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Those flat compact complete space-forms with metric of signature
(2,2) are classified up to finite covers. The simply transitive subgroups
of R4 x SO( 2, 2) are classified up to conjugation.

1. Introduction.

(1.1) If Γ c R4 x SO(2, 2) and Γ acts on BP+« freely and prop-
erly discontinuously with compact quotient, then X = Rp+q /Γ is a
flat compact complete space-form with metric of signature (p, q).
Recently D. Fried [3] has classified those flat compact complete space-
forms with metric of signature (1,3) upto finite covers. Ravi S. Kul-
karni pointed out that Fried's method can be applied to the case
(p 5 q) = (2, 2). The basic idea of Fried's method is in the following
theorem:

(1.2) THEOREM. Suppose X is aflat compact complete space-form
with fundamental group Γ c R4 x SO(2, 2). Then there is a uniquely
determined subgroup H of i?4 x SO(2, 2) that acts simply transitively
on R4 and H n Γ = π has finite index in Γ.

(1.3) In §2 we classify those subgroups of R4 x SO(2, 2) that act on
R4 simply transitively, up to the conjugacy of R4 x 0(2, 2). Every
such subgroup, as a Lie group, is isomorphic to one of the following:

i ? \ ΛxNi l 3 , Nil4, i?

Rx{R2x S0(2)}.

All of them, except the last one, correspond to Γ 's. Their uniform
lattices are known, cf. [3] and [7].

(1.4) To prove Theorem (1.2), we first prove in §3 that Γ is virtually
solvable. This result confirms a conjecture by Milnor in a special case.
In [6], it is conjectured that the fundamental group of a complete
affinely flat manifold is virtually polycyclic. Our result, combined with
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Fried's result, shows that this conjecture is true for compact pseudo-
Riemannian 4-manifolds.

(1.5) In §4 we complete the proof of Theorem 1.2, using the theory
of crystallographic hull developed by Fried and Goldman, cf. [4]. In
§5, we give our classification. By comparing our list with Fried's, we
obtain an interesting fact: as differential manifolds, they are the same
coset spaces of the form H/Γ, where H is a Lie group isomorphic to
i? 4 , RxNil3, Nil4 or Rx {R2 x (*' ̂ , ) ί e R} and Γ is a uniform
lattice of H. These Lie groups have simply transitive representations
as affine motions and when the signature is (2,2) (resp. (3,1)), the
images of the representations are R4 x SO(2, 2) (resp. i?4xSO(3, 1)).

(1.6) Notations and some properties of SO(2, 2) and so(2, 2).
Throughout this paper we will call {eι}, 1 < / < 4, a standard basis
s.t. the metric Q, w.r.t. this basis, has the form

Q(V, V) = VιV3+V2V4,

where v = ]Γ)4

=1 v/^ . The full group of orientation-preserving isome-
tries is R4 x SO(2, 2) and

where / = ( Q ?) The infinitesimal isometries are R4 x so(2, 2) and

(1.6.1) 80(2,2)= JΛΓ 6

0 d \
fl21 «22 ~d 0

0 c -an -a2\
-c 0 -an -an)

(1.6.2) so(2, 2) = Li φ L2, where L, ~ sl2(i?), / = 1, 2 and

Γ / α b λ

—fl —c

-b a

a, b,ceR

f / α' 0 0 J' >
0 a' -d' 0
0 d -a! 0

Λ - c ' 0 0 -d

;a',d',c'eR

L{, Li are permuted by an element of O(2, 2).



FLAT COMPLETE SPACE-FORMS 183

(1.6.3)
conjugate

(1)

(2)

(3)

It is easy to show that
under 0(2 , 2) to one

i

<

ζ

fa
b

V

/ 0 a
-a 0
0 b

\-b 0

f a b
-b a

V

-a

0
-b
0

-a

-a
-b

any <Cartan subalgebra of so(2, 2) is
of the following:

\

-b)

b\
0
a

oy

b

-a.

a, b, eR

j

\

;a,b,eR

J

\

;a,b,eR

J

> 9

5

\

J

An immediate corollary is

(1.6.4) If X is in a Cartan subalgebra of so(2, 2) and detX = 0,
then X must conjugate under 0(2, 2) to

ί (a \
0

-a(4)

or

(5)

Γ / 0 a 0 a\\
-a 0 -α 0
0 α 0 α

- α 0 -a 0 / J

(1.7) We identify Aff(n), resp. afF(n), with

resp.

w.r.t. a given basis. Let P/ be the natural homomorphism taking an
affine transformation (or an infinitesimal affine transformation) to its
linear part. Let L{G) be the Lie algebra of a Lie group G and A{G)
be the algebraic hull of G. We will need the following well-known
lemma.
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(1.7.1) LEMMA. IfGQAff(n) s.t. G acts freely on Rn, then every
Ae Pι(G) has 1 as an eigenvalue.

(1.7.2) LEMMA (Kostant and Sullivan, cf. [5]). // G is as in (1.7.1),
then every A e Pι(A(G)) has 1 as an eigenvalue.

(1.7.3) COROLLARY. If G is an in (1.7.1), then every X e
Pι{L{A{G)) or Xe L{A{Pι{G)) has 0 as an eigenvalue.

2. Simply transitive subgroups. We will classify subgroups of R4 x
SO(2, 2) that act simply transitively on R4. Our classification is up
to the conjugation under R4 xi 0(2 , 2). It is well known that a simply
transitive group of affine motions must be solvable, connected, simply
connected and of dimension 4, cf. [1]. We will start from a special case
when the groups are unipotent. The following lemma from Auslander
and Scheuneman plays the key role in this section.

(2.1) LEMMA. Let U be a nilpotent Lie group which has a faithful
representation p: U —• Aff(n), let p* be the induced monomorphism
of Lie algebras

and let Pj be as in (1.7), let Pt be the projection from an element in
aff(n) to its translation part. Then ρ{U) acts on Rn simply transitively
if and only if

(1) Pιop^{L(U)) is nilpotent, and
(2) Pt o p*(L(U)) is a linear isomorphism of L(U) onto Rn .

For a proof, cf. [1]. So unipotent simply transitive subgroups are
exactly the following U 's s.t.

(2.2)

where X{v) is a linear function of v and Pι(L{U)) = {^(i;) υ € Rn}
is nilpotent.

(2.3) LEMMA. There is a vector v0 e R4 such that

(i) P/(L(t/))(t;o) = O,
(ii)
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Proof. If V = {v G R4 Pι(L(U))v = 0}, then Kx is invariant. By
Engel's Theorem on V1, Vs- meets V. u

Let {̂ , } be our standard basis. Then we choose v$ = e\ since
0(2, 2) is transitive on {v Q(v ,v) = 0}/v ~ tυ, where teR-{0}.

(2.4) COROLLARY. W.r.t. the above standard basis, X e Pι(L(U))
has the form

/O a 0 y
0 0 -b 0
0 0 0 0

.0 0 -a OJ

where a = a(v) and b = b(v) are linear functions of v.

To find a(υ) and b{v), we compute the commutator of L(U).

\(X{v) υ\ (X{v>) v'\]_(X(v") υ"\
[Z :>) [\ o o y ' V o o y j ~ v o o / '
where v" = X{υ)υ' - X(v')v, X(v") = X(v)X(v') - X(v')X(v) = 0.
So

a(v") = b(υ") Ξ 0.

Write

(2.6)

Then we have

(2.7)

4

1=1

1=1

where v'( 's are linear functions of α, , 6/ and i /t j , 1 < /, j < 4,
and all coefficients of vtv'j must be zero. We obtain

(2.8) LEMMA.

(i)
(ii)

(iϋ)
(iv)

4 =

(v)
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(2.9)

(i)
(ϋ)

(iii)

COROLLARY.

(2.10) Now we can get some necessary conditions for the nontrans-
lation unipotent simply transitive subgroups. If b2 + a4 Φ 0, then
b4 = a2 = 0. By (2.8) (ii) and (v), b\ = a\ = 0 and we get a contra-
diction. So b2 + a4 = 0, and we have three subcases:

(2.10.1) b2 = a4 = b4 = a2 = 0, but

(2.10.2)
a2φ0, i.e.

Φ (0, 0), i.e.,

I b(v) = b3v3.

+ α4 = 0 but b2 φ 0, α4 7̂  0. Then by (2.8) 64 / 0,

= ^2^2 + (23^3 +

= b2v2

(2.10.3) b2 = = 0, (a2,b4)φ(0,0). By (2.8),

a(υ) =

b(υ) =

or

b4v4.

(2.11) THEOREM, t/p to conjugacy under R4 x 0(2 , 2), //*e «o«-
translation unipotent simply transitive groups U of R4 xi SO(2, 2),
Λαve the following Lie algebras:

where

X(υ) =

(0
0
0

a(v)
0
0
0

0
-b(v)

0
-a(v)

b(ι
0
0
0
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a(v) and b(υ) are listed in the following table:

187

Type of L(U)

1-1

1-2

1-3

II-1

Π-2

Π-3

a(v)

V3

V3

V3

v2 + v4 + ίυ3, (/ > 0)

-υ2 + v4 + tv3, (t > 0)

b(v)

V3

0

-v2 - v4

-v2 + v4

V3

isomorphism type as an
abstract Lie algebra

N3@R

N3®R

*4

^ 4

^ 4

The equivalence classes are uniquely determined by the type of L(U)
and the parameter t (in Type 11).

Proof. The discussion of the conjugacy under R4 x 0(2, 2) is long
and tedious. We will only write down a brief one for subcase (2.10.2).
We give the following lemma without proof.

(2.11.1) LEMMA. If a(υ) φ 0, b(υ) ψ 0, a'{v') φ 0, b'(y') ψ 0,
and if there is a matrix A = (α, 7 ) € 0(2, 2) such that

l - l

(0 a(υ)
0 0
0 0

yo o

0 b(υ)\
-b{υ) 0

0 0
-a(υ) 0 )

A =

{0
0
0
0

0
0
0

0
'{
0

0
0
0

then either

(1)

a'{v ) =
an

 4

a
n

-b2

b4 ,

an

} υ,J 3

aua22 a\λa22 ana22
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\ or

(2)

a {v ) = \ an a
u

011

b'ίv') = 2*-v',
an

-03 + a4\v'3

a4 TV4
011041

where 011̂ 42 φ 0.

Write a'{v') = γ$=2 a\v\ and b'{v') = £ 4

= 2 b\v\, then from (2.11.1)

0462

at

since 04 = —hi # 0. So we can choose 011 such that a'2b\ = a\b2 =
— 1, i.e. 04/011 = ± 1 . Next we use (1) (resp. (2)) if 04/011 = 1 (resp.
- 1 ) , and choose 022 (resp. 042) to reduce

4 *Λ
b'2 Vj

to

or
(_J J) if 0204 <0.

Now a'3, b3 have the form

0 3 =

K =

a11

1 or

0 3 = Z2 + ^

\ = ±z2

1

^11^22

where z\ (resp. Z2) depends on #23 > #43 (resp. ^ 3 , α43) and z\,
i = 1,2 can assume any real number. We can choose z, so that
bf

3 = 0 and we can choose the sign of #22 (resp. #42) so that af

3 > 0.
So we can find an A e 0 (2 , 2) such that

0
0\ (
l) \

X v
0 O

A 0
0 1
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is of Type II-1 or Type Π-2. We can replace (^ °) by ( ^ ) and
show that the translation part doesn't contribute to the classification.

We omit the rest of the proof. D

(2.12) To handle the general case, namely when the simply tran-
sitive group of affine motion is non-unipotent solvable, we need the
following lemma from Auslander, cf. [1].

(2.12.1) LEMMA. Let H bean n-dimensional, connected, simply
connected, solvable Lie group acting simply transitively as affine mo-
tions on Rn . Let A(H) be the algebraic hull of H and let U be the
unipotent radical of A(H). Then U operates simply transitively as
affine motions on Rn.

Now all such nontranslation U 's are known from (2.11), and we'll
study them first.

(2.12.2) LEMMA. Let H, U be as in (2.12.1) and assume that U
is not the translation group T. Then H = U.

Proof. W.r.t. the standard basis {eΐ}, 1 < i < 4, we know

( /0 a(v) 0 b(v)\

L{Pι{U)) = 0
0

o

0
0
0

-b(υ)
0

-a(v)

0
0
0 )

veR4

Notice that A(H) is contained in the normalizer of £/, we have

[L(A(H)), L(U)] C L(U), [L{Pt{A(H))), L(P/(C/))] C

Since for

fan an 0 rf \ /0 α(v) 0

X =Y =
a2\ β 2 2 —β? 0

0 c -flu -fl2 ]

V —C 0 —^12 ~~&22 J

we have

0
0

o

0
0
0

-b(υ)
0

-fl(v)

0
0
0

'-a(υ)a2\ + b(v)c a(υ)(an - a22) 0 b{v)(an+a22)
0 a(v)a2\ + b(υ)c -b(υ)(an + a22) 0
0 0 a{v)a2\ - b(υ)c 0
0 0 -a{v)(an - a22) -a{v)a2χ - b(v)c>
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So

i.e.

-a(v)a2ι+b(υ)c

a(v)a2ι+b(v)c =

(a(v)a2ϊ = 0

\b(υ)c = 0

for any a2\, c, fl(v) and fe(ι ), v e R4.
By (2.11), we can always find a f so that a(v) Φ 0, so we must

have #2i = 0 Similarly c = 0, unless ft(ι ) = 0. So we have two
cases.

Case 1. Type of L(U) is 1-1,1-2 or II.
L(Pι(A(H))) is contained in

flu, 012, a22, d eR
0
0

0

an
a22

0

0

0
-d

-an

-an

d ^
0
0

- < * 2 2 V

Case 2. Type of L(U) is 1-3.
L(Pj(A(H))) is contained in

fan
0
0

an
a22

c

0

0
0

-an

-an

0
0

-a22)

, 022? c eR

It's easy to show that matrices in Case 1 and Case 2 are conjugate
under O(2, 2). We will only write down a proof for Case 1; a proof
for Case 2 can be obtained similarly.

Againlet Y e L{Pι{A{H))). Then by (1.7.3) d e t 7 = 0, so ana22 =
0, i.e. 0ii = 0 or a22 = 0.

If a22 = 0, then an element in L(A(H)) has the form

o o

fau

0
0
0

^ 0

an
0
0
0
0

0
-d

-an

-aι2

0

d(v)
0
0
0
0

vΛ
v2

υ3

v4

o)

, for some v —

ί V\ \

v2

V3

\v4j
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By subtracting an element (χ^ Q) e L(U), we have

Ύ-X{v) 0'
0 0

(Y-X(v) 0\

V o o)
ίll

0
0
0
0

an-a(υ)
0
0
0
0

0
-d + b(υ)

-an

-ai2 + a(v)
0

d-b(v)
0
0
0
0

o^
0
0
0

eL(A(H)).

For any (*("') υ

Q ) e L(U), we have

ί ')]
0 ana(v') 0 aub(v') anυ[ + (an - a(v))v'2 + (d - b(υ))v'4
0 0 -aub(υ') 0 -(<* - b(v))v'3
0
0
0

0
0
0

0
-ana{v)

0

0
0
0

-aιΛ

- ( α 1 2 - a{υ))v'3
0

€ L(U).

But we know that
Ό aua(v') 0 aub(v') anv[\
0 0 -anb(v') 0 α n υ 2

βll«30
0
0

0
-ana(v')

0

0
0
0 o

eL(U).0
0

Vθ
So we have

(1) anυ[ = anv[ + {an - a(v))υ'2 + (d- b{v))v'4
(2)
(3)
(4) auv'4 = -(al2-a(υ))υ'3.

From (3) we get an = 0. Then (2), resp. (4), implies d = b(v), resp.
,i.e. Γ = X(υ). So (J«)€L(C/).

If an = 0, let (Jg) € L(A(H)). By subtracting an element

(
r(v)

(0
0
0
0

^o

0Λ

α -

\
)
\2-a(v)
an
0
0
0

0
-(d -b(υ))

0
-(α1 2-α(w))

0

d-b(v)
0
0

- α 2 2

0

0
0
0
0)

L{A{H)).
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Then for any (*£') V

Q ) e L{U), we have

Y-X(v)
0

/O -a22a{υf) 0 a22b{v') (an - a(v))v'2 + (d - b{υ))v'4\
0 0 -a22b(vf) 0 α2 2^2 - (^ - b(υ))vf

3

0\ (X{v') vf

o ; ' v o o

0
0

vo

0
0
0

0 0 0
a22a(v') 0 -(an - a{v))v'3 - #22^4

0 0 0 J

eL(U).

Let α(«) =
bx = 0) and let

i> b(v) = Σ M i , 2 < / < 4 as in (2.6) {a\ =

v" = 2 - {d - b(υ))υ'3
0

- a(υ))υ'3 - (I22V4 J

Then

r -α 2 2 α(^) = ^K) = 2 - (d - b(v))v'3)

Φ))V3 - CI22V4) ,

2 - (d - b(υ))υ'3)

- a(υ))v'3 - a22v4),

i.e.

i.e.

2 ~{d - b(υ))v'3)

- a(υ))υ'3 -

3 + b4v'4) = b2(a22V2 - (d - b{v))υ'3)

+b4(-(an - a(v))v'3 - a22v4),

- a4(aι2 - a(v)) -a2(d- b(υ)))υ'3 = 0

+ b4(an - a(v)) + b2(d - b{υ)))υ'3 = 0.

Letting v[ 's vary, we have
(1) α22«2 = 0;
(2) 022^4 = 0 ;

(3) α3β22 - ^4(012 - a{v)) - a2(d - b(v)) = 0
(4) b3a22 + b4{aι2 - a(υ)) + b2(d - b(v)) = 0.
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If a22 Φ 0, we must have a2 = b4 = 0 by (1) and (2). According to
(2.10), this implies b2 = α4 = b4 = a2 = 0. Then (3) and (4) lead to

( 3 2 2 ,

\b3a22 = 0,
i.e. a$ = bι = 0. So U = T, and we have a contradiction. So
α2 2 = 0. We always have an = a22 = 0, i.e. Λ(//) is unipotent;
so H is unipotent. But any unipotent connected Lie group is Zariski
closed, so H = Λ(H). U, as the unipotent radical of H must be H
itself. D

(2.12.3) Now consider the case when the unipotent radical A(H) is
precisely the group T of translations of R4. Suppose H ψT, i.e. H
is not unipotent.

(2.12.3.1) LEMMA. P,(H) is abelian.

Proof. Pι(H) a HI Ker(P/|#)) = H/(HnT) C A{H)/T, but A{H)/T
is abelian (cf. [2], A(H)/U(H) is abelian, since A(H) is solvable and
algebraic). D

(2.12.3.2) LEMMA. dimP/(i/) = 1 P^H) is diagnolizable in C.

Proof. Pι(H) is a connected abelian subgroup of SOo(2, 2), so
dimPι(H) < 2. By (1.7.3) d e t * = 0 for every X e L{Pt{H)), i.e. 0
is an eigenvalue of X. Since X e so(2, 2), so

fan an 0 d
y _ a2\ a22 —a u

0 c -an -a2i

\-c 0 -ai2 -a22

and

det(X - λl) =λ4 + (2dc - 2aί2a2ι - au - a

= λ4 + {-4ana2ι-(au-an)
2}λ2,

since 0 is an eigenvalue. So the eigenvalues of X are {0,0,0,0}
or {0,0, A, -λ}, λ φ 0, λ e R or \f=ΪR. If dimP/(if) = 2,
then by (1.6.2) so(2, 2) = Lx ®L2,Lι ~ sl2(R). So L(Pι(H)) =

+ ΛX2 where X, € L, , i = 1,2. But by (1.6.2)
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det(X! - λl) = λ4 + 2(a2 + bc)λ2 + (a2 + be)2, and

det(Z2 - λl) = λ4 + 2(b'c' - a'2)λ2 + (b'c' - a'2)2.

So zero is an eigenvalue of Xt•, / = 1, 2, if and only if all the eigen-
values of Xi are zero. This means Pj(H) is unipotent and leads to
a contradiction. So dimP^H) = 1, L(Pt(H)) = RX and X has
eigenvalues {0, 0, λ, —λ}, λφO, λ € R or v^Ti?. Since X is an
infinitesimal isometry, it is diagnolizable. •

(2.12.3.3) COROLLARY. L(Pι(H)) is contained in a Cartan subal-
gebra of so(2, 2) and is conjugate under 0 (2 , 2) to

(1)

(a
0

—a

0\

(2)

Proof. By (1.6.4).

0 a 0 a'
-α 0 -a 0
0 α 0 a

{-a 0 - α Oy

D

Since H is simply transitive, the map Pt: L(H) —> R4 is a linear
isomorphism, so in (2.12.3.3) we have a = ]£?=i α, Vj , where

is the corresponding translation part. Since T is the unipotent radical
of A(H),we have [L{H),L{H)} c L(Γ) = i? 4 . By computing the
commutator and using the fact that H is simply transitive, we must
have a{υ) = a^ + a^v^, (α 2, a^) ^ ( 0 , 0 ) in Case (1) and a(v) =
aι(vι - υy) + a2(v2 - v4), (a{, a2) φ (0, 0) in Case (2). Finally, by
considering the conjugation under R4 x O(2, 2), we get

(2.12.4) THEOREM. // H c R4 x SO(2, 2) acts simply transitively
on R4 and H is not unipotent, then H is conjugate under i ? 4 x0(2, 2)
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to one of the following:
(i) Type ΠI-1:

a(v)

\ 0

Oλ
0

-a(v)
V

V J

where a{v) = tv2 + υ4, t > 0 and L{H) ^ R ® { R 2 x R { ι

Q ^ ) } .
(ii) Type ffl-2:

0
a{v)
0

0

0

0
φ)
0

φ)

φ)\
0

φ)
o )

ί \
V

\ )

where a(v) = t(yx -v3), t > 0 α/κ/ L(H) = R®{R2 ^ ( f , J)}. The
type and the parameter t determine the equivalence classes uniquely.

(2.13) Combining (2.11) with (2.12.4) and denoting H = Γ4 as
Type 0, we complete the classification of simply transitive subgroups
of R4 x SO(2, 2). We summarize our result in the following table.
We denote

A(a,b,v) =

B(a,v) =

C(a,v) =

Ό a(υ) 0 b(v)\
0 0 -b(v) 0
0 0 0 0
0 0 -a(υ) 0 J

0

v

0)

r / ίΦ)
0

I o
o

-Φ)
oy

o oy
a(v) 0 α(ϋ)

0 -a{v) 0
0 α(w) 0 a(v)

\.-a(v) 0 -α(v) 0 J
0

v

OJ

V E R 4
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Table of equivalence classes of simply transitive subgroups of R4 x
SO(2, 2) (given in the form of subalgebras of aff(n) w.r.t. a standard
basis).

type of
L(H)

0

1-1

1-2

1-3

II-1

II-2

Π-3

ΠI-1

ΠI-2

affine form of L(H)

{ ( 8 8 ) ; * € * 4 } ;
At U \ ί a(V) = V*>

A(a,b9υ),\
{ b(v) = vι

A(a,b,υ),\
I b(v) = -v3Λ( u N ( a ( v ) = υ3,

A{a>b'V)'\b(v} = 0
At h A / a(v) = v2 + v4 + tv3,

A{a>b>V)Λblv) = -v2-v4, t > 0 ,

A{a,b,v),\a}V) = -V2 + V* + tVi>
' \ b(v) = -v2+υ4, t>0

.. , , ( a(v) = v2,

B{a, v), a(υ) = tv2 + υ4,teR

C(a,v),a(v) = t(Vi - υ 3 ) , t>0

isomorphism type
as abstract
Lie algebra

R4

R®N)

R®N3

R®N3

N4

N4

N4

i?Θ{JR
2xi?(i_°1)}

Aθ{i?2χi?(.°,J)}

The type of L(H) and the parameter t determine the equivalence
classes uniquely.

3. Γ is virtually solvable. A group with a solvable subgroup of finite
index is called virtually solvable.

(3.1) THEOREM. // Γ c R4 xi SO(2, 2) and Γ acts freely and prop-
erly discontinuously on R4 with compact quotient, then Γ is virtually
solvable.

Proof. Let π = P/(Γ) and A{π) be the algebraic hull of Γ. The
identity component A$ is of finite index in A(π). We will show AQ
is solvable. The following lemma is due to D. Fried.

(3.2) LEMMA. If AQ fixes a vector υ e R4 s.t. Q(υ, v) Φ 0, then
Ao is solvable.

For a proof, cf. [3].
Assume that AQ is not solvable. As in (1.7.2), for every g e A(π),

det(g - I) = 0. This shows det = 0 on L(A0) and d i m ^ 0 <
dimSO(2, 2). So AQ contains a semisimpleconnected subgroup S
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such that dim S = 3 and L(S) =s sl2(i?) By (1.6.2) det φ 0 on /,
so L(S) Φ Li, i = 1, 2. So L{S) must be a maximal subalgebra of
so(2, 2), so Λo = S. Let Pz: L(5) -*• L,., i = 1, 2 be the projection
map, then P, (L(5)) = L,, / = 1, 2.

(3.3) Claim. There is a nonzero vector v e i?4 such that

(i) β(v ,v )?έθ;
(ii) Ao(v)-υ.

To prove the claim, let 0 Φ X € I-(Λo) such that i?JSΓ is a split Car-
tan subalgebra of L(A0). Then h = P 1 ( i?X)©P 2 (^) is a split Cartan
subalgebra of so(2, 2). By (1.6.3) h is conjugate under 0 ( 2 , 2) to
{diag (α, b, -a, —b)\ a, b € R}. Since detX = 0 we can rescale
and permute coordinates s o l = diag ( 1 , 0 , - 1 , 0 ) . Let {X ,Y, Z}
be the basis of L(A) such that [X, Y] = 2Y, [X, Z] = - 2 Z , [Y, Z]
= X and X = diag (l , 0 , - 1 , 0 ) . Then adX has three real eigen-
values on so(2, 2): {2, 0, - 2 } . Let Ex be the corresponding eigen-
spaces, then

[E2,E_2] =

Ό
0
0

10
/ 0

d
0

c 0
0 -e
0 0
0 -c

0 0
0 0
/ 0

e\
0
0

c,e eR

\-f 0 0
(cd-ef

0
0

-d
0 y

d,f,€R

-cd - ef
-cd + ef

K \ 0

and

0 \

cd + efj

c,d,e,feR

So there are c, e, d, f ER such that

Y =

(0
0
0

ô

c
0
0
0

0
—e
0

-c

e\
0
0

o)
, z =

/ o
d
0

{-f

0
0
/
0

0
0
0
0

0 ϊ
0

-d
0 )
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and [X, Z] = X implies

( cd-ef=l,

i.e. cd = -ef = \, cdef ^0. Let υ = \e2 - \e^. It's easy to check

that Q(v9v) = ±?0, Ao(υ) = υ .
Combining (3.3) with Lemma (3.2), we have a contradiction, so AQ

must be solvable. D

4 Proof of Theorem (1.2). The principal tool is the following theo-
rem from [4].

(4.1) THEOREM (Fried and Goldman). Let Γ c AS(n) be virtually
polycyclic and suppose that Γ acts properly dίscontinuously on Rn.
Then there exists at least one subgroup H c Aff(n) containing Γ such
that:

(a) H has finitely many components and each component meets Γ;
(b) HjT is compact,
(c) H and Γ have the same algebraic hull in AS{ή)
(d) // Γ has a subgroup T\ of finite index such that every element

of Pι(T\) has all real eigenvalues, then H is uniquely determined by
the above conditions',

(e) the identity component HQ of H acts simply transitively on Rn

and HQΓ\T is a discrete cocompact subgroup of HQ and is of finite
index in Γ.

Such a subgroup H in (4.1) is called a crystallographic hull for Γ.
Since a discrete solvable subgroup of Lie with finitely many compo-
nents is polycyclic and we proved in §3 that Γ in (1.2) is virtually
solvable, by (4.1) we need only to check for the uniqueness of H.
By (4.1)-(d), we need only to show that P/(Γ) has a subgroup of fi-
nite index with real eigenvalues only. Since HQ must occur in our
table of simply transitive motions and all these simply transitive mo-
tions, except Type IΠ-2, have linear parts with only real eigenvalues,
we need only to check Type IΠ-2. By Bieberbach's theorem (cf. [8]),
any discrete subgroup of Type III-2 meets T in a subgroup of finite
index. D
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5. Classification of Γ.

(5.1) LEMMA. Let T be a uniform lattice in a simply transitive
group H CR4 xi SO(2, 2). Then H is the identity component of the
crystallographic hull of Γ if and only if H is not of Type III-2.

Proof. If H is of Type IΠ-2, then Γ has a subgroup of finite index,
say Γi , such that Γj c Γ. So Γ is virtually abelian. By [4], the
crystallographic hull of a virtually abelian affine polycyclic group is
itself virtually abelian, so H doesn't arise from any Γ.

In the unipotent cases, the algebraic hull of H is H itself. So
A(Γ)9 the algebraic hull of Γ, is contained in H. Since HQ, the
identity component of the crystallographic hull H' of Γ, acts simply
transitively on R4, the dimension of HQ must be four, and then by
(4.1)-(C) we have

H^CH'C A(H') = A(T) C H.

So # = flg;then H1 = H.
The only remaining case is Type III-1. Since Γ is not unipotent,

HQ , the identity component of the crystallographic hull H' of Γ, must
be nonunipotent solvable, i.e. HQ is of Type IΠ-1 and Γ C H n HQ .
Then it's easy to show that H'Q-H. U

(5.2) COROLLARY. Up to finite covers, every flat compact complete
space-form with metric of signature (2,2) is of the form H/Γ, where
H is a simply transitive subgroup of R4 x SO(2, 2) of Type 0, Type I,
Type II or Type IΠ-1 and Γ is a uniform lattice of H.

(5.3) Uniform lattices. The uniform lattices depend only on the
structure of AT as a Lie group and do not depend on its embedding in
R4 xSO(2, 2). Since Type0 ~ R4, T y p e I ~ R x N i l 3 , TypeII - Nil4

and Type III-1 ~ R x {R2 xi (^ o,) / e R}, as Lie groups, they are
exactly the same group as that listed in [8], and D. Fried gave a list of
their uniform lattices there. C. T. C. Wall also studied them, cf. [7].
Here we only write them down to complete our classification.

(5.3.1) The uniform lattices of H are semidirect products
where A e SL(Z) has a characteristic polynomial
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where b > 2 is an integer, and A and b satisfy:

(i) TypeO: A = I,b = 2;

(ii) Type I: (A - I)2 = 0, A φ I9b = 2;

(iii) Type II: (A - I)2 φ 0, (Λ - 1 ) 3 = 0, 6 = 2

(iv) Type III-1: Z>>3.

(Cf. [3] and [7] for a proof.)
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