X4 (a;) = e*™%, j=1,2. Clearly, (i) and (iii) follow as
before, so we need to check (1). An isomorphism o¢:%(a;, 4;) —
%#(ay, Ay) induces one on their Kp-groups which on their generators



150 H. ROUHANI

(cf. Corollary 1.2(ii)) is of the form

o 1] =[1],
o.([P1]—[1]) = [P,] —[1], Dbeing elements of order two,
o«leg ] = r[11+ s([P2] — [1]) + t[eg,],

for some integers r, s, t. Taking traces of the last of these equations
gives 0, = r + t6,. Since the matrix of o, is

1 0 r
01 s},
0 0 ¢

and is invertible over Z one has that ¢ = £1; hence 6 = r + 6,
which yields (1).

This argument however fails for the orientation preserving case
since the above gives us conditions on certain integers that do not
necessarily imply that 8; = +£6, mod Z. This we do not know how
to prove since the role of the Bott projection here is not so clear.
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