Vol. 148, No. 2, 1991

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Operators preserving disjointness on rearrangement invariant spaces

Yuri A. Abramovich

Vol. 148 (1991), No. 2, 201–206
Abstract

Let X and Y be two rearrangement invariant spaces on a measure space ,Σ) with a finite, nonatomic measure μ. We show that if there exists a non-zero order continuous disjointness preserving operator T : X Y , then X Y . This result has many consequences. For example, if T : Lp,Σ) Lq,Σ) (0 < p < q ≤∞) preserves disjointness, then T 0.

Mathematical Subject Classification 2000
Primary: 47B60
Secondary: 46E30, 47B38
Milestones
Received: 18 July 1988
Revised: 19 January 1990
Published: 1 April 1991
Authors
Yuri A. Abramovich