Vol. 150, No. 1, 1991

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Domains in Riemannian manifolds and inverse spectral geometry

Harold Gerard Donnelly and Jeffrey Marc Lee

Vol. 150 (1991), No. 1, 43–77
Abstract

The asymptotic formula of Weyl, (λk)n∕2 c(n)k∕vol(D), shows that the volume of a bounded domain D in an n dimensional Riemannian manifold is determined by the Dirichlet spectrum, {λk}, of the domain. Also, the asymptotic expansion for the trace of the Dirichlet heat kernel of a smooth bounded domain shows that the volume of the boundary is determined by the spectrum of the domain. However, these asymptotic expressions do not tell us, in themselves, how many eigenvalues one needs in order to approximate the volume of the domain or its boundary to within a prescribed error. We give several results which answer this question, for certain types of domains, in terms of the geometry of the ambient manifold. Some knowledge of the domain is needed. In particular, the distance from the boundary to the boundary’s cut locus in the ambient manifold is relevant. Thus, we also prove a purely differential geometric structure theorem relating the distance from the boundary of the domain to the interior part of its cut locus, to the principal curvatures of the boundary.

Mathematical Subject Classification 2000
Primary: 58G25
Secondary: 53C22
Milestones
Received: 16 January 1990
Revised: 27 August 1990
Published: 1 September 1991
Authors
Harold Gerard Donnelly
Jeffrey Marc Lee