CURVATURE CHARACTERIZATION
AND CLASSIFICATION OF RANK-ONE
SYMMETRIC SPACES

QUO-SHIN CHI

We characterize and classify rank-one symmetric spaces by two
axioms on $R(\cdot, v)v$, the Jacobi part of the curvature tensor.

1. Introduction. In his book [3], Chavel gave a beautiful account
of the rank-one symmetric spaces from a geometric point of view up
to the classification of them, which he left for the reader to pursue
as a matter in Lie group theory. The purpose of this paper is to
extend Chavel's approach to fill in this last step by classifying these
spaces, on the Lie algebra level, based on geometric considerations.
To be more precise, for each unit vector v, define the Jacobi operator
$K_v = R(\cdot, v)v$, where $R(X, Y)Z$ denotes the curvature tensor. Then
for a compact rank-one symmetric space one notes that (1) K_v have
two distinct constant eigenvalues (1 & 1/4) for all v if the space is
not of constant curvature, and (2) $E_1(v)$, the linear space spanned by
v and the eigenspace of K_v with eigenvalue 1 is the tangent space of a
totally geodesic sphere of curvature 1 (a projective line in fact) through
the base point of v, and consequently $E_1(w) = E_1(v)$ whenever w is
in $E_1(v)$. These two properties will be adapted in the next section as
two axioms, and we will prove then that they turn out to characterize
locally rank-one symmetric spaces. Indeed, motivated by [5] and [8],
we prove that the curvature tensor, under the two axioms, induces a
certain Clifford module, from which the curvature components and
the dimension of the space can be read off. It then follows that the
space must be locally rank-one symmetric, and the list of such spaces
falls out in a natural way.

We would like to mention that there is another interesting geometric
Karcher's construction of the Cayley plane rests on some intriguing
properties of isoparametric submanifolds and he has to assume the
space is symmetric of positive curvature for the classification, whereas
all our results follow from the two axioms and the technique re-
quires essentially no more than linear algebra. Our analysis reveals by
fairly simple constructions why such spaces are closely related to the four standard algebras \mathbb{R}, \mathbb{C}, \mathbb{H}, and the Cayley algebra Ca.

This paper is part of the author’s Ph.D. dissertation. He would like to thank Professor Bob Osserman for direction and encouragement, and Professor Hans Samelson for discussions.

2. A curvature characterization of locally rank-one symmetric spaces.

We start out with two axioms.

Axiom 1. Let $K_v(\cdot) = R(\cdot, v)v$ for v in SM, the unit sphere bundle of M. Then K_v has precisely two different constant eigenvalues independent of v (counting multiplicities).

Axiom 2. Let b, c be the two eigenvalues. For $v \in SM$, denote by $E_c(v)$ the span of v and the eigenspace of K_v with eigenvalue c. Then $E_c(w) = E_c(v)$ whenever $w \in E_c(v)$.

REMARK. 1. Axiom 2 is redundant if $\dim E_c(v) = 2$.

2. It’s not hard to show (cf. [3]) that a two-point homogeneous space of constant curvature must be $\mathbb{R}P^n$ or the space forms.

Theorem 1. Locally rank-one symmetric spaces not of constant curvature are characterized by the two axioms.

We need a few lemmas to complete the proof.

Lemma 1. If y is perpendicular to $E_c(v)$, then so is $E_c(y)$. In particular M_p, the tangent space at p, can be decomposed into perpendicular subspaces of the form $E_c(v)$.

Proof. Since y is perpendicular to $E_c(v)$ and since $E_c(w) = E_c(v)$ for all unit w in $E_c(v)$ by the second axiom above, one sees that $K_v(y) = by$ for all such w, which in turn implies $K_v(w) = bw$; hence $E_c(y)$ is perpendicular to $E_c(v)$.

Lemma 2. Let

$$M_p = E_c(x) \oplus E_c(y) \oplus E_c(z) \oplus \cdots .$$

Then

(i) $R(y, x_1)x_2 = -R(y, x_2)x_1$ for x_1, x_2 in $E_c(x)$.

(ii) $R(x, y)z = 0$.

(iii) $R(x_1, x_2)x_3 = 0$ if $x_1, x_2, x_3 \in E_c(x)$.

Proof. For (i), one considers \(w = (x_1 + x_2)/\sqrt{2} \). One has \(K_w(y) = by \) since \(w \) is in \(E_c(x) \). This implies (i) by expanding

\[
K_w(y) = R \left(y, \frac{x_1 + x_2}{\sqrt{2}} \right) \frac{x_1 + x_2}{\sqrt{2}}.
\]

To prove (ii), let \(w = (y + z)/\sqrt{2} \). One has \(K_x(w) = bw \) since \(K_x(y) = by \) and \(K_x(z) = bz \); hence \(K_w(x) = bx \), which gives, after expanding \(K_w(x) \),

\[
R(x, y)z = -R(x, z)y.
\]

This same relation holds if we cyclically permute \(x, y, z \). Now the first Bianchi identity finishes the proof. The proof of (iii) is similar to that of (ii). \(\square \)

Definition 1. The type number \(\tau = \dim E_c(x) - 1 \).

Clearly \(\tau \) is well-defined since \(\dim E_c(x) \) is constant for all unit \(x \).

Given \(x_0 \in SM \), choose \(x_1, x_2, \ldots, x_\tau \) so that \(x_0, x_1, \ldots, x_\tau \) form an orthonormal basis for \(E_c(x_0) \). Define, for \(1 \leq i \leq \tau \), \(J_i: E_c(x_0)^\perp \rightarrow E_c(x_0)^\perp \) by

\[
J_i(y) = R(x_0, x_i)y,
\]

where \(E_c(x_0)^\perp \) is the subspace perpendicular to \(E_c(x_0) \). (That \(J_i \) sends \(E_c(x)^\perp \) to itself follows from Lemma 2, (iii).)

Lemma 3. Given a fixed unit vector \(y_0 \perp E_c(x_0) \), the map \(R(x_0, \cdot)y_0: E_c(x_0) \rightarrow E_c(x_0)^\perp \) satisfies \(\|R(x_0, x)y_0\| = 2/3|b - c| \) for unit \(x \) perpendicular to \(x_0 \).

Proof. Let \(w = (x_0 + y_0)/\sqrt{2} \), and let \(M_p = E_c(x_0) \oplus E_c(y_0) \oplus E_c(z) \oplus \cdots \). Let \((x_i) \) and \((y_i) \), \(i = 0, 1, \ldots, \tau \), be orthonormal bases for \(E_c(x_0) \) and \(E_c(y_0) \) respectively. It’s directly checked, using Lemma
2, that

\[
K_w: \begin{cases}
 x_0 \rightarrow \frac{b}{2}(x_0 - y_0) \\
 x_i \rightarrow \frac{b + c}{2}x_i + \frac{3}{2} \sum_s \langle R(x_i, y_0)x_0, y_s \rangle y_s \\
 y_0 \rightarrow -\frac{b}{2}(x_0 - y_0) \\
 y_i \rightarrow \frac{b + c}{2}y_i + \frac{3}{2} \sum_s \langle R(y_i, x_0)y_0, x_s \rangle x_s \\
 z \rightarrow bz.
\end{cases}
\]

This precisely says that the restriction of \(K_w \) to the subspace \(V \) generated by \(\{x_i, y_i\}^{\tau}_{i=1} \) has \(b \) and \(c \) as eigenvalues with equal multiplicity \(\tau \) by axioms 1 and 2.

When written in matrix form relative to \(\{x_i, y_i\}^{\tau}_{i=1} \), \(K_w \) restricted to \(V \) assumes the form

\[
\begin{pmatrix}
\frac{b+c}{2} I & \frac{3}{2} A^t \\
\frac{3}{2} A & \frac{b+c}{2} I
\end{pmatrix}
\]

where \(A_{ij} = \langle R(x_i, y_0)x_0, y_j \rangle \). Hence

\[
K_w - cI = \begin{pmatrix}
\frac{b-c}{2} I & \frac{3}{2} A^t \\
\frac{3}{2} A & \frac{b-c}{2} I
\end{pmatrix},
\]

so that the null space of \(K_w - cI \) is

\[
\left\{ \begin{pmatrix} X \\ Y \end{pmatrix} : \begin{pmatrix}
\frac{b-c}{2} I & \frac{3}{2} A^t \\
\frac{3}{2} A & \frac{b-c}{2} I
\end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = 0 \right\},
\]

which has dimension \(\tau \) since it is the eigenspace of \(K_w \) with eigenvalue \(c \).

Now (2) is nothing but

\[
\begin{cases}
 \frac{b-c}{2} x + \frac{3}{2} A^t y = 0, \\
 \frac{3}{2} Ax + \frac{b-c}{2} y = 0.
\end{cases}
\]

It follows that \(y = \frac{3}{b-c} Ax \) and \(A^t Ax = (\frac{b-c}{3})^2 x \). Since the null space under consideration has dimension \(\tau \) and \(x \) and \(y \) are \(\tau \times 1 \)
matrices, one concludes that $A^tAx = (b - c)^2x$ for all $\tau \times 1$ matrices x perpendicular to x_0, meaning $\|R(x, y_0)x_0\| = \frac{|b - c|}{3}$. Now the lemma follows by noting that $R(x_0, x)y_0 = -2R(x, y_0)x_0$ by Lemma 2.

From now on we normalize the metric so that

$$|b - c| = \frac{3}{2}.$$

Proposition 1. The operators $J_i : E_c(x_0) \rightarrow E_c(y) \oplus E_c(z) \oplus \cdots$. By Lemma 2, $J_i : E_c(y) \rightarrow E_c(y)$, $J_i : E_c(z) \rightarrow E_c(z)$ etc.; these restrictions of J_i are orthogonal by Lemma 3 and (3). On the other hand J_i is skew-symmetric since the curvature tensor is; hence $(J_i)^2 = J_iJ_i = -J_i^tJ_i = -I$ on $E_c(y)$, and so $(J_i)^2 = -I$ on $E_c(x_0)^\perp$ since $E_c(x_0)^\perp$ is the direct sum of subspaces of the form $E_c(y)$, proving (i). To prove (ii) first note that $\langle J_iJ_k(y), y \rangle = -\langle J_i(y), J_k(y) \rangle = 0$ if $i \neq k$ by Lemma 3. It then follows that $\langle J_iJ_k(v), v \rangle = 0$ for all $v \in E_c^\perp(x_0)$; hence setting $v = y + z$, one has $\langle J_iJ_k(y), z \rangle = -\langle J_iJ_k(z), y \rangle = -\langle z, J_kJ_i(y) \rangle$, which is (ii). (iii) is clear from Lemma 2.

Proposition 2. The type number $\tau = 1, 3, 7$. If $\tau = 7$, $\dim M = 16$.

Proof. Notation is as in Proposition 1. Let $M_p = E_c(x_0) \oplus E_c(y) \oplus E_c(z) \oplus \cdots$. Proposition 1 implies $E_c(y)$, which has dimension $\tau + 1$, is a Clifford C_τ module induced by the operators J_i. Hence $\tau = 1, 3, 7$ (cf. [10]).

To prove the second statement, first note that $\dim M = (\tau + 1)s$ for some s since $M_p = E_c(x_0) \oplus E_c(y) \oplus \cdots$.

Sublemma. If $s \geq 3$, then $\langle J_iJ_kJ_l(y), y \rangle = \langle J_iJ_kJ_l(z), z \rangle$ for all $y, z \in E_c(x_0)^\perp$.

Proof of Sublemma. Since $s \geq 3$, $M_p = E_c(x_0) \oplus E_c(y_0) \oplus E_c(z_0) \oplus \cdots$. Since $K_y(z) = bz$ and $K_z(y) = by$ for $y \in E_c(y_0)$ and
z \in E_c(z_0), \text{ we have}
\[K_{(y-z)\sqrt{2}}(y + z) = b(y + z); \]

therefore \(\langle J_i J_k J_l(y - z), y + z \rangle = 0 \) by (iii) of Proposition 1. Similarly, \(0 = \langle J_i J_k J_l(y), z \rangle = \langle J_i J_k J_l(z), y \rangle \) for the same reason. In particular we have
\[0 = \langle J_i J_k J_l(y - z), y + z \rangle = \langle J_i J_k J_l(y), y \rangle - \langle J_i J_k J_l(z), z \rangle, \]
so that \(\langle J_i J_k J_l(y), y \rangle = \langle J_i J_k J_l(z), z \rangle \) for all \(z \) perpendicular to \(E^c(x_0) \), and all \(y \) in \(E_c(y_0) \) as well, proving the sublemma.

Now fix \(y_0 \in E_c(x_0)^\perp \) and let \(y_i = J_i(y_0) \) so that \(y_0, y_1, \ldots, y_\tau \) form an orthonormal basis for \(E_c(y_0) \). Define a product \(\cdot \) on \(E_c(y_0) \) so that \(E_c(y_0) \) under this product is isomorphic to one of the three algebras \(\mathbb{C}, \mathbb{H}, \) and the nonassociative Cayley algebra \(\mathbb{C}_a \) corresponding to the type number \(\tau = 1, 3, 7 \) respectively (cf. [13]), namely, \(y_0 \cdot y_i = y_i, \) and \(y_i \cdot y_k = J_i(y_k) \) for \(i \neq k \). Now let \(J_i J_k(y_0) = \sum_s a_{ik}^s J_s(y_0) \). Then \(a_{ik}^s = -\langle J_i J_k(y_0), y_0 \rangle \), which is a constant by the above sublemma. It follows that \(J_i J_k(y) = \sum_s a_{ik}^s J_s(y) \) for all \(y \) in \(E_c(y_0) \), and hence \((y_i \cdot y_k) \cdot y_j = y_i \cdot (y_k \cdot y_j) \), so that \(E_c(y_0) \) under the product is associative, and therefore \(\tau \neq 7 \). In other words, if \(\tau = 7 \) then \(s = 2 \), and so \(\dim M = (\tau + 1)s = 16 \).

We now make a convention that if \(0 < \alpha, \beta \leq \tau \), we denote by \(\alpha \beta \) the number \(\pm \gamma \) such that \(\pm e_\gamma = e_\alpha e_\beta \), where \(e_i \)'s are the basis elements in the standard multiplication tables for the three algebras above (cf. [13]). Also denote \(X_{-\alpha} = -X_\alpha \) for vectors with subscripts.

Lemma 4. In a neighborhood \(U \) of each point \(p \), given a unit vector field \(x_0 \), one can pick an orthonormal frame \(x_0, x_1, \ldots, x_\tau ; x_0, y_1, \ldots, y_\tau ; z_0, \ldots \) such that for \(q \in U \), one has \(M_q = E_c(x_0) \oplus E_c(y_0) \oplus E_c(z_0) \cdots \) with \(x_i \in E_c(x_0), y_i \in E_c(y_0), \) etc., such that \(R(x_0, x_\alpha) y_\beta = -y_{\beta \alpha}, R(x_0, x_\alpha) z_\beta = -z_{\beta \alpha}, \) etc.

Proof. Recall that \(\tau \) is the type number of the space. That \(M_q = E_c(x_0) \oplus (y_0) \oplus \cdots \) follows from Lemma 1. Pick smooth fields \(x_1, \ldots, x_\tau \) such that \(x_0, x_1, \ldots, x_\tau \) form an orthonormal basis for \(E_c(x_0) \). Define for \(1 \leq i \leq \tau, -y_j = R(x_0, x_j) y_0, -z_j = R(x_0, x_j) z_0, \) etc. For \(\tau = 1 \), it is readily checked that \(R(x_0, x_\alpha) y_\beta = -y_{\beta \alpha}, \) etc. For \(\tau = 3 \), let \(\dim M = (\tau + 1)s = 4s \). If \(s \geq 3 \), then by the sublemma in Proposition 2 \(\text{span}(\text{Id}, J_1, J_2, J_3) = \mathbb{H}, \) where \(J_i = R(x_0, x_i) \). It
follows easily that $J_1 \cdot J_2 = \pm J_3$. Changing x_0 into $-x_0$ if necessary, one may always assume $J_1 \cdot J_2 = J_3$; in other words, $R(x_0, x_0) : R(x_0, x_0) = R(x_0, x_0)$ if $1 \leq \alpha, \beta \leq 3$, i.e., $R(x_0, x_0) = y_{\alpha\beta} = -y_{\beta\alpha}$ etc., which is the conclusion. On the other hand if $\tau = 3$ and $\dim M = 8$, then $M_q = E_c(x_0) \oplus E_c(y_0)$. Now $E_c(y_0)$ is isomorphic to \mathbb{H} under the product $y_i \cdot y_j = J_i J_j(y_0)$. Therefore again it is easy to see that $y_1 \cdot y_2 = \pm y_3$, i.e., $J_1 \cdot J_2(y_0) = \pm J_3(y_0)$. We may assume $J_1 J_2(y_0) = J_3(y_0)$ by changing x_0 into $-x_0$, so that once more $R(x_0, x_0) = -y_{\beta\alpha}$.

If $\tau = 7$, then $\dim M = 16$, and $M_q = E_c(x_0) \oplus E_c(y_0)$. Although $E_c(y_0)$ is isomorphic to the Cayley algebra \mathbb{Ca} under the product $y_i \cdot y_j = J_i J_j(y_0)$, it might happen that y_i's are not the standard basis elements for \mathbb{Ca} in general. However one observes that $y_0, y_1, y_2, y_1 \cdot y_2$ form a standard basis for \mathbb{H}, and by picking a smooth unit vector field w perpendicular to them one verifies that $y_0, y_1, y_2, y_1 \cdot y_2, w \cdot y_0, w \cdot y_1, w \cdot y_2, w \cdot (y_1 \cdot y_2)$ form a standard basis; let's call this new basis $(v_0 = y_0, v_1, \ldots, v_7)$ so that $v_{\alpha} \cdot v_{\beta} = v_{\alpha\beta}$. Let $v_i = \sum_{j=0}^{7} a_{ji} y_j$. Define $\bar{x}_i = \sum_{j=0}^{7} a_{ji} x_j$. A straightforward computation gives $R(x_0, \bar{x}_\alpha) R(x_0, \bar{x}_\beta) y_0 = R(x_0, \bar{x}_\alpha \bar{x}_\beta) y_0$ for $\alpha, \beta \neq 0$. Now let $\bar{y}_{\alpha} = R(x_0, \bar{x}_\alpha) y_0$, one has $R(x_0, \bar{x}_\alpha) \bar{y}_{\beta} = \bar{y}_{\alpha} = -\bar{y}_{\beta\alpha}$, proving the lemma.

Lemma 5. Let M be a Riemannian manifold. If for every geodesic $r(t)$ the operator K_v with $v = \dot{r}(t)$ is parallel then the entire curvature tensor is parallel along $r(t)$ and M is locally symmetric.

Proof. See [2].

Lemma 6. Assume the same conditions as in Lemma 4. Then

$$
(\nabla_{x_0} R)(x_i, x_0, x_0, x_j) = (\nabla_{x_0} R)(y_i, x_0, x_0, y_j) = (\nabla_{x_0} R)(z_i, x_0, x_0, z_j) = (\nabla_{x_0} R)(y_i, x_0, x_0, z_j) = 0,
$$

eq, \text{where } R(x, y, z, w) = \langle R(x, y) z, w \rangle, \text{provided } x_0 \text{ is tangent to the geodesics emanating from } p.

Proof. We'll prove $(\nabla_{x_0} R)(y_i, x_0, x_0, z_j) = 0$. The proof of the others are similar. Since $R(y_i, x_0, x_0, z_j) = 0$ by Lemma 2 and since
\(\nabla_{x_0} x_0 = 0 \) by the way \(x_0 \) is chosen, one sees that

\[
(\nabla_{x_0} R)(y_i, x_0, x_0, z_j) = -R(\nabla_{x_0} y_i, x_0, x_0, z_j) - R(y_i, x_0, x_0, \nabla_{x_0} z_j)
= -\langle \nabla_{x_0} y_i, z_j \rangle R(z_j, x_0, x_0, z_j)
- \langle y_i, \nabla_{x_0} z_j \rangle R(y_i, x_0, x_0, y_i) = 0,
\]

in view of Lemma 2 and \(K_{x_0}(x_i) = c x_i, \ K_{x_0}(y_i) = b y_i, \ K_{x_0}(z_i) = b z_i, \) etc.

Now we prove the promised characterization theorem.

Proof of Theorem 1. Here in this proof \(x_0 \) as in Lemma 6 is tangent to the geodesics emanating from \(p \in U \). Let \(x_0, x_1, \ldots, x_\tau; y_0, y_1, \ldots, y_\tau; z_0, \ldots \) be as in the previous lemma. We only have to show that

\[
(\nabla_{x_0} R)(x_i, x_0, x_0, y_j) = 0,
\]

in view of Lemmas 5 and 6. In fact it suffices to check

\[
(\nabla_{x_0} R)(x_i, x_0, x_0, y_0) = 0,
\]

since \(R(x_0, x_\alpha)y_\beta = -y_\beta \alpha \) says that one may rename the \(y_i \)'s so that \(y_\beta \) becomes \(y_0 \). Now a direct computation using \(R(x_0, x_\alpha)y_\beta = -y_\beta \alpha \), (i) of Lemma 2 and the first Bianchi identity, and (3) gives

\[
(\nabla R)(x_i, x_0, x_0, y_0) = \pm(\nabla R)(y_i, y_0, y_0, x_0),
\]

depending on whether \(c > b \) or \(c < b \). In particular

\[
(\nabla_{x_0} R)(x_i, x_0, x_0, y_0) = \pm(\nabla_{x_0} R)(y_i, y_0, y_0, x_0).
\]

Now the second Bianchi identity says

\[
(\nabla_{x_0} R)(y_i, y_0, y_0, x_0) = (\nabla_{x_0} R)(y_0, x_0, y_i, y_0)
= -(\nabla_{y_i} R)(y_0, x_0, y_0, x_0) - (\nabla_{y_0} R)(y_0, x_0, x_0, y_i) = 0,
\]

in view of the proof of Lemma 6. Hence \((\nabla_{x_0} R)(x_i, x_0, x_0, y_0) = 0 \), and the space is locally symmetric; therefore it must be of rank one by the constancy of eigenvalues of the Jacobi operator \(K_v \).

3. Lie algebra classification of rank-one symmetric spaces. Our analysis has been based primarily on Lemma 4, where the curvature structure of the space under consideration was partially displayed. Using Lemma 2, Lemma 7 and Corollary 1 in this section, which give explicitly all the curvature components in their full generality, it will then be a straightforward matter, with the aid of the fact that the Lie algebra
of the isotropy group of a symmetric space is the linear span of all $R(x, y)$ at the origin (cf. [9]), to write down the Lie algebra structure of the space to see that a compact symmetric space of rank one must necessarily be either a sphere or one of the projective spaces. We shall thus be brief, and leave the details to the reader.

Let $M_\rho = E_c(x_0) \oplus E_c(y_0) \oplus E_c(z_0) \oplus \cdots$ as in Lemma 4 so that

$$R(x_0, x_\alpha)y_\beta = -y_{\beta\alpha}.$$

By the symmetry of the curvature tensor one has

$$R(y_\alpha, y_\beta)x_0 = -x_{\beta\alpha}.$$

Lemma 7. Assume $c > b$. Then $R(x_\alpha, x_\beta)y_\gamma = -y_{(\gamma\beta)\alpha}$, where $\alpha \neq \beta$ and $\beta \neq 0$.

Proof. We may assume $\alpha \neq 0$ by (4). Fix δ and let $w = (x_0 + y_\delta)/\sqrt{2}$. Then

$$K_w(x_\beta \pm y_\delta \beta) = R(x_\beta \pm y_\delta \beta, w)w$$

$$= \frac{1}{2}[c x_\beta \pm b y_\delta \beta + b x_\beta \pm c y_\delta \beta + R(x_\beta, x_0)y_\delta$$

$$\quad \pm R(y_\delta \beta, x_0)y_\delta + R(x_\beta, y_\delta)x_0 \pm R(y_\delta \beta, y_\delta)x_0].$$

Now $R(x_\beta, x_0)y_\delta = y_\delta \beta$ by (4). And by the first Bianchi identity

$$y_\delta \beta = R(x_\beta, x_0)y_\delta$$

$$= R(x_\beta, y_\delta)x_0 - R(x_0, y_\delta)x_\beta$$

$$= 2R(x_\beta, y_\delta)x_0,$$

by (i) of Lemma 2. Similarly $R(y_\delta \beta, y_\delta)x_0 = x_\beta$ by (5) and $R(y_\delta \beta, x_0)y_\delta = x_\beta/2$ by (i) of Lemma 2 and the Bianchi identity. Hence the right-hand side of (6) is

$$\frac{b + c}{2} x_\beta \pm \frac{3}{4} x_\beta \pm \frac{(b + c)}{2} y_\delta \beta + \frac{3}{4} y_\delta \beta$$

$$= \frac{b + c}{2} \left[c x_\beta \pm b y_\delta \beta \pm b x_\beta \pm c y_\delta \beta \pm b y_\delta \beta \pm y_\delta \beta \right].$$

by (3). By assumption $c > b$, therefore

$$K_w(x_\beta + y_\delta \beta) = c(x_\beta + y_\delta \beta),$$

$$K_w(x_\beta - y_\delta \beta) = b(x_\beta - y_\delta \beta).$$

Replacing β by α in (8) one gets

$$K_w(x_\alpha - y_\delta \alpha) = b(x_\alpha - y_\delta \alpha).$$
Now Axiom 1, (7), and (9) imply
\[K_{(x_\beta + y_\delta_\beta)/\sqrt{2}}(x_\alpha - y_\delta_\alpha) = b(x_\alpha - y_\delta_\alpha), \]
or equivalently,
\begin{align*}
(10) \quad b(x_\alpha - y_\delta_\alpha) &= \frac{b + c}{2} x_\alpha - \frac{b + c}{2} y_\delta_\alpha + \frac{3}{4} R(x_\alpha, x_\beta) y_\delta_\beta \\
&\quad - \frac{3}{4} R(y_\delta_\alpha, y_\delta_\beta) x_\beta.
\end{align*}

On the other hand, \(R(x_\alpha, x_\beta) y_\delta_\beta \in E_c(y_0) \) and \(R(y_\delta_\alpha, y_\delta_\beta) x_\beta \in E_c(x_0) \) by (ii) of Lemma 2. Hence comparing both sides of (10) one concludes
\[\frac{3}{4} R(x_\alpha, x_\beta) y_\delta_\beta = \frac{b + c}{2} y_\delta_\alpha - by_\delta_\alpha = \frac{c - b}{2} y_\delta_\alpha, \]
or
\[R(x_\alpha, x_\beta) y_\delta_\beta = \frac{2}{3} (c - b) y_\delta_\alpha = y_\delta_\alpha \]
by (3). Let \(\gamma = \delta_\beta \). Then \(\gamma_\beta = (\delta_\beta)_{\beta} = -\delta \), so that \(\delta_\alpha = -(\gamma_\beta)_{\alpha} \), i.e.,
\[R(x_\alpha, x_\beta) y_\gamma = -y_{(\gamma_\beta)_{\alpha}}. \]

Corollary 1. Assume \(c > b \). Let \(M_\rho = E_c(x_0) \oplus E_c(y_0) \oplus E_c(z_0) \oplus \cdots \), and \(x_i, y_i, z_i \cdots \) be as in Lemma 4. Then \(R(y_\alpha, y_\beta) z_\gamma = -z_{(\gamma_\beta)_{\alpha}} \), etc.

Proof. It suffices to show that \(R(y_0, y_\alpha) z_\beta = -z_{\beta_\alpha} \) in view of Lemma 7. A direct computation shows
\[K_{(x_0 + y_0)/\sqrt{2}}(x_\alpha - y_\alpha) = b(x_\alpha - y_\alpha), \]
if \(c > b \). Hence by (ii) of Lemma 2
\begin{align*}
0 &= R(x_0 + y_0, x_\alpha - y_\alpha) z_\beta \\
&= R(x_0, x_\alpha) z_\beta - R(y_0, y_\alpha) z_\beta,
\end{align*}
i.e.,
\[R(y_0, y_\alpha) z_\beta = R(x_0, x_\alpha) z_\beta = -z_{\beta_\alpha}, \]
by Lemma 4.

Now it is well known that the symmetric Lie algebra decomposition of the underlying space is \(\mathfrak{g} = \mathfrak{k} \oplus m \), where \(m \) is the tangent space at the origin, and \(\mathfrak{k} \), the isotropy algebra, is the linear span of \(R(X, Y) \)
for all X, Y in \mathfrak{m} with the natural Lie algebra structure. It follows easily from Lemma 2, Lemma 7, and Corollary 1 that if the type number $\tau = 1$, or 3, then $R(u, v)$ corresponds to the Lie bracket of the matrices

$$
\begin{pmatrix}
0 & u \\
-u^* & 0
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
0 & v \\
v^* & 0
\end{pmatrix},
$$

where u and v are regarded as column vectors over \mathbb{C} and \mathbb{H} respectively, and u^* and v^* their conjugates. Thus the symmetric Lie pair must be either $(u(n+1), u(n) \times u(1))$ or $(\text{sp}(n+1), \text{sp}(n) \times \text{sp}(1))$. On the other hand let the type number $\tau = 7$ so that $M_p = E_c(x_0) \oplus E_c(y_0)$ with dim $M_p = 16$ corresponding to the Cayley algebra Ca. Recall that if we denote by e_0, e_1, \ldots, e_8 the generator of C_9, the Clifford algebra of rank 9, then the Lie algebra of $\text{Spin}(9)$ is linearly spanned by $e_0 e_i$ and $e_i e_j$ for all $1 \leq i < j \leq 8$. In view of this it is also easy to see that $e_0 e_i$ and $e_i e_j$ correspond to $R(x_0, y_i)$ and $R(x_0, y_i) R(x_0, y_j)$ respectively, so that the isotropy algebra of the space is $o(9)$ and Lemma 7 gives explicitly the irreducible representation of $o(9)$ on \mathbb{R}^{16}. Let

$$
\mathcal{D}_0 = \text{Span}(R(x_0, y_i) R(x_0, y_j) | 1 \leq i < j \leq 8),
\mathcal{D}_1 = \text{Span}(R(x_0, y_i) | 1 \leq i \leq 8),
\mathcal{D}_2 = E_c(x_0),
\mathcal{D}_3 = E_c(y_0).
$$

Then $\mathcal{G} = \mathcal{D}_0 \oplus \mathcal{D}_1 \oplus \mathcal{D}_2 \oplus \mathcal{D}_3$ has the property that $[\mathcal{D}_0, \mathcal{D}_i] \subset \mathcal{D}_i$, and $[\mathcal{D}_i, \mathcal{D}_j] \subset \mathcal{D}_k$, where $1 \leq i, j, k \leq 3$, and i, j, k are mutually distinct. In other words \mathcal{G} is f_4 [13], and the symmetric pair is $(f_4, o(9))$. Conversely it is well known that such symmetric pairs give rise to the symmetric spaces of rank one.

Lastly, we would like to mention a conjecture of Bob Osserman, which states that nonzero $R(\cdot, v) v$ having constant eigenvalues with fixed multiplicities for all unit v characterizes locally rank-one symmetric spaces [5]. It follows from Theorem 1 that this conjecture would be true if the curvature condition in the conjecture would imply the two axioms in §2.

Added in proof. Recently the author received a preprint by Z. I. Szabó and P. B. Gilkey, entitled "A simple topological proof that two-point homogeneous spaces are symmetric", in which an elegant
proof of what the title addresses is given. Szabó and Gilkey's result together with the characterization and classification of rank-one symmetric spaces in our paper furnish a geometric-topological understanding of two-point homogeneous spaces.

References

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>City, State</th>
</tr>
</thead>
<tbody>
<tr>
<td>V. S. Varadarajan</td>
<td>University of California</td>
<td>Los Angeles, CA 90024-1555-05</td>
</tr>
<tr>
<td>Herbert Clemens</td>
<td>University of Utah</td>
<td>Salt Lake City, UT 84112</td>
</tr>
<tr>
<td>Thomas Enright</td>
<td>University of California, San Diego</td>
<td>La Jolla, CA 92093</td>
</tr>
<tr>
<td>R. Finn</td>
<td>Stanford University</td>
<td>Stanford, CA 94305</td>
</tr>
<tr>
<td>Hermann Flaschka</td>
<td>University of Arizona</td>
<td>Tucson, AZ 85721</td>
</tr>
<tr>
<td>Vaughan F. R. Jones</td>
<td>University of California</td>
<td>Berkeley, CA 94720</td>
</tr>
<tr>
<td>Steven Kerckhoff</td>
<td>Stanford University</td>
<td>Stanford, CA 94305</td>
</tr>
<tr>
<td>C. C. Moore</td>
<td>University of California</td>
<td>Berkeley, CA 94720</td>
</tr>
<tr>
<td>Martin Scharlemann</td>
<td>University of California</td>
<td>Santa Barbara, CA 93106</td>
</tr>
<tr>
<td>Harold Stark</td>
<td>University of California, San Diego</td>
<td>La Jolla, CA 92093</td>
</tr>
</tbody>
</table>

ASSOCIATE EDITORS

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>City, State</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. Arens</td>
<td>(Managing Editor)</td>
<td></td>
</tr>
<tr>
<td>E. F. Beckenbach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. H. Neumann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. Wolf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. Yoshida</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SUPPORTING INSTITUTIONS

- University of Arizona
- University of British Columbia
- California Institute of Technology
- University of California
- Montana State University
- University of Nevada, Reno
- New Mexico State University
- Oregon State University
- University of Oregon
- University of Southern California
- Stanford University
- University of Hawaii
- University of Tokyo
- University of Utah
- Washington State University
- University of Washington
Jan Aarts, Charles Lemuel Hagopian and Lex Gerard Oversteegen, The orientability of matchbox manifolds .. 1
Roger W. Barnard, Carl Hanson Fitzgerald and Sheng Gong, The growth and 1/4-theorems for starlike mappings in \(\mathbb{C}^n \) 13
Allan Berele, Trace rings for verbally prime algebras 23
Quo-Shin Chi, Curvature characterization and classification of rank-one symmetric spaces ... 31
Harold Gerard Donnelly and Jeffrey Marc Lee, Domains in Riemannian manifolds and inverse spectral geometry 43
Clifford John Earle, Jr. and Patricia Lilaine Sipe, Families of Riemann surfaces over the punctured disk ... 79
Mark P. Hughes, Dihedral group actions on homotopy complex projective three spaces ... 97
Robert F. Lax and Carl Widland, Gap sequences at a singularity 111
Takahiko Nakazi, Bounded Hankel forms with weighted norms and lifting theorems ... 123
Douglas Murray Pickrell, Mackey analysis of infinite classical motion groups .. 139
Martha Rzedowski-Calderón and Gabriel Daniel Villa-Salvador, Automorphisms of congruence function fields 167
Peter N-S Wong, Equivariant Nielsen fixed point theory for \(G \)-maps 179