ON THE ROMANOV KERNEL AND KURANISHI'S L^2-ESTIMATE FOR $\bar{\partial}_b$ OVER A BALL IN THE STRONGLY PSEUDO CONVEX BOUNDARY

Takao Akahori and Harunori Ameku
ON THE ROMANOV KERNEL
AND KURANISHI'S L^2-ESTIMATE
FOR $\bar{\partial}_b$ OVER A BALL
IN THE STRONGLY PSEUDO CONVEX BOUNDARY

TAKAO AKAHORI AND HARUNORI AMEKU

As is proved by Kerzman-Stein, over a compact strongly pseudo
convex boundary in C^n, Szegö projection S is the operator defined
by Henkin-Ramirez modulo compact operators. While, over a special
ball, U_ε, in the strongly pseudo convex boundary, in order to obtain
a local embedding theorem of CR-structures, Kuranishi constructed
the Neumann type operator N_b for $\bar{\partial}_b$ and so we have a local Szegö
operator by

$$S_{U_\varepsilon} = \text{id} - \overline{\partial}_b^* N_b \overline{\partial}_b \quad \text{on } U_\varepsilon,$$

where $\overline{\partial}_b^*$ means the adjoint operator of $\overline{\partial}_b$. There might be a rela-
tion between S_{U_ε} and the Romanov kernel like the case of the Szegö
operator and the Henkin-Ramirez kernel. We study this problem and
show some estimates for the Romanov kernel.

0. Introduction. Let $(M, \circ T'')$ be an abstract strongly pseudo con-
 vex CR-manifold. Then as is well known, if $\dim_R M = 2n - 1 \geq 7$, $(M, \circ T'')$ is locally embeddable in a complex euclidean space
$C^n((Ak3), (K))$. In the proof of this local embedding theorem, it is
shown that: over a special ball in the strongly pseudo convex bound-
 ary, an L^2-estimate for $\overline{\partial}_b$, which is stronger than the standard L^2-
estimate, is established and so the L^2-solution operator for $\overline{\partial}_b$ is
obtained. This operator plays an essential role in our local embed-
ding theorem. Therefore it must be important to study this solution
operator for $\overline{\partial}_b$ precisely.

In order to get a solution operator, there exists another method.
By using an integral formula, a local solution operator for $\overline{\partial}_b$ is con-
structed explicitly by Henkin and Harvey-Polking. Obviously, these
solution operators are different. And it seems quite interesting to study
the relation between the L^2-solution for $\overline{\partial}_b$ and the explicit solution,
obtained by using an integral formula. We recall the ∂-case over a
strongly pseudo convex domain in C^n. In this case, the explicit solu-
tion, constructed by Lieb and Range, is a certain kind of the essential
part of the Kohn's L^2-solution. Therefore we could hope for a sim-
lar result in the $\overline{\partial}_b$ case over a special ball in the strongly pseudo
convex boundary. As mentioned already, our L^2-a priori estimate is different from the standard L^2-estimate. Therefore in the above sense, it seems to be natural to consider that the explicit solution operator would satisfy the similar L^2-estimate. In this paper, we discuss this point over rigid hypersurfaces in \mathbb{C}^n (for the definition, see §3 in this paper). And we prove our a priori estimate (Main Theorem in §5 in this paper) for the explicit solution operator.

1. CR-structure and $\bar{\partial}_b$-operator. Let M be a real hypersurface in \mathbb{C}^n. Let p be a reference point of M. We assume that p is a smooth point, namely let ρ be a defining function of M in a neighborhood of p in \mathbb{C}^n, i.e., there is a neighborhood $V(p)$ of p satisfying:

$$M \cap V(p) = \{q : q \in V(p), \rho(q) = 0\}$$

and

$$d\rho \neq 0 \quad \text{over } M \cap V(p).$$

Then over $M \cap V(p)$, we can introduce an CR-structure induced from \mathbb{C}^n. Namely, let

$$\mathcal{O}_\theta'' = \mathcal{T}\mathbb{C}^n \cap C \otimes TM \quad \text{over } M \cap V(p).$$

Then this \mathcal{O}_θ'' satisfies

(1-1) $\mathcal{O}_\theta'' \cap \mathcal{O}_\theta'' = 0, \quad f\text{-dim}_C(C \otimes TM/(\mathcal{O}_\theta'' + \mathcal{O}_\theta'')) = 1,$

(1-2) $[\Gamma(M \cap V(p), \mathcal{O}_\theta''), \Gamma(M \cap V(p), \mathcal{O}_\theta'') \subset \Gamma(M \cap V(p), \mathcal{O}_\theta'').$

This pair $(M \cap V(p), \mathcal{O}_\theta'')$ is called a CR-structure, or a CR-manifold.

Let $(M \cap V(p), \mathcal{O}_\theta'')$ be a CR-manifold. We introduce a C^∞ vector bundle decomposition

(1-3) $C \otimes TM = \mathcal{O}_\theta'' + \bar{\partial}_\theta'' + C\zeta,$

where

(1-3-1) ζ is a real vector field,

(1-3-2) $\zeta_q \notin \mathcal{O}_\theta'' + \bar{\partial}_\theta''$ for q in $M \cap V(p)$.

By using this decomposition, we have a Levi form

$$L(X, Y) = \sqrt{-1}[X, \bar{Y}]_\zeta \quad \text{for } X, Y \text{ in } \Gamma(M \cap V(p), \mathcal{O}_\theta''),$$

where $[X, \bar{Y}]_\zeta$ means the ζ-part of $[X, \bar{Y}]$ according to (1-3). As is well known, this map L makes sense for elements X, Y in \mathcal{O}_θ''. And if this Levi form is positive or negative definite, $(M \cap V(p), \mathcal{O}_\theta'')$
is called a strongly pseudo convex real hypersurface. Next we briefly explain $\overline{\partial}_b$-complex. For u in $\Gamma(M \cap V(p), C)$, we set
\[\overline{\partial}_b u(x) = Xu \quad \text{for } X \text{ in } \mathcal{O}T^m, \]
where $\Gamma(M \cap V(p), c)$ means the spacing consisting of C^∞ functions over $M \cap V(p)$. Namely we have a first order differential operator
\[\overline{\partial}_b : \Gamma(M \cap V(p), c) \rightarrow \Gamma(M \cap V(p), (\mathcal{O}T^m)^*). \]
By the same way as for usual differential forms, we have
\[\overline{\partial}_b^{(p+1)} \circ \overline{\partial}_b^{(p)} = 0. \]

2. Kuranishi's L^2-estimate. Let $(M, \mathcal{O}T^m)$ be a strongly pseudo convex CR manifold, embedded as a real hypersurface in C^n. Let p be a reference point of M. Then by a change of coordinates, we can assume that there is a neighborhood $W(p)$ of p in C^n, satisfying:
\[M \cap W(p) = \{(z_1, \ldots, z_n): (z_1, \ldots, z_n) \in W(p), \]
\[\text{Im} z_n = h(z_1, \ldots, z_{n-1}, \text{Re} z_n)\}, \]
where $z_i(p) = 0$, $1 \leq i \leq n - 1$, and h is a real valued C^∞ function, and
\[(\partial^2 h/\partial z_i \partial \overline{z}_j)(0) = \delta_{ij}, \quad 1 \leq i, j \leq n - 1, \]
\[(\partial^2 h/\partial z_i \partial z_j)(0) = \delta_{ij}, \quad 1 \leq i, j \leq n - 1, \]
\[dh(0, \ldots, 0) = 0. \]
In this set up, we introduce a neighborhood $M \cap U_\varepsilon(p)$ of p as follows:
\[M \cap U_\varepsilon(p) = \{(z_1, \ldots, z_n): (z_1, \ldots, z_n) \in W(p), \]
\[\text{Im} z_n = h(z_1, \ldots, z_{n-1}, \text{Re} z_n), \]
\[2 \text{Re}\{(1/2\sqrt{-1})z_n + z_n^2\} < \varepsilon\}. \]
Now we briefly sketch Kuranishi's L^2-estimate over $M \cap U_\varepsilon(p)$. Obviously by the above assumption, our $M \cap U_\varepsilon(p)$ is diffeomorphic to the real $2n - 1$ dimensional ball. We denote this diffeomorphism map by h and we fix this. If ε is chosen sufficiently small, there is a system of bases $Y_1', Y_2', \ldots, Y_{n-1}'$ of $\mathcal{O}T^m$ over $M \cap U_\varepsilon(p)$, where $\mathcal{O}T^m$ means the CR structure over $M \cap U_\varepsilon(p)$ induced from C^n. In our case, we can define a real vector field ζ, dual to
\[\sqrt{-1}\partial \rho, \]
where \(\rho = \text{Im} z_n - h(z_1, \ldots, z_{n-1}, \text{Re} z_n) \). And by using this \(\zeta \), we have a \(C^\infty \) vector bundle decomposition and so we have the Levi form. By the Schmidt orthogonal process, form \(Y'_1, Y'_2, \ldots, Y'_{n-1} \), we have a system of bases \(Y_1, Y_2, \ldots, Y_{n-1} \) of \(^oT'' \) satisfying

\[
-\sqrt{-1}[Y_i, \overline{Y}_j]_\zeta = \delta_{ij},
\]

where \(-\sqrt{-1}[Y_i, \overline{Y}_j]_\zeta \) means the coefficient of the \(\zeta \) part of \([Y_i, \overline{Y}_j]\) according to the above \(C^\infty \) vector bundle decomposition. By using this \(Y_1, Y_2, \ldots, Y_{n-1} \), we put an \(L^2 \)-norm on

\[
\Gamma(M \cap U_\varepsilon(p), \Lambda^p(^oT'')^*).\]

Namely for \(u \) in \(\Gamma(M \cap U_\varepsilon(p), \Lambda^p(^oT'')^*) \), we have \(C^\infty \) functions \(u_I \) by

\[
u_I = u(Y_{i_1}, \ldots, Y_{i_p}), \quad I = (i_1, \ldots, i_p).
\]

By using these \(u_I \), we set

\[
\|u\|_{\mathcal{M} \cap U_\varepsilon(p)}^2 = \sum_I \int_{B_1(0)} |u_I \circ h|^2 dx_1 \cdots dx_{2n-1},
\]

where \(I \) runs through all ordered indices of length \(p \) and \(h \) is a diffeomorphism map from \(M \cap U_\varepsilon(p) \) to \(B_1(0) \) defined as above. Furthermore we must introduce several notations. Namely \(\overline{\partial}_1^* \) denotes the adjoint operator of \(\overline{\partial}_1 \) with respect to the above \(L^2 \)-norm. And we set

\[
b = \sqrt{\sum_{i=1}^{n-1} |Y_i t|^2},
\]

where \(t = 2 \text{Re}\{1/2\sqrt{-1})z_n + z_n^2\} \). And we set the characteristic curve \(C \) by

\[
C = \{(z_1, \ldots, z_n), (z_1, \ldots, z_n) \in M \cap U_\varepsilon(p), \quad Y_i t = 0, \quad 1 \leq i \leq n-1\}.
\]

Then in [K], Kuranishi obtained

\[
\|(1/b)v\|^2_{\mathcal{M} \cap U_\varepsilon(p)} \leq c\{\|\overline{\partial}_b v\|^2_{\mathcal{M} \cap U_\varepsilon(p)} + \|\overline{\partial}_b^* v\|^2_{\mathcal{M} \cap U_\varepsilon(p)}\}
\]

for \(v \) in \(\Gamma(M \cap U_\varepsilon(p) - C, (^oT'')^*) \) satisfying:

\[
u(Y^0) = 0 \quad \text{on} \quad \{(z_1, \ldots, z_n): (z_1, \ldots, z_n) \in M \cap U_\varepsilon(p) - C, \quad t = \varepsilon\},
\]
where

\[Y^0 = \sum_{i=1}^{n-1} (\overline{Y}_i t/b) Y_i, \]

if \(\dim_R M = 2n - 1 \geq 7 \). Actually, Kuranishi obtained the estimate more precisely. However, in this paper, we discuss this estimate. Then, the \(L^2 \)-solution operator \(\overline{\partial}_b N_b \) satisfies

\[
\|(1/b)(\overline{\partial}_b N_b v)\|_{M \cap U_\varepsilon(p)} \leq c\|v\|_{M \cap U_\varepsilon(p)}
\]

for \(v \) in \(\Gamma(M \cap U_\varepsilon(p) - C, (\mathcal{O} T^n)^*) \), which is of \(L^2 \). We show that an explicit solution obtained by Henkin and Harvey-Polking satisfies the similar estimate.

3. Rigid hypersurfaces in \(C^n \). In this paper, we study the \(\overline{\partial}_b \)-operator over a special kind of real hypersurfaces in \(C^n \). Namely let

\[M = \{(z_1, \ldots, z_n): \text{Im} z_n = k(z_i, \overline{z}_j), \ 1 \leq i, j \leq n-1\}, \]

where \(k \) is a real valued \(C^\infty \) function which depends only on \(z_i, \overline{z}_j \), and not on \(z_n, \overline{z}_n \) satisfying:

\[k(0, 0) = 0 \quad \text{and} \quad dk(0, 0) = 0. \]

We call \(M \) satisfying these relations a rigid hypersurface. Let \(M \) be a rigid hypersurface. And let \(M \) be strongly pseudo convex near the origin. Then by a change of coordinates, the defining equation of \(M \) becomes

\[\text{Im} z''_n = \sum_{i=1}^{n-1} |z''_i|^2 + \text{terms of higher order in } z''_j, \overline{z''}_j, \]

where \(1 \leq j \leq n - 1 \).

4. Integral formula for \(\overline{\partial}_b \) and the Romanov kernel. Let \(u, v \) be \(C^\infty \) functions from \(C^n \times C^n \) to \(C^n \),

\[
\begin{align*}
 u(\zeta, z) &= (u_1(\zeta, z), \ldots, u_n(\zeta, z)), \\
 v(\zeta, z) &= (v_1(\zeta, z), \ldots, v_n(\zeta, z)).
\end{align*}
\]
We use the following notations:
\[
\begin{align*}
 u(\zeta, z)(\zeta - z) &= \sum_{j=1}^{n} u_j(\zeta, z)(\zeta_j - z_j), \\
 u(\zeta, z) d(\zeta - z) &= \sum_{j=1}^{n} u_j(\zeta, z) d(\zeta_j - z_j), \\
 \overline{\delta} u(\zeta, z) d(\zeta - z) &= \sum_{j=1}^{n} \overline{\delta} u_j(\zeta, z) \wedge d(\zeta_j - z_j),
\end{align*}
\]
and we define the following kernels:
\[
\begin{align*}
 (4-1-1) \quad \Omega^u(\zeta, z) &= (2\pi i)^{-n} \left(\frac{u(\zeta, z) d(\zeta - z)}{u(\zeta, z)(\zeta - z)}\right) \\
 &\quad \wedge \left(\frac{(\overline{\delta} u(\zeta, z) d(\zeta - z))}{(u(\zeta, z)(\zeta - z))}\right)^{n-1}, \\
 (4-1-2) \quad \Omega^v(\zeta, z) &= (2\pi i)^{-n} \left(\frac{v(\zeta, z) d(\zeta - z)}{v(\zeta, z)(\zeta - z)}\right) \\
 &\quad \wedge \left(\frac{(\overline{\delta} v(\zeta, z) d(\zeta - z))}{(v(\zeta, z)(\zeta - z))}\right)^{n-1}, \\
 (4-1-3) \quad \Omega^{u,v}(\zeta, z) &= (2\pi i)^{-n} \left(\frac{(u(\zeta, z) d(\zeta - z))}{(u(\zeta, z)(\zeta - z))}\right) \\
 &\quad \wedge \sum_{j+k=n-2} \left(\frac{(\overline{\delta} u(\zeta, z) d(\zeta - z))}{(u(\zeta, z)(\zeta - z))}\right)^{j} \\
 &\quad \wedge \left(\frac{(\overline{\delta} v(\zeta, z) d(\zeta - z))}{(v(\zeta, z)(\zeta - z))}\right)^{k}.
\end{align*}
\]

Then as is well known, in [B] and [BS], we have
\[
\overline{\delta} \Omega^{u,v}(\zeta, z) = \Omega^v(\zeta, z) - \Omega^u(\zeta, z),
\]
\[
\overline{\delta} \Omega^v(\zeta, z) = 0.
\]
Let \(M \) be as in §1 in this paper. Then we can define formally
\[
R_M(u, v)(\phi)(z) := \left\{ \int_{\zeta \in M} \Omega^{u,v}(\zeta, z) \wedge \phi(\zeta) \right\}_{T_M},
\]
\[
L(u)(\phi)(z) := \int_{\zeta \in M} \Omega^u(\zeta, z) \wedge \phi(\zeta),
\]
for \(\phi \in \mathcal{D}^{0,1}(M \cap U) \), where \(\{ \}_{T_M} \) means the tangential part of \(\{ \} \).
Of course without any assumption for \(u, v \) and \(M \), the operators \(R_M, L \) do not make sense. However if we assume that \(u \) is a local support function for \((M, D)\) at a point \(p \) (for the definition, see 2.4 Definition in [BS]), then \(R_M(u, v)(\phi), L(u)(\phi) \) make sense. And
furthermore, the boundary value of $L(u)(\phi)$ from D^- and D^+ exists respectively, where D means U and

$$
D^+ = \{ z : z \in \mathbb{C}^n, \rho(z) > 0 \},
$$

$$
D^- = \{ z : z \in \mathbb{C}^n, \rho(z) > 0 \}.
$$

And for $\phi \in \mathcal{D}^{0,1}(M \cap U)$,

$$
\phi = - (\overline{\partial}_b R_M(u, v)(\phi) + R_M(u, v)\overline{\partial}_b \phi) + L_M^+(v)(\phi) - L_M^-(u)(\phi) \quad \text{on } M \cap U.
$$

Note from this equality, the terms $L_M^+(v)(\phi)$ and $L_M^-(u)(\phi)$ are obstructions to solving the equations $\overline{\partial}_b g = \phi$. If we set

$$
u_j(\zeta, z) = \partial \rho / \partial \zeta_j(\zeta), \quad v_j(\zeta, z) = -\partial \rho / \partial z_j(z), \quad 1 \leq j \leq n,
$$
then $u(\zeta, z) = (u_1(\zeta, z), \ldots, u_n(\zeta, z))$ and $v(\zeta, z) = (v_1(\zeta, z), \ldots, v_n(\zeta, z))$ are local support functions for (M, D^-) and (M, D^+) respectively. And in the case,

$$L_M^-(u)(\phi) = 0 \quad \text{unless } \phi \in \mathcal{D}^{p,0}(M \cap U),
$$

$$L_M^+(v)(\phi) = 0 \quad \text{unless } \phi \in \mathcal{D}^{p,n-1}(M \cap U).
$$

And so we have: for $\phi \in \mathcal{D}^{p,1}(M \cap U)$,

$$\phi = -\{\overline{\partial}_b R_M(u, v)(\phi) + R_M(u, v)(\overline{\partial}_b \phi)\},
$$

if $n \geq 3$.

Henceforth, we abbreviate R for $R_M(u, v)$, where u and v are defined as above, and $R\phi$ stands for $R_M(u, v)(\phi)(z)$.

5. Kuranishi's L^2-estimate for the Romanov kernel. In §4, we see that the Romanov kernel R is a certain kind of the solution operator for $\overline{\partial}_b$. Concerning this R kernel, in this section, we show an L^2-estimate which the L^2 solution satisfies. Namely, we show

MAIN THEOREM. *For any ϕ in $\Gamma(M \cap U_\varepsilon(p) - C, (\mathcal{O}''T'')^*)$, which is of L^2, and for any $\delta < 1$, we have:*

$$
\| (1/b^\delta) R\phi \|_{M \cap U_\varepsilon(p)} \leq C_\delta \| \phi \|_{M \cap U_\varepsilon(p)},
$$

where C_δ depends only on δ.

In order to prove the main theorem, we first show

LEMMA 5.1.

$$
C_1 \sqrt{\sum_{i=1}^{n-1} |z''_i|^2} \leq b \leq C_2 \sqrt{\sum_{i=1}^{n-1} |z''_i|^2},
$$

$$
C_1 \sqrt{\sum_{i=1}^{n-1} |z''_i|^2} \leq b \leq C_2 \sqrt{\sum_{i=1}^{n-1} |z''_i|^2},
$$
where \(C_1, C_2 \) are positive constants, and \(b \) is defined by

\[
b = \sqrt{\sum_{i=1}^{n-1} |Y''_i t|^2},
\]

where \(\{Y''_i\}_{1 \leq i \leq n-1} \) is obtained from \(\{Y_i\}_{1 \leq i \leq n-1} \), by the Schmidt orthogonal process, and

\[
Y_i = \partial / \partial \overline{z''_i} - (\rho_i^- / \rho_n^-) \partial / \partial \overline{z''_n}, \quad 1 \leq i \leq n - 1,
\]

\[
\rho = \text{Im} z''_n - \sum_{i=1}^{n-1} |z''_i|^2 - Q(z''_i, \overline{z''_j}),
\]

where \(\{z''_i\}_{1 \leq i \leq n} \) means the coordinate obtained in §3 in this paper.

Proof of Lemma 5.1. By the construction of \(Y''_i, Y''_j \), \(Y''_i \) is a linear combination of \(Y_j, 1 \leq j \leq n \), satisfying:

\[
Y''_i := \sum_{j=1}^{n-1} a_{ji} Y_j,
\]

where \(a_{ji} \) is a \(C^\infty \) function over \(M \cap U_\epsilon(p) \) and \(a_{ji}(p) = 0 \). So

\[
Y''_i t = Y_i t + \sum_{j=1}^{n-1} a_{ji} Y_j t.
\]

While

\[
Y_j t = (\partial / \partial \overline{z''_j} - (\rho_i^- / \rho_n^-) \partial / \partial \overline{z''_n}) 2 \text{Re}\{(1/2\sqrt{-1})z''_n + z''_n^2\}
\]

\[
= z''_j (1 + 4\sqrt{-1} z''_n).
\]

Therefore we have our lemma. \(\square \)

And we have

Lemma 5.2. There is a constant \(c \) satisfying:

\[
\int_{\zeta \in M \cap U_\epsilon(p)} (1/b^\delta)|\Omega^{\mu, \nu}(\zeta, z)|dV_\zeta \leq c \quad \text{for } z \text{ in } U_\epsilon(p).
\]

This lemma is proved in [HP]. So we briefly sketch the proof. For a system of coordinates of \(M \cap U_\epsilon(p) \), we can adopt \((z''_1, \ldots, z''_{n-1}, t)_\zeta \), which we constructed in §3 in this paper, where \(t = \text{Re } z''_n \). Then over \(M \cap U_\epsilon(p) \),

\[
c_1 \left(|t| + \sum_{i=1}^{n-1} |z''_i|^2 \right) \leq |z''_n| \leq c_2 \left(|t| + \sum_{i=1}^{n-1} |z''_i|^2 \right),
\]
where \(c_1, c_2 \) are positive constants. So over \(M \cap U_\varepsilon(p) \),
\[
c_3 \left(|t| + \sum_{i=1}^{n-1} |z_i''|^2 \right) \leq |u(\zeta - z'')| \leq c_4 \left(|t| + \sum_{i=1}^{n-1} |z_i''|^2 \right),
\]
where \(c_3, c_4 \) are positive constants. And
\[
c_5 \left(|t| + \sum_{i=1}^{n-1} |z_i''|^2 \right) \leq |v(\zeta - z'')| \leq c_6 \left(|t| + \sum_{i=1}^{n-1} |z_i''|^2 \right),
\]
where \(c_5, c_6 \) are positive constants. And
\[
u d(\zeta - z) \wedge v d(\zeta - z) = \mathcal{O}(\nu \zeta - z|).
\]
So each coefficient of \((1/b^\delta)R\) is dominated by
\[
\left(\sum_{i=1}^{n-1} |z_i''|^2 \right)^{-(\delta/2)} \left(|t| + \sqrt{\sum_{i=1}^{n-1} |z_i''|^2} \right) \left(|t| + \sum_{i=1}^{n-1} |z_i''|^2 \right)^{-n}.
\]
And this is locally integrable on \(C^{n-1} \times R \) if \(\delta < 1 \). In fact, by using polar coordinates, we compute the following integral. We set
\[
x_1 = r \cos \theta_1 \cos \theta_2 \cdots \cos \theta_{2n-3} \cos \theta_{2n-2},
\]
\[
y_1 = r \cos \theta_1 \cos \theta_2 \cdots \cos \theta_{2n-3} \sin \theta_{2n-2},
\]
\[
x_2 = r \cos \theta_1 \cdots \cos \theta_{2n-4} \sin \theta_{2n-3},
\]
\[
y_2 = r \cos \theta_1 \cdots \sin \theta_{2n-4},
\]
\[
\vdots
\]
\[
x_{n-1} = r \cos \theta_1 \sin \theta_2,
\]
\[
y_{n-1} = r \sin \theta_1,
\]
where \(z_j'' = x_j + \sqrt{-1}y_j, \ 1 \leq j \leq n - 1 \). Then
\[
\left(\sum_{i=1}^{n-1} |z_i''|^2 \right)^{-(\delta/2)} \left(|t| + \sqrt{\sum_{i=1}^{n-1} |z_i''|^2} \right) \left(|t| + \sum_{i=1}^{n-1} |z_i''|^2 \right)^{-n}
\]
\[= r^{-\delta} (t + r)(t + r^2)^{-n}.
\]
So

\[
\int_{M \cap U_i(p)} \left(\sum_{i=1}^{n-1} |z''_i|^2 \right)^{-\delta/2} \left(|t| + \sqrt{\sum_{i=1}^{n-1} |z''_i|^2} \right) dV_z, t
\times \left(|t| + \sum_{i=1}^{n-1} |z''_i|^2 \right) dV_z, t
\leq \int_0^\epsilon \int_0^\infty r^{-\delta} (t + r)(t + r^2)^{-n} r^{2n-3} dt dr
\]

\[
= \int_0^\epsilon \int_0^\infty \left\{ \frac{1}{(t + r^2)^{n-1}} r^{2n-3-\delta} + \frac{1}{(t + r^2)^n} r^{2n-3} \right\} dt dr.
\]

While

\[
\int_0^\infty \frac{1}{(t + r^2)^{n-1}} r^{2n-3-\delta} dt
\]

\[
= - \frac{1}{(n - 2)[(1/((n - 2))^2 - (1 - r))r^{2n-2-\delta}]}\bigg|_0^\infty
\]

\[
= \frac{1}{(n - 1)}(1 - r)^{-\delta}.
\]

Therefore

\[
\int_{M \cap U_i(p)} \left(\sum_{i=1}^{n-1} |z''_i|^2 \right)^{-\delta/2} \left(|t| + \sqrt{\sum_{i=1}^{n-1} |z''_i|^2} \right) dV_z, t
\leq \int_0^\epsilon \left(\frac{1}{(n - 2)(2 - \delta)} \right)^{1-\delta/2} + \frac{1}{(n - 1)(1 - \delta)} \right)^{1/2} - (\delta/2)
\]

\[
= (1/((n - 2)(2 - \delta)))^{1-\delta/2} + (1/((n - 1)(1 - \delta)))^{1/2} - (\delta/2)
\]

Therefore we have our lemma.
Now we prove our main theorem.

\[
\int_{M \cap U_\epsilon(p)} (1/b^{2\delta}) |R_M(u,v)(\phi)|^2 dV \\
\leq \int_{M \cap U_\epsilon(p)} \left\{ (1/b^{2\delta}) \left(\int_{M \cap U_\epsilon(p)} \Omega^{u,v}(\zeta, z) \phi(\zeta) dV_\zeta \right)^2 \right\} dV_z \\
\leq \int_{M \cap U_\epsilon(p)} \left(\int_{M \cap U_\epsilon(p)} |(1/b^\delta)\Omega^{u,v}(\zeta, z)\phi(\zeta)| dV_\zeta \right)^2 dV_z \\
\leq \int_{M \cap U_\epsilon(p)} \left\{ \left(\int_{M \cap U_\epsilon(p)} |(1/b^\delta)\Omega^{u,v}(\zeta, z)| dV_\zeta \right) \times \left(\int_{M \cap U_\epsilon(p)} |\phi(\zeta)|^2 dV_\zeta \right) \right\} dV_z \\
\leq c^2 \int_{M \cap U_\epsilon(p)} |\phi(\zeta)|^2 dV_\zeta \quad \text{(by Lemma 5.2 in this paper)} \\
\leq c^2 \|\phi\|_{M \cap U_\epsilon(p)}^2.
\]

So we have our theorem. \(\square\)

References

Received October 26, 1989 and in revised form January 2, 1990.

Niigata University
Niigata 950-21, Japan

AND

RIMS
Kyoto University
Kyoto, Japan
Takao Akahori and Harunori Ameku, On the Romanov kernel and Kuranishi’s L^2-estimate for $\overline{\partial}_b$ over a ball in the strongly pseudo convex boundary ... 1

Robert Emile Beaudoin, The proper forcing axiom and stationary set reflection ... 13

Hans Engler, A matrix Volterra integrodifferential equation occurring in polymer rheology ... 25

Zhong Ge, On a constrained variational problem and the spaces of horizontal paths ... 61

Yutaka Hemmi, Higher homotopy commutativity of H-spaces and the mod p torus theorem ... 95

G. D. Johnson, An intrinsic characterization of a class of minimal surfaces in constant curvature manifolds ... 113

Min Ho Lee, Conjugates of equivariant holomorphic maps of symmetric domains ... 127

Jacek Nikiel, H. Murat Tuncali and Edward D. Tymchatyn, On the rim-structure of continuous images of ordered compacta 145

Tara Lynn Smith, Generalized Clifford-Littlewood-Eckmann groups 157

Tara Lynn Smith, Generalized Clifford-Littlewood-Eckmann groups II: Linear representations and applications 185