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Let G be alocally compact group. Let 4,(G) be the Herz algebra
of G associated with 1 < p < co. We show that if 4,(G) is Arens
regular, then G is discrete. We also exhibit a number of sufficient
conditions for such a group to be finite.

1. Introduction. Let G be a locally compact group. For 1 < p <
o, let 4,(G) denote the linear subspace of CO(G) consisting of all
functions of the form wu(x ) S (fi x &)V, where f; € L,(G),
g €Ly(G), z+5=1, T2 Iflpllgllg < oo, fY(x) = f(x7") and
f(x) = f(x~1). A4,(G) is a commutative Banach algebra with respect
to pointwise multiplication and the norm

lulla (G = inf{z 1 fillpll&illalu(x) = D (fi * g’i)v} -
i=1

i=1
When p = 2, A,(G) is the Fourier algebra of G as introduced by
Eymard in [7]. For general p, the algebras 4,(G) were introduced
and first studied by Herz [13].

In this paper we will study the structure of the second dual 4,(G)**
as a Banach algebra with respect to the two Arens products. In partic-
ular, we will show that if 4,(G) is Arens regular, then G is discrete.
When p = 2, we show that for a large class of groups, Arens regularity
will imply finiteness.

2. Preliminaries. Let G be a locally compact group with a fixed left
Haar measure 4. For 1 < p < o0, let L,(G) be the usual Banach
space of equivalence classes of p-integrable (or essentially bounded)
functions on G. The algebras A4,(G) for 1 < p < oo will be as
defined in §1. When p =2 we will write A(G) for 4,(G).

For 1 < p < o0, let PF,(G) and PM,(G) denote the closure of
L,(G), considered as an algebra of convolution operators on L,(G),
with respect to the norm topology and the weak operator topology
respectively in % (Ly(G)), the bounded operators on L,(G). The
space PM,(G) can be identified with the dual of A4,(G) for each
1 <p<oo [see 19, p. 94].
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218 BRIAN FORREST

Let B,(G) denote the space of multipliers of 4,(G). Then B,(G)
with the norm

lulls,(6) = sup{lluvll4 o)|v € 4p(G), [Vl <1}

is a commutative Banach algebra with respect to pointwise multipli-
cation.

Let A C G be closed. We will denote by I,(A4) the closed ideal of
Ap(G) of the form {u € 4,(G)|lu(x) = 0 for every x € A}. Given
an ideal I C 4,(G), we denote by Z(I) the set {x € Glu(x) =0 for
every uel}. ‘

Let & be a Banach algebra. Then &/** can be be given two multi-
plications which extend the multiplication of . and for which & **
becomes a Banach algebra. These products were introduced by Arens
in [1]. They are defined as follows:

(1a) (u-T,v)= (T, vu) forevery u,vew, T € &**,

(1) (TeTl',u)=(I',u-T) forevery ues/, Tex*, ' e ™,

(Ic) (ThoI,, TY=(I',, TETI) forevery Tew*, I'1, I e ™,

(2a) (TOu, v) = (T, uv) forevery u,vey , T eL*,

(2b) (IDT, u) =(I', TOu) forevery ue ¥ , T eZ*, I e &/**,

(2c) (IiO@,, T) =(I";, IL,OT) forevery Tew*, T, e r**.

In general, I'y ©I', = I',00I';, may fail for some I';, I, € &7** . If
I'iel, =I',00, forevery I'j, I'; € &, then & is said to be Arens
regular.

Let &/ be a commutative Banach algebra. Then w - T = TOu.
Hence &/* becomes a commutative Banach .o/-bimodule. Moreover,
& 1is Arens regular if and only if &/** is commutative with respect to
either, and hence both, of the Arens products.

We call T € &* weakly almost periodicif &(T) = {u-T|||u|l» < 1}
is relatively weakly compact. T is uniformly continuous if T is in the
norm closure of span{u-Ti|ju €&, T} € ¥*}. When & = 4,(G),
we denote the weakly almost periodic functionals by W},(G) and the
uniformly continuous functionals by U CBP(G) (see [9]).

A locally compact group G is amenable if there exists m € Lo, (G)*
such that m(1l) = |m|| = 1 and m(L,f) = m(f) where Ly f(y) =
f(x~'y) forevery x, y € G. The functional m is called a left invari-,
ant mean on L. (G). All commutative locally compact groups and all*
compact groups are amenable. F,, the free group on two generators,
1s not amenable.

A functional m € PM,(G)* is called a topologically invariant mean
on PM,(G) if ||m| = 1 and m(uT) = u(e)m(T) forevery u € A,(G),
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T € PM,(G) . For any locally compact group it is known that PM,(G)
has a T.I.M. [9, Proposition 2]. We can speak of a topologically invari-
ant mean on any closed A4,(G)-submodule of PM,(G) which contains
the functional L, (L.(u) = u(e)). It is known that W},(@) always
has a unique invariant mean [9, Proposition 9].

A Banach space X has the Radon-Nikodym Property of R.N.P. if
every closed convex bounded subset C C X is dentable. That is, for
every ¢ > 0 there exists x € C such that x ¢ ¢o{C\B,(x)} where
B.(x) ={y € X|||x —y|| < €}. See [23, §2] for further information on
the R.N.P.

3. Arens regularity. We begin with the following useful lemma.

LeEMMA 3.1. Let G be a locally compact group for which Ap(G) is
Arens regular. Then

(i) If I is a closed ideal of A,(G), then I is Arens regular.
(ii) If H is a closed subgroup of G, then Ap(H) is Arens regular.
(iii) If K is a compact normal subgroup of G, then A,(G/K) is
Arens regular.

Proof. (1) This follows from [4, p. 312, Corollary].

(ii) By appealing to [13] and by the following the arguments of
[8, Lemma 3.8], we can show that 4,(H) is isometrically isomorphic
to A4,(G)/I,(H). Hence by [4, p. 312, Corollary], 4,(G) is Arens
regular.

(iii) Ap(G/K) is isometrically isomorphic to the closed subalgebra
of A,(G) consisting of functions which are constant on cosets of K
[13, Proposition 6]. The Arens regularity of 4,(G/K) now follows
immediately from [4, p. 312, Corollary] o

THEOREM 3.2. Let G be a locally compact group for which A,(G)
is Arens regular. Then G is discrete.

Proof. We first assume that G is separable. If A4,(G) is Arens
regular, then WI,(G) = PM,(G). Hence UCBP(G) - Wp(é) and G is
discrete by [9, Theorem 16].

Let G be an arbitrary locally compact group. Let U be an open
neighborhood of {e¢} in G with compact closure. Then U generates
an open g-compact subgroup Gy of G. By Lemma (3.1)(i1), 4,(Go)
is also Arens regular. Since G, is compactly generated either G, is
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discrete and we are done or there is a compact normal subgroup K
in Gy such that A(K) =0 and Gy/K is separable.

Assume the latter to be true. By Lemma 3.1(i1), 4,(Go/K) is
Arens regular. But Gy/K is separable and therefore must be discrete.
Thus K is an open subgroup which contradicts the assumption that
A(K) =0. Hence Gy must be discrete. Consequently, so must G be
discrete. o

The next result generalizes [15, Theorem 3.7]. The proof is similar.

LEMMA 3.3. Let G be a locally compact group. Then A,(G) is an
ideal in PM,(G)* if and only if G is discrete.

Proof. Assume first that G is discrete. Then UCB,(G) = PF,(G)
[9, Proposition 15]. Let u € Ap(G) and m € PMy(G)*. Let T €
PM,(G). Then

(mou, T)=(m, uT)
= (v, uT) for some v € W,(G) = PF,(G)*
=(vu,T).

Therefore m © u = vu € 4,(G). Also, (uom,T)=(u, moT) =
(m, uT)=(mou, T), so A,(G) is in the center of PM,(G)*. There-
fore A,(G) is a closed two-sided ideal in PM,(G)*.

Conversely, assume that 4,(G) is an ideal in PM,(G)*. Let ug €
A,(G) with u(e) =1= ([u[|AP(G). Let

K = {mouyjme PM,(G)*, m(L,) =1=|m]|}.

Since m — m © uy is weak-* to weak-+ continuous {m € PM,(G)*|
m(Le) =1 =|m||} is weak-+ compact, sois K. But K C 4,(G), so
K is weakly compact in A4,(G). It is also clearly convex.

For each v € 4,(G) with v(e) = ||u||Ap(G) = 1, define the operator
I'y on K by I'y(w) = vw, for every w € K. The operators I,
are pairwise commuting and (K, weak) to (K, weak) continuous.
By the Kakutani-Markov fixed point theorem [8, p. 458], there exists
some vy € K such that I',(vg) = vo for every v € 4,(G) with
||v||Ap(G) =v(e) = 1. Thatis, vvyg = vg. Since vy € K, vo(e) = 1.
Let x € G ~ {e}. Then there exists v; € 4,(G) with vj(e) =
1 = ||1)1HA”(G) while v,(x) = 0. Therefore vg(x) = v1(x)vo(x) = 0.
Hence vy = 1y and G is discrete. O
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PROPOSITION 3.4. Let G be a locally compact group for which Ap(G)
is Arens regular. If G is amenable, then PM,(G) has the Radon-
Nikodym Property.

Proof. Since A4,(G) is Arens regular, 4,(G) is a two-sided ideal in
its second dual. Since G is amenable, 4,(G) has a bounded approx-
imate identity. It follows from [23, Corollary 3.2], that PM,(G) has
the Radon-Nikodym Property. O

PROPOSITION 3.5. Let G be a locally compact group for which Ap(G)
is Arens regular. Assume that G is amenable. Then the following are
equivalent:

(1) Ap(G)is weakly sequentially complete,

(ii) G is finite.

Proof. (i) — (ii). If 4p(G) is weakly sequentially complete and G
is amenable, then by [23, Corollary 3.9] 4,(G) is reflexive. It follows
from [11, Theorem 4], that A4,(G) is finite dimensional and hence G
1s finite.

(i) — (1). If G is finite 4,(G) is finite dimensional. 0

COROLLARY 3.6. Let G be an amenable locally compact group.
Then A(G) is Arens regular if and only if G is finite.

Proof. Since A,(G) = A(G) is the predual of a von Neumann alge-
bra, it is weakly sequentially complete. If 4(G) is Arens regular, then
G 1s finite by Proposition 3.5.

Conversely, if G is finite, then 4(G) is reflexive. Hence A(G)** =
A(G) is commutative. Therefore 4(G) is Arens regular. ]

Corollary 3.6 is due to Lau and Wong [17]. They consider only the
case of amenable groups where it is known that W,,(G) - UCBP(G) [9,
Proposition 14]. For non-amenable groups, it is not known whether
the above inclusion holds even for p = 2 and for G discrete. For
p = 2, the following proposition sheds some light on the non-amenable
case.

ProPoOsITION 3.7. Let G be a locally compact group for which A(G)
is Arens regular. Let H be an amenable subgroup of G. Then H is
finite. In particular, G is periodic.

Proof. By Lemma 3.1(ii), A(H) is Arens regular. Hence by Corol-
lary 3.6, H is finite.
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Let x € G. Then H = (x), the subgroup generated by x is com-
mutative and hence amenable. Therefore H is finite and G is peri-
odic. o

COROLLARY 3.8. Let G be a discrete group which contains the free
group on 2 generators. Then A(G) is not Arens regular.

One of the most famous conjectures in the study of amenable groups
was that a discrete group G would be amenable if and only if G did
not contain a subgroup isomorphic to the free group on 2 generators.
Ol'shanskii [18] has proved this conjecture to be false by constructing a
non-amenable group G for which every non-trivial proper subgroup is
infinite cyclic. It follows from Proposition 3.7 that 4(G) is not Arens
regular for this G. The natural question which arises is: Are there
non-amenable periodic groups without infinite amenable subgroups?

Let 2 be a class of groups such that if G € 2, then any ho-
momorphic image of G also belongs to 2. A group H is called a
hyper-2’-group if every homomorphic image H; # {e} of H has a
normal Z’-subgroup N # {e}.

ProrosITION 3.9. Let G be a discrete group which satisfies any of
the following conditions:

(i) G is locally finite,

(i) G is isomorphic to a subgroup of GL(n,F) for some n and
any field F,

(iii) G is a 2-group,

(iv) G is hyperfinite,

(v) G has an involution x with |Cg(x)| < o0,

(vi) G is hypercentral.

Then A(G) is Arens regular if and only if G is finite.

Proof. (i) If G is locally finite, then every finitely generated sub-
group is finite and hence amenable. Therefore G is amenable [see 19,
p. 121] and the result follows from Corollary 3.6.

(i) If A(G) is Arens regular, then G is periodic. Hence G is
locally finite [15, p. 60].

(iii) If G is an infinite 2-group, then G has an infinite abelian
subgroup [15, p. 72]. Therefore A(G) is not Arens regular.

(iv) Assume that G is hyperfinite and that A(G) is Arens regular.
Then by (iii) every elementary abelian 2-subgroup is finite. Hence G
is finite [15, p. 6].
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(v) If G isinfinite, then [15, 2.1 Theorem] implies that G contains
an infinite abelian subgroup which is impossible.

(vi) If G is hypercentral, then G is locally nilpotent [15, p. 10]
and hence amenable. (]

For p # 2, we are unable to show that UCB,(G) = PM,(G) implies
that G is compact. Though we believe this to be true, this still remains
the main stumbling block preventing the extension of Corollary 3.6 for

p#2.

ProrosiTiON 3.10. Let G be an amenable locally compact group.
Then G is discrete and A,(G) is Arens regular if and only if PM,(G)*

Proof. Assume that PM,(G)* = B,(G). Then since A4,(G)** is
commutative, 4,(G) is Arens regular. Hence G is discrete, by The-
orem 3.2. R

Conversely, if G is discrete, then UCB,(G) = PF,(G). If G is
Arens regular, then PF,(G) = PM,(G). Hence PM,(G)* = B,(G) as
a Banach space. Let u, v € B,(G). Let f € /,(G). Then (uov, f) =
(u,vf) = fuvfdx = (uv, f). Since PM,(G) = PF,(G), li(G)
is norm dense in PM,(G). Therefore u © v = uv and the Arens
multiplication agrees with the pointwise product on B,(G). O

ProrPoSITION 3.11. Let G be a countable amenable discrete group.
If Ap(G) is Arens regular, then PM,(G) is separable.

Proof. By Proposition 3.4, PM,(G) has the R.N.P. However, since
G is countable, 4,(G) is separable. It follows that PM,(G) is also
separable [see 23, §2]. o

When p =2, PM,(G) is a von Neumann algebra. Since a separable
von Neumann algebra is well known to be finite dimensional, we have
another proof of Corollary 3.6. This follows since an infinite group
must always have a countable infinite subgroup.

For amenable groups PM,(G) can be identified with the multipliers
of L,(G), that is, the algebra of all operators on L,(G) which com-
mute with convolution. The assumption of Arens regularity of 4,(G)
implies that the closure of L;(G) is the same with respect to both the
norm topology and the weak operator topology on B(L,(G)). This
would seem to suggest that L,(G) is finite dimensional and therefore
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that G is finite. We are left to ponder the following two questions:

PrOBLEM 1. If P,(G) is separable for some 1 < p < o0, is G
necessarily finite?

PROBLEM 2. If L (G) is norm dense in PM,(G), is G necessarily
finite?

Let G be a discrete group. Let {x;, ..., X,} = 4 be a finite subset
of G. Then I,(G\A) is a closed finite dimensional ideal in A4,(G)
and is therefore Arens regular. Moreover, I,(G\A) has an identity. -

Conversely, if a non-zero closed ideal in A4,(G) is Arens regular,
then this will be shown below to be sufficient to insure that G is dis-
crete. If, in addition, we assume that / has a bounded approximate
identity, then we will also show that I is reflexive and therefore infi-
nite codimensional.

THEOREM 3.12. Let G be a locally compact group. Let I be a
closed non-zero ideal in A,(G). Assume that I is Arens regular. Then
PM,(G) has a unique topologically invariant mean.

Proof. Let Z(I) = A C G. Since I is non-zero, A # G. Therefore
G\A is open. By translating if necessary, we can assume that G\A is
a neighborhood of e.

Let M € TIM,(G). Let T € I*. We can find u € 4,(G) such
that u € and u(e) = 1. It follows that (uT, v) = (T, uv) =0 for
every v € A(G). Hence uT = 0. Butthen 0 = m(uT) = u(e)ym(T) =
m(T). Therefore m € I++ . Since we can identify I++ with I**, we
have TIM,(G) C I**.

Assume that m;, m, € TIM,,(CA?). It is easy to see that m; O my =
m . In fact, given any T € PM,(G) and any u € 4,(G), we have that
(Temy, u) = (my, uT) = u(e)(m;, T). Hence TOm; = (my, T)L,.
Finally, (m;0m,, T) = (my, TOmy) = (my, T)(my, L,) = {my, T).
However, since I is Arens regular, I** is commutative. Therefore
m=mOoOmy=mQom=m,. 0O

CoRrOLLARY 3.13. Let G be a second countable locally compact
group. Let I be a closed non-zero ideal in A(G). If I is Arens regular;
then G is discrete.

Proof. By Theorem 3.12, PM,(G) has a unique topologically in-
variant mean. Consequently, G is discrete [10, Theorem 1]. o
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ProrosITION 3.14. Let I be a proper closed ideal in A(G) with a
bounded approximate identity. Then I is Arens regular if and only if
I is reflexive.

Proof. A reflexive ideal is clearly Arens regular.

Conversely, assume that I is Arens regular. Then G is a discrete
group. As I has a bounded approximate identity, Cohen’s Factoriza-
tion Theorem [14, Corollary 32.26] implies that I = I? = {uv|u, v €
I}. Therefore IoI** = (I-I)o(I*+) CIo(IoA(G)*)CI-A(G)CI.
Hence I is an ideal in I**. Also, since A(G) is weakly sequentially
complete, I is weakly sequentially complete. It follows from [23,
Corollary 3.7] and [23, Corollary 3.9] that I is reflexive. DO

With Corollary 3.6 in mind, one might ask whether it is possible to
have infinite dimensional ideals I which are Arens regular or reflex-
ive. In [11, Theorem 5], Granirer shows that while in a non-discrete
group A»(G) has no non-zero reflexive ideals, (a fact that follows im-
mediately from Corollary 3.13), every infinite discrete group is such
that 4,(G) contains an ideal isomorphic to /;.

We close this section with some results on the Arens regularity of
some related Banach algebras.

ProposITION 3.15. Let G be a locally compact group. Let &/ =
(B(G) N AP(G), || - llpg)). Then & is Arens regular if and only if
AP(G) is finite dimensional.

Proof. &/ is isometrically isomorphic to A(G®), where G? de-
notes the almost periodic compactification of G [7, p. 203]. Since
G? is a compact group, it is amenable. Therefore ./ is Arens regu-
lar if and only if G?P is finite. But G is finite if and only if AP(G)
is finite dimensional.

The converse is obvious. o

COROLLARY 3.16. Let G be a locally compact group. If B(G) is
Arens regular, then AP(G) is finite dimensional.

Observe that AP(G)NB(G) is precisely the space of coefficient func-
tions of the representation of G obtained by lifting the left regular
representation of G? to G. In this case, the representation is such
that its coefficient functions form an algebra. For a general represen-
tation n of G, this is so if and only if 7 ® 7 is quasi equivalent to
a sub-representation of the representation n [2, Proposition 3.26].
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Assume that G is a compact group. Let 7 be a continuous unitary
representation of G. Let &, denote the closed self-adjoint subalgebra
of A(G) generated by the coeflicients functions of n. Then we have
the following result:

ProposITION 3.17. Let G be a compact group. Let m be a continu-
ous unitary representation of G. Then A, is Arens regular if and only
if kerm is open.

Proof. s, is isometrically isomorphic with 4(G/ ker z) [23]. Clear-
ly G/kern is finite if and only if kerz is open. The result follows
immediately from Corollary 3.6. o

COROLLARY 3.18. Let G be compact and connected. Then < is
Arens regular if and only if © is the trivial representation.

We wish to bring the reader’s attention to two related results in
the literature which unfortunately contain errors. The first result is
the equivalence of the unique invariant mean on PM,(G) with the
discreteness of G. The proof of this result is usually attributed to
Renaud [22]. However the proof of [22, Proposition 8] contains a se-
rious error which may well be impossible to repair. It would therefore
appear that at present the equivalence of the discreteness of G with
the existence of a unique invariant mean requires the assumption of
second countability.

Secondly, in example 7.2 (b) of the deep paper [21], it is mistakenly
stated that for every compact group A4,(G) is Arens regular.
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