THE SPACE OF INFINITE-DIMENSIONAL COMPACTA AND OTHER TOPOLOGICAL COPIES OF \((l_j^2)^\omega\)

JAN DIJKSTRA, JAN VAN MILL AND JERZY MOGILSKI
THE SPACE OF INFINITE-DIMENSIONAL COMPACTA
AND OTHER TOPOLOGICAL COPIES OF \((l^2_f)^\omega\)

J. J. DIJKSTRA, J. VAN MILL, AND J. MOGILSKI

To Doug Curtis, on the occasion of his retirement

We show that there exists a homeomorphism from the hyperspace
of the Hilbert cube \(Q\) onto the countable product of Hilbert cubes
such that the \(\geq k\)-dimensional sets are mapped onto \(B^k \times Q \times Q \times \cdots\), where \(B\) is the pseudoboundary of \(Q\). In particular, the infinite-
dimensional compacta are mapped onto \(B^\omega\), which is homeomorphic
to the countably infinite product of \(l^2_f\). In addition, we prove for
\(k \in \{1, 2, \ldots, \infty\}\) that the space of uniformly \(\geq k\)-dimensional
sets in \(2^Q\) is also homeomorphic to \((l^2_f)^\omega\).

1. Introduction. If \(X\) is a compact metric space then \(2^X\) denotes
the hyperspace of \(X\) equipped with the Hausdorff metric. According
to Curtis and Schori [6] \(2^X\) is homeomorphic to the Hilbert cube \(Q\)
whenever \(X\) is a nontrivial Peano continuum.

Our primary interest is the subset of \(2^Q\) consisting of all infinite-
dimensional compacta. This space is an \(F_{\sigma\delta}\)-set in \(2^Q\) and one may
expect that it is homeomorphic to the countable product of the pre-
Hilbert space

\(l^2_f = \{x \in l^2 : x_i = 0\text{ for all but finitely many } i\}\).

We prove this conjecture. The space \((l^2_f)^\omega\) is in a sense maximal in the
class \(\mathcal{S}_{\sigma\delta}\) of absolute \(F_{\sigma\delta}\)-spaces and it has received a lot of attention
in recent years because of its topological equivalence to numerous
function spaces, see e.g. Dijkstra et al. [7].

For \(k \in \{0, 1, 2, \ldots, \infty\}\) we let \(\text{Dim}_{\geq k}(X)\) denote the subspace
consisting of all \(\geq k\)-dimensional elements of \(2^X\). We define
\(\text{Dim}_k(X)\) and \(\text{Dim}_{\leq k}(X)\) in the same way. Let \(\text{Dim}_{\geq k}(X)\) stand
for all uniformly \(\geq k\)-dimensional compacta in \(2^X\), i.e. spaces such
that every nonempty open subset is at least \(k\)-dimensional. The de-
default value here is \(X = Q\), i.e., \(\text{Dim}_{\geq k} = \text{Dim}_{\geq k}(Q)\) etc.

Let \(I\) stand for the interval \([0, 1]\). The Hilbert cube is denoted
by \(Q = \prod_{i=1}^{\infty} I\) with metric \(d(x, y) = \max\{2^{-i}|x_i - y_i| : i \in \mathbb{N}\}\).
The pseudointerior of \(Q\) is \(s = \prod_{i=1}^{\infty} (0, 1)\) and \(B = Q \setminus s\) is the
pseudoboundary.
Theorem 1.1. (a) There exists a homeomorphism \(\alpha \) from \(2^Q \) onto \(Q^N = \prod_{i=1}^{\infty} Q \) such that for every \(k \in \{0, 1, 2, \ldots \} \),

\[
\alpha(\text{Dim}_{\geq k}) = \underbrace{B \times \cdots \times B}_k \times Q \times Q \times \cdots .
\]

This implies that \(\alpha(\text{Dim}_\infty) = B^N \).

(b) There exists a homeomorphism \(\beta \) from \(2^Q \) onto \(Q^N \) such that for every \(k \in \{0, 1, 2, \ldots \} \),

\[
\beta(\text{Dim}_{\leq k}) = \underbrace{Q \times \cdots \times Q}_k \times s \times s \times \cdots .
\]

The pseudoboundary \(B \) is an absorber for the collection of \(\sigma \)-compacta \(\mathcal{J}_\sigma \). Furthermore, \(B^N \) is an absorber in \(Q^N \) for the collection \(\mathcal{J}_{\sigma \delta} \). For definitions see §2 and §3. The space \(B^N \) is homeomorphic to \((l_j^2)^\omega \). If \(Y \) is an \(\mathcal{J}_{\sigma \delta} \)-absorber in \(Q \), i.e., the pair \((Q, Y) \) is homeomorphic to \((Q^N, B^N) \), then we have the following:

Theorem 1.2. There exists a homeomorphism \(\alpha \) from \(2^Q \) onto \(Q^N \) such that for every \(k \in \{0, 1, 2, \ldots \} \),

\[
\alpha(\text{Dim}_{\geq k}) = \underbrace{Y \times \cdots \times Y}_k \times Q \times Q \times \cdots .
\]

This means that \(\overline{\text{Dim}}_{\geq k} \) is homeomorphic to \(B^N \) and \((l_j^2)^\omega \) for \(k \in \{1, 2, \ldots, \infty\} \).

In the final section we illustrate the power of the technique that we developed to prove the main theorems by applying the method to function spaces \(C_p(X) \).

For an explanation of undefined terminology see van Mill [12].

2. Absorbing systems. Let \(\Gamma \) be an ordered set and let \(\mathcal{M}_\gamma \) be a collection of spaces for each \(\gamma \in \Gamma \). Each \(\mathcal{M}_\gamma \) is assumed to be topological and closed hereditary. Let \(\mathcal{M} \) stand for the whole system \(\mathcal{M}_\gamma \). Let \(X = (X_\gamma)_{\gamma \in \Gamma} \) be an order preserving indexed collection of subsets of a topological copy \(E \) of \(Q \), i.e., \(X_\gamma \subseteq X_{\gamma'} \) if and only if \(\gamma \leq \gamma' \). The system \(X \) is called \(\mathcal{M} \)-universal if for every order preserving system \((A_\gamma)_{\gamma} \) in \(Q \) such that \(A_\gamma \in \mathcal{M}_\gamma \) for every \(\gamma \in \Gamma \), there is an embedding \(f: Q \to E \) with \(f^{-1}(X_\gamma) = A_\gamma \). The system \(X \) is called strongly \(\mathcal{M} \)-universal if for every order preserving system \((A_\gamma)_{\gamma} \) in \(Q \) such that \(A_\gamma \in \mathcal{M}_\gamma \) for every \(\gamma \in \Gamma \), and for every map \(f: Q \to E \)
that restricts to a Z-embedding on some compact set \(K \), there exists a Z-embedding \(g: Q \to E \) that can be chosen arbitrarily close to \(f \) with the properties: \(g|K = f|K \) and \(g^{-1}(X_\gamma) \setminus K = A_\gamma \setminus K \) for every \(\gamma \). The system \(X \) is called reflexively universal if for every map \(f: E \to E \) that restricts to a Z-embedding on some compact set \(K \), there exists a Z-embedding \(g: E \to E \) that can be chosen arbitrarily close to \(f \) with the properties: \(g|K = f|K \) and \(g^{-1}(X_\gamma) \setminus K = X_\gamma \setminus K \) for every \(\gamma \). Observe that \(X \) is strongly \(\mathcal{M} \)-universal whenever \(X \) is \(\mathcal{M} \)-universal and reflexively universal. If \(X_\gamma \in \mathcal{M} \) then the converse is also true.

The system \(X \) is called \(\mathcal{M} \)-absorbing if

1. \(X_\gamma \in \mathcal{M} \) for every \(\gamma \in \Gamma \),
2. \(\bigcup\{X_\gamma : \gamma \in \Gamma\} \) is contained in a \(\sigma Z \)-set of \(E \), and
3. \(X \) is strongly \(\mathcal{M} \)-universal.

This notion appears to be a successful synthesis of the \(Q \)-matrices technique of van Mill [11] and the generalized absorbers of Bestvina and Mogilski [2]. The power of the method we introduce here comes mainly from the relative ease of application.

As expected we have a uniqueness theorem for absorbing systems:

Theorem 2.1. If \(X \) and \(Y \) are both \(\mathcal{M} \)-absorbing systems in \(E \) respectively \(E' \) then \((E, X)\) and \((E', Y)\) are homeomorphic, i.e., there is a homeomorphism \(h: E \to E' \) such that \(h(X_\gamma) = Y_\gamma \) for all \(\gamma \in \Gamma \). If \(E = E' \) then the map \(h \) can be found arbitrarily close to the identity.

Proof. This is a standard back and forth argument. Obviously, we may assume that \(E = E' = Q \). Let \(\bigcup_\gamma X_\gamma \subset \bigcup_i A_i \) and let \(\bigcup_\gamma Y_\gamma \subset \bigcup_i B_i \), where \(\emptyset = A_0 \subset A_1 \subset A_2 \subset \cdots \) and \(\emptyset = B_0 \subset B_1 \subset B_2 \subset \cdots \) are sequences of Z-sets in \(Q \). By induction we shall construct sequences of homeomorphisms \(f_i: Q \to Q \) and \(g_i = f_i \circ \cdots \circ f_0 \) with the properties:

\[
A_i \cap X_\gamma = A_i \cap g_i^{-1}(Y_\gamma), \quad B_i \cap g_i(X_\gamma) = B_i \cap Y_\gamma, \quad f_i|\left(g_{i-1}(A_{i-1}) \cup B_{i-1}\right) = 1,
\]

where 1 denotes the identity map. Put \(f_0 = 1 \).

Assume that \(f_i \) has been constructed. Since \(X_\gamma \in \mathcal{M} \) and \(\mathcal{M} \) is topological and closed hereditary we have \(g_i(X_\gamma) \cap (g_i(A_{i+1}) \cup B_i) \in \mathcal{M} \). Put \(K = g_i(A_i) \cup B_i \) and observe that \(g_i(X_\gamma) \cap K = Y_\gamma \cap K \). Since \(Y \) is strongly universal we can find a Z-embedding \(\alpha: g_i(A_{i+1}) \cup B_i \to Q \) that fixes \(K \) and that has the property

\[
\alpha^{-1}(Y_\gamma) \cap g_i(A_{i+1}) = g_i(X_\gamma \cap A_{i+1}).
\]
Let \(\tilde{\alpha} \) be an extension of \(\alpha \) to a homeomorphism of \(Q \). Since \(\tilde{\alpha} \circ g_i(X) \) is just as \(X \) strongly universal we can find a \(Z \)-embedding \(\beta : \alpha \circ g_i(A_i) \cup B_{i+1} \to Q \) that fixes \(K' = \alpha \circ g_i(A_{i+1}) \cup B_i \) and that has the property

\[
\beta^{-1}(\tilde{\alpha} \circ g_i(X_y)) \cap B_{i+1} = Y_y \cap B_{i+1}.
\]

Let \(\tilde{\beta} \) be an extension of \(\beta \) to a homeomorphism of \(Q \). If we put \(f_{i+1} = \tilde{\beta}^{-1} \circ \tilde{\alpha} \) then one can easily verify the induction hypothesis for \(i+1 \). Since \(\tilde{\alpha} \) and \(\tilde{\beta} \) and hence \(f_{i+1} \) can be chosen arbitrarily close to the identity we may assume that \(h = \lim_{i \to \infty} g_i \) is a homeomorphism of \(Q \). The function \(h \) maps each \(X_y \) onto \(Y_y \).

3. Absorbing sequences in \(Q^N \). We shall now consider the special case that the system \(X \) is a decreasing sequence \(Q \supseteq X_1 \supseteq X_2 \supseteq \cdots \). Formally, this corresponds to choosing \(\Gamma = N \) with an inverted ordering. As a further simplification we assume that all the \(\mathcal{M}_\gamma \)'s are equal to a fixed \(\mathcal{M} \) and use the term \(\mathcal{M} \)-absorbing sequence. In addition, if \(\Gamma \) is a singleton then we call \(X \) an \(\mathcal{M} \)-absorber. Recall that the pseudoboundary \(B \) of \(Q \) is an \(\mathcal{T}_\sigma \)-absorber, where \(\mathcal{T}_\sigma \) is the collection of \(\sigma \)-compact spaces. Observe that if \(X \) is an \(\mathcal{M} \)-absorbing sequence and \(\mathcal{M} \) is closed under finite intersections then \(X_\infty = \bigcap_{i=1}^{\infty} X_i \) is an \(\mathcal{M}_\delta \)-absorber, where \(\mathcal{M}_\delta \) stands for the collection of countable intersections of elements of \(\mathcal{M} \).

Let \(X \) be a subset of \(Q \). We define three decreasing sequences of subsets of \(Q^N \):

\[
S_n(X) = \underbrace{X \times \cdots \times X}_n \times Q \times Q \times \cdots,
\]

\[
S'_n(X) = \{x \in Q^N : \text{at least } n \text{ of the } x_i \text{'s are in } X\},
\]

\[
S''_n(X) = \{x \in Q^N : x_i \in X \text{ for some } i \geq n\}.
\]

Note that \(S_n(X) \subset S'_n(X) \subset S''_n(X) \) and that \(S_\infty(X) = X^N \) and \(S'_\infty(X) = S''_\infty(X) \).

Theorem 3.1. If \(X \subset Q \) is strongly \(\mathcal{M} \)-universal then the sequences \(S(X), S'(X) \) and \(S''(X) \) are strongly \(\mathcal{M} \)-universal in \(Q^N \). If, in addition, \(\mathcal{M} \) is closed under finite intersections then \(X^N \) and \(S'_\infty(X) \) are strongly \(\mathcal{M}_\delta \)-universal.

Proof. Let \(\rho_n \) be a metric on \(Q \) such that

\[
\rho(x, y) = \max\{\rho_n(x_n, y_n) : n \in \mathbb{N}\}
\]
is a metric on Q^N. Consider a map $f: Q \to Q^N$ that restricts to a Z-embedding on some compactum K and a sequence $Q \supset A_1 \supset A_2 \supset \cdots$ of elements of \mathcal{M}. We may assume that f is a Z-embedding. Write $Q \setminus K$ as a union of compacta $(F_i)_{i=0}^\infty$ with $F_i \subset \text{int}(F_{i+1})$ and $F_0 = \emptyset$. Let $\varepsilon > 0$ and define the decreasing sequence $\varepsilon_i = \min\{2^{-i}\varepsilon, \frac{1}{2}\rho(f(K), f(F_i))\}$. Consider now the n-th component $f_n: Q \to Q$ of f. We shall construct a sequence $\alpha_0, \alpha_1, \ldots$ of functions from Q into Q with the following properties:

$$
\begin{align*}
\rho_n(\alpha_i, \alpha_{i-1}) &< \varepsilon_{i+1}, \\
\alpha_i|Q \setminus F_{i+1} &= f_n|Q \setminus F_{i+1}, \\
\alpha_i|F_i &\text{ is a } Z\text{-embedding,} \\
\alpha_i^{-1}(X) \cap F_i &= A_n \cap F_i.
\end{align*}
$$

Put $\alpha_0 = f_n$ and assume that α_i has been constructed. Using the strong \mathcal{M}-universality of X we find a Z-embedding $\beta: F_{i+1} \to Q$, close to $\alpha_i|F_{i+1}$, with $\beta|F_i = \alpha_i|F_i$ and $\beta^{-1}(X) = A_n \cap F_{i+1}$. Extend β to a map $\alpha_{i+1}: Q \to Q$ that restricts to f on $Q \setminus F_{i+2}$.

The α_i's obviously form a Cauchy sequence and we can define the continuous map $g_n = \lim_{i \to \infty} \alpha_i$. One may verify that g_n has the following properties:

$$
\begin{align*}
\rho_n(g_n, f_n) &< \varepsilon, \\
\text{if } x \in F_{i+1} \setminus F_i \text{ then } \rho_n(g_n(x), f_n(x)) &< \rho(f(K), f(F_{i+1})), \\
g_n|K &= f_n|K, \\
g_n|F_i &\text{ is a } Z\text{-embedding for every } i, \\
g_n^{-1}(X) \setminus K &= A_n \setminus K.
\end{align*}
$$

Define $g = (g_n)_n: Q \to Q^N$. Note that g is one-to-one and hence an embedding. The set $g(Q)$ is contained in the σZ-set $f(K) \cup \bigcup_{i=0}^\infty g_1(F_i) \times Q \times Q \times \cdots$ and is therefore a Z-set. The maps f and g are ε-close and $f|K = g|K$. Let $x \in Q \setminus K$. If x is an element of A_n then $x \in \bigcap_{j=1}^n A_j$. Consequently, we have $g_j(x) \in X$ for $j = 1, 2, \ldots, n$. This means that $g(x) \in S_n(X) \subset S'_n(X) \subset S''_n(X)$. On the other hand, if $g(x)$ is an element of $S''_n(X)$ then $g_j(x) \in X$ for some $j \geq n$ and hence $x \in A_j \subset A_n$. This completes the proof.

Consider now the pseudoboundary B of the Hilbert cube. This is an \mathcal{F}_σ-absorber in Q. The conditions (1) and (2) of the definition of absorbing system are trivially satisfied by $S(B)$, $S'(B)$ and $S''(B)$,
so we have:

Corollary 3.2. The sequences $S(B)$, $S'(B)$ and $S''(B)$ are \mathcal{F}_σ-absorbing and hence they are homeomorphic in \mathbb{Q}^N. Moreover, B^N and $S'_{\infty}(B)$ are $\mathcal{F}_{\sigma}\delta$-absorbers.

Consider the σ-Z-set

$$\sigma = \{ x \in \mathbb{Q} : x_i = 0 \text{ for all but finitely many } i \}.$$

It is well known that σ is homeomorphic to l^2_σ and that it is a so-called fd-capset in \mathbb{Q} or, in our terminology, an absorber for the strongly countable dimensional σ-compacta. It is easily verified by juggling coordinates that the system $S(\sigma)$ is homeomorphic to $S(B)$ in \mathbb{Q}^N and hence \mathcal{F}_σ-absorbing. Observe that the following systems are all homeomorphic: $S(\sigma)$ in \mathbb{Q}^N, $S(\sigma \times I)$ in $(\mathbb{Q} \times I)^N$, $S(\sigma) \times I^N$ in $\mathbb{Q}^N \times I^N$, $S(\sigma) \times \mathbb{Q}^N$ in $\mathbb{Q}^N \times \mathbb{Q}^N$, $S(\sigma \times \mathbb{Q})$ in $(\mathbb{Q} \times \mathbb{Q})^N$ and finally $S(B)$ in \mathbb{Q}^N.

We can take this one step further:

Corollary 3.3. If Y is an $\mathcal{F}_{\sigma}\delta$-absorber in \mathbb{Q} then the sequences $S(Y)$, $S'(Y)$ and $S''(Y)$ are $\mathcal{F}_{\sigma}\delta$-absorbing and hence they are homeomorphic in \mathbb{Q}^N. Moreover, Y^N and $S'_{\infty}(Y)$ are also $\mathcal{F}_{\sigma}\delta$-absorbers.

4. **The space of infinite-dimensional compacta.** In this section we prove Theorem 1.1. The following lemma is easily verified.

Lemma 4.1. If X and Y are compact spaces and if $F : X \to 2^Y$ is continuous then $G(A) = \bigcup \{ F(a) : a \in A \}$ defines a continuous map from 2^X into 2^Y.

Proposition 4.2. The sequence $(\text{Dim} \geq k)_{k=1}^\infty$ is reflexively universal in $2^\mathbb{Q}$.

Proof. Let $F : 2^\mathbb{Q} \to 2^\mathbb{Q}$ be a map and let K be a closed subset of $2^\mathbb{Q}$ such that $F|K$ is a Z-embedding. We may assume that F is a Z-embedding. Let $e : 2^\mathbb{Q} \to I$ be a map with the properties: $e^{-1}(0) = F(K)$ and $e(A) \leq d(A, F(K))/4$ for each $A \in 2^\mathbb{Q}$. According to Curtis [5] the finite sets in $2^\mathbb{Q}$ contain an fd-capset and hence there exists a deformation H_t of $2^\mathbb{Q}$ such that $H_0 = 1$ and $H_t(A)$ is finite for $t > 0$ and $A \in 2^\mathbb{Q}$. We may assume, moreover, that $d(H_t, 1) \leq 2t$ and that $H_t(A) \subset [0, 1 - t]^N$ for every t and A.
We shall use the vector addition and scalar multiplication operations that \(Q \) inherits from \(\mathbb{R}^N \). Define the homotopy \(\alpha_t: 2Q \to 2Q \) by

\[
\alpha_t(A) = \{0\} \cup \bigcup_{n=1}^{\infty} \left\{ \frac{1}{n} \right\} \times \frac{1}{n} \tilde{A},
\]

where \(\tilde{A} \) is the subset of \(\prod_{i=2}^{\infty} I \) that is obtained from \(A \) by a coordinate shift. Note that \(\alpha_t(A) \subset [0, t]^N \) and that \(\alpha_0(A) = \{0\} \). The map \(G: 2Q \to 2Q \) that approximates \(\iota \) is defined by

\[
G(A) = H_{\varepsilon(F(A))}(F(A)) + \alpha_{\varepsilon(F(A))}(A).
\]

The function \(G \) is continuous by Lemma 4.1 and the continuity of the homotopies \(H \) and \(\alpha \). Observe that \(d(G(A), F(A)) \leq 3\varepsilon(F(A)) \) for every \(A \in 2Q \). If \(A \in K \) then \(\varepsilon(F(A)) = 0 \) and hence \(G \) restricts to \(F \) on \(K \). Let \(A \) be an element of \(2Q \setminus K \). Then \(t = \varepsilon(F(A)) > 0 \) and hence \(H_t(F(A)) \) is finite. So \(G(A) \) is a finite union of translates of \(\alpha_t(A) \) and consequently a union of a finite set and a countable collection of copies of \(A \). This means that \(G \) preserves dimension and

\[
G^{-1}(\dim_{\geq k}) \setminus K = \dim_{\geq k} \setminus K.
\]

We shall now show that \(G \) is one-to-one. The restriction of \(G \) to \(K \) is obviously one-to-one. If \(A \in 2Q \setminus K \) then \(d(G(A), F(A)) \leq 3\varepsilon(F(A)) < d(F(K), F(A)) \) and hence \(G(A) \) is not in \(G(K) = F(K) \). For the remaining case let \(A, B \in 2Q \setminus K \) such that \(G(A) = G(B) \). Let \(\pi: Q \to I \) be the projection onto the first coordinate and define the positive numbers \(r = \varepsilon(F(A)) \) and \(t = \varepsilon(F(B)) \). Select a point \(y = (a, x) \in G(A) = G(B) \) such that \(a = \min(\pi(G(A))) = \min(\pi(G(B))) \). Note that \(y \) is an element of both \(H_r(F(A)) \) and \(H_t(F(B)) \). Since the latter sets are finite we can define \(\lambda > 0 \) as one half of the distance of \(y \) towards the other points in \(H_r(F(A)) \cup H_t(F(B)) \).

Let \(m \) and \(n \) be the first numbers that satisfy \(\frac{r}{m} \leq \lambda \) and \(\frac{t}{n} \leq \lambda \). We now have:

\[
(y + [0, \lambda]^N) \cap G(A) = \{y\} \cup \bigcup_{i=m}^{\infty} \{a + \frac{r}{m}\} \times (x + \frac{r}{m} \tilde{A})
\]

\[
= (y + [0, \lambda]^N) \cap G(B) = \{y\} \cup \bigcup_{i=n}^{\infty} \{a + \frac{t}{n}\} \times (x + \frac{t}{n} \tilde{B}).
\]

This implies:

\[
\{a + \frac{r}{m}\} \times (x + \frac{r}{m} \tilde{A}) = \{a + \frac{t}{n}\} \times (x + \frac{t}{n} \tilde{B}).
\]
This means that $\frac{r}{m} = \frac{i}{n}$ and $\frac{r}{m} \vec{A} = \frac{i}{n} \vec{B}$ and hence that $A = B$. So G is one-to-one and therefore an embedding.

Observe that $\pi(G(A))$ is countable if $A \in 2^Q \setminus K$ so $G(A)$ is nowhere dense in Q. Since $D_t(A) = \{x \in Q : d(x, A) \leq t\}$ is a deformation of Q through the complement of $G(2^Q \setminus K)$, we have that $G(2^Q \setminus K)$ is a σZ-set. Consequently, $G(2^Q) \subset F(K) \cup G(2^Q \setminus K)$ is a Z-set and G is a Z-embedding. This completes the proof.

Observing that G preserves many other properties we find for instance:

Corollary 4.3. The sequence $\overline{(\operatorname{Dim}\geq k)}_{k=1}^\infty$ is reflexively universal in 2^Q.

Corollary 4.4. The sequence consisting of the collections of compacta of cohomological dimension not less than k is reflexively universal in 2^Q.

Corollary 4.5. The transfinite sequence $\{A \in 2^Q : \operatorname{ind}(A) \geq \alpha\}_{\alpha<\omega_1}$ is reflexively universal in 2^Q.

Theorem 4.6. The sequence $(\operatorname{Dim}\geq k)_{k=1}^\infty$ is \mathcal{F}_σ-absorbing in 2^Q. Consequently, $\operatorname{Dim}_\infty$ is an $\mathcal{F}_{\sigma\delta}$-absorber.

Proof. Let $k, n \in \mathbb{N}$ and define

$\mathcal{G}_n = \{A \in 2^Q : \text{there is in } Q \text{ a finite open cover of } A \text{ with mesh } \leq 1/n \text{ and order } \leq k\}$.

Obviously, \mathcal{G}_n is an open subset of 2^Q. Note that $\operatorname{Dim}\geq k = Q \setminus \bigcap_{n=1}^\infty \mathcal{G}_n$ is therefore an F_σ-set. According to Curtis [5] the finite sets in 2^Q contain an \mathcal{F}-capset and hence $\operatorname{Dim}_{\geq 1}$ is a σZ-set.

In view of Proposition 4.2 it suffices to show that the system is \mathcal{F}_σ-universal. The space $\operatorname{Dim}_1(I)$ is an \mathcal{F}_σ-absorber in the Hilbert cube 2^I. This can be found essentially in Kroonenberg [10] if we note that $H_t(A) = \{x \in I : d(x, A) \leq t\}$ is a deformation of 2^I through $\operatorname{Dim}_1(I)$, see also [1]. So the pair $(2^I, \operatorname{Dim}_1(I))$ is homeomorphic to (Q, B). Corollary 3.2 now guarantees that $S'(\operatorname{Dim}_1(I))$ is an \mathcal{F}_σ-absorbing sequence in $(2^I)^\mathbb{N}$. Define the embedding $\alpha : (2^I)^\mathbb{N} \to 2^Q$ by $\alpha((P_i)_{i=1}^\infty) = \prod_{i=1}^\infty P_i$. Since $\prod_{i=1}^\infty P_i$ is k-dimensional if and only if precisely k of the P_i's are in $\operatorname{Dim}_1(I)$, we have

$$\alpha^{-1}(\operatorname{Dim}_{\geq k}) = S'_k(\operatorname{Dim}_1(I)).$$
The sequence $\text{Dim}_{\geq k}$ is then \mathcal{F}_σ-universal because $S'(\text{Dim}_1(I))$ is.

We find Theorem 1.1 by combining Theorem 2.1, Corollary 3.2 and Theorem 4.6. The fact that $(2^Q, (\text{Dim}_{\geq k})_{k=1}^\infty)$ is homeomorphic to $(Q^N, S(B))$ means that there exists a homeomorphism $\alpha: 2^Q \to Q^N$ such that

$$\alpha(\text{Dim}_{\geq k}) = \underbrace{B \times \cdots \times B}_{k \text{ times}} \times Q \times Q \times \cdots.$$

This implies that $\alpha(\text{Dim}_\infty) = B^N$, which space is homeomorphic to $(l_2^f)^\omega$. Observe that in view of the remark following Corollary 3.2 it is also possible to find an α' with

$$\alpha'(\text{Dim}_{\geq k}) = \underbrace{\sigma \times \cdots \times \sigma}_{k \text{ times}} \times Q \times Q \times \cdots.$$

Comparing $(2^Q, \text{Dim}_{\geq k})$ with $(Q^N, S''(B))$ we find part (b) of Theorem 1.1. There exists a homeomorphism β from 2^Q onto Q^N such that for every $k \in \{0, 1, 2, \ldots\}$,

$$\beta(\text{Dim}_{\leq k}) = \underbrace{Q \times \cdots \times Q}_{k \text{ times}} \times s \times s \times \cdots.$$

Note that

$$\beta(\text{Dim}_k) = \underbrace{Q \times \cdots \times Q}_{k-1 \text{ times}} \times B \times s \times s \times \cdots$$

and hence the pair $(\text{Dim}_{\leq k}, \text{Dim}_k), 0 < k < \infty$, is homeomorphic to $(Q \times s, B \times s)$, i.e., Dim_k is a so-called Z-absorber in the topological Hilbert space $\text{Dim}_{\leq k}$.

Let $c\text{Dim}_{\geq k}$ stand for all elements of 2^Q with cohomological dimension at least k with respect to for instance the group \mathbb{Z}.

Question. Is $c\text{Dim}_{\geq k}$ σ-compact?

Observe that it follows from the proof of Theorem 4.6 that the sequence $c\text{Dim}_{\geq k}$ is \mathcal{F}_σ-universal. If the answer to the question is yes then we have in view of Corollary 4.4 and the fact $c\text{Dim}_{\geq 1} = \text{Dim}_{\geq 1}$ that $c\text{Dim}_{\geq k}$ is \mathcal{F}_σ-absorbing and $c\text{Dim}_\infty$ is homeomorphic to B^N.

5. Uniformly $\geq k$-dimensional compacta in 2^Q. This section is devoted to the proof of Theorem 1.2. Consider the following decreasing sequence of subsets of $(2^Q)^N$:

$$X_k = \{ P \in (2^Q)^N : P_i \in \text{Dim}_{\geq k} \text{ for infinitely many } i \}.$$
Lemma 5.1. The sequence \((X_k)_{k=1}^{\infty}\) is \(\mathcal{F}_{\sigma\delta}\)-universal.

Proof. Let \(A_1 \supset A_2 \supset \cdots\) be a sequence of \(F_{\sigma\delta}\)-sets in \(Q\). Choose \(\sigma\)-compact sets \(A_k^n\) such that \(A_k^{n+1} \cup A_k^n \subset A_k^n\) and \(A_k = \bigcap_{n=1}^{\infty} A_k^n\). Since \((\text{Dim}_{\geq k})_{k=1}^{\infty}\) is \(\mathcal{F}_{\sigma\delta}\)-universal, Theorem 4.6, there exist embeddings \(f_n: Q \to 2^Q\) such that \(f_n^{-1}(\text{Dim}_{\geq k}) = A_k^n\). Put \(f = (f_n)_n: Q \to (2^Q)^N\). If \(x \in A_k\) then \(x \in A_k^n\) for all \(n\). So \(f_n(x) \in \text{Dim}_{\geq k}\) for all \(n\) and hence \(f(x) \in X_k\). If \(x \notin A_k\) then \(x \notin A_k^n\) for some \(j\), so \(x \notin A_k^n\) for all \(n \geq j\). Consequently, \(f_n(x) \notin \text{Dim}_{\geq k}\) for all \(n \geq j\) and \(f(x) \notin X_k\).

Remark. One may use the method of Theorem 3.1 to show that \((X_k)_k\) is in fact \(\mathcal{F}_{\sigma\delta}\)-absorbing in \((2Q)^N\).

Proposition 5.2. The sequence \((\overline{\text{Dim}_{\geq k}})_{k=1}^{\infty}\) is strongly \(\mathcal{F}_{\sigma\delta}\)-universal.

Proof. In view of Corollary 4.3 it suffices to show that the sequence is \(\mathcal{F}_{\sigma\delta}\)-universal. We shall prove that the system \(X_k\) can be embedded in \(\overline{\text{Dim}_{\geq k}}\).

Let \(G\) stand for the compact, multiplicative subspace \(\{0\} \cup \{2^{-m} : m = 1, 2, \ldots\}\) of \(I\). According to Curtis [5] there exists a deformation \(H_t: 2^Q \to 2^Q\) such that \(H_0 = 1\) and \(H_t(A)\) is finite if \(t > 0\). Let \(P = (P_m)_{m=1}^{\infty}\) be an element of \((2^Q)^N\). We define the continuous function \(F: G \times (2^Q)^N \to 2^Q\) by

\[
F_0(P) = \{0\} \quad \text{and} \quad F_{2^{-m}}(P) = 2^{-m}P_m \cup \{0\}.
\]

We shall define inductively a sequence of compacta \((A_n)_{n=1}^{\infty}\) such that

\[
A_n \subset (G \times Q)^{n-1} \times G,
\]

i.e., the \(n\) odd coordinates are in \(G\) and the \(n-1\) even ones in \(Q\). Put \(A_1(P) = G\) and

\[
A_{n+1}(P) = \bigcup \{(x, a) \times H_{ab}(F_a(P)) \times \{ab\} : (x, a) \in A_n(P) \text{ and } b \in G\}.
\]

Here \((x, a) \in A_n\) means that \(x \in (G \times Q)^{n-1}\) and \(a \in G\). Note that since \(ab < a\) the odd components of the points in \(A_n\) form a decreasing sequence. Applying Lemma 4.1 we find that every \(A_n\) is a compactum that depends continuously on \(P\). We identify each \(A_n\) with its copy \(A_n \times \{(0, 0, \ldots)\}\) in \((G \times Q)^N \subset (I \times Q)^N\). The Hilbert
cube \(Q' = (I \times Q)^N \) is equipped with the metric \(\rho = \max_{i \in \mathbb{N}} \rho_i \), where \(\rho_{2j-1} \) is a standard metric on \(I \) that is bounded by \(2^{-2j+1} \) and \(\rho_{2j} \) is a standard metric on \(Q \) that is bounded by \(2^{-2j} \). Observe that \(\pi_n(A_{n+1}) = A_n \), where \(\pi_n \) is the projection from \(Q' \) onto \((I \times Q)^{n-1} \times I \). This implies that \(\rho(\pi_n, 1) \leq 2^{-2n} \) and \(\rho(A_n, A_{n+1}) \leq 2^{-2n} \) so that \((A_n(P))_{n=1}^{\infty} \) is a Cauchy sequence of maps. So \(\alpha(P) = \lim_{n \to \infty} A_n(P) \) defines a continuous map from \((2^Q)^N \) into \(2^Q \). In addition, we find that \(\alpha(P) = \bigcap_{n=1}^{\infty} \pi_n^{-1}(A_n) \). Since 0 is an element of every \(F_i(P) \) we have \(A_n \subseteq A_{n+1} \). This implies that \(\alpha(P) \) is the closure of \(Y = \bigcup_{n=1}^{\infty} A_n \) in \(Q' \).

We show by induction that
\[
A'_n = \{(x, a) \in A_n : a \neq 0\}
\]
is countable. This is obviously true for \(A'_1 \). Let \((x, a, p, ab) \) be an element of \(A'_{n+1} \). So \(ab \neq 0 \), \((x, a) \in A_n \) and \(p \in H_{ab}(F_a(P)) \). This implies \(a \neq 0 \) and \((x, a) \in A'_n \) and hence we have:
\[
A'_{n+1} = \bigcup \{((x, a) \times H_{ab}(F_a(P)) \times \{ab\} : (x, a) \in A'_n \text{ and } b \in G \setminus \{0\}\}.
\]
This is a countable union of finite sets because \(H_{ab}(F_a(P)) \) is finite if \(ab \neq 0 \). Consequently, the set \(A'_{n+1} \) is countable.

Assume that \(P \notin X_k \). We shall prove that 0 has a neighbourhood in \(\alpha(P) \) with dimension less than \(k \). Since \(P \notin X_k \) there exists an \(m \) such that \(\dim(P_i) < k \) for all \(i \geq m \). So if we put \(c = 2^{-m} \) then \(\dim(F_a(P)) < k \) for \(a \leq c \). Let \(C \) consist of all points in \(Q' \) whose first component is less than or equal to \(c \). We shall prove inductively that \(\dim(A_n \cap C) < k \). Obviously, we have \(\dim(A_1 \cap C) = 0 \). Assume that \(\dim(A_n \cap C) < k \) and consider
\[
A_{n+1} \cap C = \bigcup \{((x, a) \times H_{ab}(F_a(P)) \times \{ab\} : (x, a) \in A_n \cap C \text{ and } b \in G\}.
\]
If \(a = 0 \) then \(ab = 0 \) and \(H_{ab}(F_a(P)) = \{0\} \). Consequently, we have:
\[
A_{n+1} \cap C = (A_n \cap C) \cup \bigcup \{((x, a) \times H_{ab}(F_a(P)) \times \{ab\} : (x, a) \in A'_n \cap C \text{ and } b \in G\}.
\]
Note that the \(H_{ab}(F_a(P)) \) in this expression is either finite or homeomorphic to \(F_a(P) \). Since the odd components of points form a decreasing sequence in \(G \) we have that \(a \leq c \) whenever \((x, a) \) is a
point in $A_n \cap C$. So every $F_a(P)$ is less than k-dimensional. Since A'_n is countable, the set $A_{n+1} \cap C$ is a countable union of $< k$-dimensional compacta and therefore $\dim(A_{n+1} \cap C) < k$. Note that $\alpha(P) \cap C = \bigcap_{n=1}^{\infty} \pi^{-1}_n(A_n \cap C)$. Since $\pi^{-1}_n(A_n \cap C)$ is the product of a $< k$-dimensional compactum and a Hilbert cube of diameter $\leq 2^{-2n}$, there is for every n an open cover of $\pi^{-1}_n(A_n \cap C)$ (and hence of $\alpha(P) \cap C$) with mesh $\leq 2^{-2n}$ and order $\leq k$. Consequently, we have $\dim(\alpha(P) \cap C) < k$ and

$$\alpha(P) \notin \overline{\dim}_{\geq k}(Q').$$

Consider now the case $P \in X_k$. This means that $\dim(F_a(P)) \geq k$ for infinitely many $a \in G$. Let $(x, 0) \in A_n$. We show by induction that A_{n+1} is at least k-dimensional at this point, i.e., every neighbourhood of the point in A_{n+1} has dimension no less than k. First, consider $0 \in A_1$. We have:

$$A_2 = \bigcup_{a, b \in G} \{a\} \times H_{ab}(F_a(P)) \times \{ab\}.$$

Selecting $b = 0$ we find

$$\lim_{a \to 0} \{a\} \times H_0(F_a(P)) \times \{0\} = \lim_{a \to 0} \{a\} \times F_a(P) \times \{0\} = \{0\}$$

and hence A_2 is $\geq k$-dimensional at 0.

Assume that the induction hypothesis is valid for points $(x, 0)$ in A_n. If $(y, 0) \in A_{n+1}$ then $y = (x, a, p)$, where $(x, a) \in A_n$ and $p \in H_0(F_a(P)) = F_a(P)$. If $a = 0$ then $F_a(P) = \{0\}$ and $p = 0$. This means that $(y, 0) = (x, 0, 0, 0) \in A_n$ and by induction A_{n+1} and therefore A_{n+2} are $\geq k$-dimensional at the point. If $a \neq 0$ then for $b, c \in G$ we have:

$$\{(x, a)\} \times H_{ab}(F_a(P)) \times \{ab\} \times H_{abc}(F_{ab})(P) \times \{abc\} \subset A_{n+2},$$

where we denote $F_{ab}(P)$ simply by F_a. Since $\lim_{b \to 0} H_{ab}(F_a) = H_0(F_a) = F_a$ in 2^Q we can find points $p_b \in H_{ab}(F_a)$ such that $\lim_{b \to 0} p_b = p$. Selecting $c = 0$ we find

$$\lim_{b \to 0} \{(x, a, p_b, ab)\} \times F_{ab} \times \{0\} = \{(x, a, p, 0, 0, 0)\}.$$

Since F_{ab} is $\geq k$-dimensional for infinitely many b's we have that A_{n+2} is $\geq k$-dimensional at $(y, 0, 0, \ldots) = (x, a, p, 0, 0, \ldots)$. This completes the induction.

If x is an element of A_n then $(x, 0, 0)$ is in A_{n+1} and hence A_{n+2} is $\geq k$-dimensional at x. Consequently, the set $Y = \bigcup_{n=1}^{\infty} A_n$
is \(k \)-dimensional at each of its points. So its closure \(\alpha(P) \) is an element of \(\text{Dim}_{\geq k}(Q') \) and we have:

\[
\alpha^{-1}(\text{Dim}_{\geq k}(Q')) = X_k.
\]

This does not quite complete the proof of Proposition 5.2 since \(\alpha \) is not one-to-one. This can easily be fixed, however. Define the map \(\beta \) from \((2^Q)^N \) into the hyperspace of \(Q'' = I \times Q' \times \prod_{i=1}^{\infty} Q \) by

\[
\beta(P) = (\{0\} \times \alpha(P) \times \{(0, 0, \ldots)\}) \cup (\{1\} \times Q' \times \prod_{i=1}^{\infty} P_i).
\]

The map \(\beta \) is obviously one-to-one and hence an embedding. Note that \(\beta(P) \) is a topological sum of a copy of \(\alpha(P) \) and a uniformly infinite-dimensional space, so we retain the property

\[
\beta^{-1}(\text{Dim}_{\geq k}(Q'')) = X_k.
\]

We may conclude that \((\text{Dim}_{\geq k}(Q''))^\infty_{k=1} \) is \(\mathcal{F}_{\sigma\delta} \)-universal just as \((X_k)_{k=1}^\infty \).

Theorem 5.3. The sequence \((\text{Dim}_{\geq k})(Q'')^\infty_{k=1} \) is \(\mathcal{F}_{\sigma\delta} \)-absorbing and \(\text{Dim}_{\infty} \) is an \(\mathcal{F}_{\sigma\delta} \)-absorber in \(2^Q \).

Proof. Note that \(\text{Dim}_{\geq 1} \) is contained in the \(\sigma Z \)-set \(\text{Dim}_{\geq 1} \). It remains to be shown that every \(\text{Dim}_{\geq k} \) is in \(\mathcal{F}_{\sigma\delta} \). Let \(\{O_i : i \in \mathbb{N}\} \) be a countable open basis for the topology of \(Q \) and let \(k \in \mathbb{N} \). Write every \(O_i \) as a countable union of compacta \(F_i^1 \subset F_i^2 \subset \cdots \). Define the collections

\[
\mathcal{G}_i^j = \{A \in 2^Q : \text{there is in } Q \text{ an finite open cover } \mathcal{U} \text{ of } A \cap F_i^j \text{ with mesh } \leq 1/j \text{ and order } \leq k\}.
\]

If \(A \in \mathcal{G}_i^j \) and \(\mathcal{U} \) is such a cover then put \(\epsilon = \rho(A, F_i^j \setminus \bigcup \mathcal{U}) \). Observe that if \(\rho(A, B) < \epsilon \) then \(B \cap F_i^j \) is also covered by \(\mathcal{U} \) and hence \(\mathcal{G}_i^j \) is open in \(2^Q \). So \(\mathcal{G}_i = \bigcap_{j=1}^{\infty} \mathcal{G}_i^j \) is a \(G_\delta \)-set. Since a countable union of \(k \)-dimensional compacta is again \(k \)-dimensional one easily verifies that an element \(A \) of \(2^Q \) is in \(\mathcal{G}_i \) if and only if \(\dim(A \cap O_i) < k \). The collection \(\mathcal{F}_i^j = \mathcal{G}_i \setminus \{A \in 2^Q : A \cap O_i = \emptyset\} \) is obviously also \(G_\delta \). Observe that \(\bigcup_{i=1}^{\infty} \mathcal{F}_i^j \) is precisely the complement of \(\text{Dim}_{\geq k} \) in \(2^Q \). This shows that \(\text{Dim}_{\geq k} \) is in \(\mathcal{F}_{\sigma\delta} \).

We find Theorem 1.2 by combining Theorem 2.1, Corollary 3.3 and Theorem 5.3. If \(Y \) is an \(\mathcal{F}_{\sigma\delta} \)-absorber in \(Q \) then there exists
a homeomorphism α from 2^Q onto Q^N such that for every $k \in \{0, 1, 2, \ldots\}$,

$$\alpha(\overline{\dim}_{\geq k}) = Y \times \cdots \times Y \times Q \times Q \times \cdots.$$

Note that $\overline{\dim}_{\geq k}$, $0 < k \leq \infty$, is an $\mathcal{F}_\sigma\delta$-absorber and hence homeomorphic to $B^\mathbb{N}$ and $(l_2^2)^\omega$.

6. Function spaces in the topology of pointwise convergence. In this section the Hilbert cube Q is represented by $\hat{\mathbb{R}}^N$, where $\hat{\mathbb{R}}$ stands for the compactification $[-\infty, \infty]$. Consequently, \mathbb{R}^N is the pseudointerior of Q. If X is countable metric space then $C_p(X)$ denotes the space of continuous, realvalued functions on X endowed with the topology of pointwise convergence. Define the following subspaces of \mathbb{R}^N:

$$c_0 = \left\{ x \in \mathbb{R}^N : \lim_{i \to \infty} x_i = 0 \right\}$$

and for $n \in \mathbb{N}$

$$\Sigma_n = \left\{ x \in \mathbb{R}^N : |x_i| \leq 2^{-n} \text{ for all but finitely many } i \right\}.$$

Observe that $\Sigma = (\Sigma_n)_n$ is a decreasing sequence of σZ-sets in Q with the property that its intersection is c_0. The aim of this section is to show that c_0 and $C_p(X)$ are $\mathcal{F}_\sigma\delta$-absorbers in the Hilbert cubes $\hat{\mathbb{R}}^N$ respectively $\hat{\mathbb{R}}^X$. This is an improvement over the result of Dobrowolski, Gul\'ko and Mogilski [8] and, independently, Cauty [3] that c_0 and $C_p(X)$ are homeomorphic to $(l_2^2)^\omega$.

Proposition 6.1. The system Σ is \mathcal{F}_σ-universal in Q.

Proof. We shall use the following fact: if A is an \mathcal{F}_σ-absorber in Q and A' is a σZ-set then for every σ-compactum C in Q there is an embedding $f: Q \to Q$ such that $f^{-1}(A) = C$ and $f(Q \setminus C) \cap A' = \emptyset$. This can be seen as follows. The proof of Theorem 2.1 shows that if $A_1 \supset A_2$ is an \mathcal{F}_σ-absorbing system in Q then there is a homeomorphism $h: Q \to Q$ such that $h(A) = A_2$ and $h(A') \subset A_1$. Such a system exists by Corollary 3.2 and it has the required property.

Let $A_1 \supset A_2 \supset \cdots$ be a sequence of σ-compacta in Q. Let α be a bijection from $\mathbb{N} \times \mathbb{N}$ onto \mathbb{N} and define $N_i = \{ \alpha(i, j) : j \in \mathbb{N} \}$. For every $i \in \mathbb{N}$ define the Hilbert cube $Q_i = [-2^{-i+1}, 2^{-i+1}]^N$. It is easily verified with the capset characterization theorem in Curtis [4] that

$$C_i = \{ x \in Q_i : |x_{\alpha(i, j)}| \leq 2^{k-j} \text{ for some } k \}$$
is an \mathcal{F}_σ-absorber in Q_i. Observe that for every $x \in C_i$ we have $\lim_{j \to \infty} x_\alpha(i, j) = 0$. Define in Q_i the σZ-set

$$D_i = \{x \in Q_i : |x_\alpha(i, j)| \leq 2^{-i} \text{ for all but finitely many } j \}.$$

Let $f_i : Q \to Q_i$ be an embedding such that $f_i^{-1}(C_i) = A_i$ and $f_i(Q \setminus A_i)$ does not meet D_i. Consider the embedding $f = (f_i)_{i \in \mathbb{N}} : Q \to \prod_{i=1}^\infty Q_i \subseteq Q$. Let $x \in A_n$. If $i > n$ then we have $f_\alpha(x) \in Q_i$ and hence all components of $f_\alpha(x)$ are in $[-2^{-n}, 2^{-n}]$. If $i \leq n$ then we have $x \in A_i$ and hence $f_\alpha(x) \in C_i$. Note that only finitely many components of $f_\alpha(x)$ are outside $[-2^{-n}, 2^{-n}]$ and hence only finitely many components of $f_\alpha(x)$ are outside this interval. This means that $f_\alpha(x)$ is an element of Σ_n. If $x \notin A_n$ then we have $f_\alpha(x) \notin D_n$. This means that infinitely many components of $f_\alpha(x)$ have absolute value greater than 2^{-n} and hence $f_\alpha(x) \notin \Sigma_n$. So we may conclude that $f^{-1}(\Sigma_n) = A_n$.

A subset A is locally homotopy negligible in X if for every map $f : M \to X$ from an absolute neighbourhood retract M and for every open cover \mathcal{U} of X there exists a homotopy $h : M \times [0, 1] \to X$ such that $\{h({\{x}\} \times [0, 1])\}_{x \in M}$ refines \mathcal{U}, $h(x, 0) = f(x)$ and $h(M \times (0, 1)) \subseteq X \setminus A$. According to Theorem 2.4 in Toruńczyk [13] A is locally homotopy negligible if the above condition is satisfied for $M = Q$.

For a space X and $* \in X$ we define the weak cartesian product

$$W(X, *) = \{x \in X^N : x_i = * \text{ for all but finitely many } i \}.$$

Let Γ be an ordered set. The following lemma is an adaptation to our needs of Proposition 3.2 in Dobrowolski, Gul'ko and Mogilski [8].

Lemma 6.2. Let $X = (X_\gamma)_{\gamma \in \Gamma}$ be an order preserving system in Q such that $Q \setminus \bigcap_{\gamma \in \Gamma} X_\gamma$ is locally homotopy negligible in Q and let $* \in \bigcap_{\gamma \in \Gamma} X_\gamma$. Assume that there exists a homeomorphism $\Phi : Q \to Q^N$ satisfying

$$W(X_\gamma, *) \subset \Phi(X_\gamma) \subset X^N_\gamma$$

for all $\gamma \in \Gamma$. Then X is reflexively universal.

Proof. Let $f : Q \to Q$ be a map that restricts to a Z-embedding on some compact set K and let $\epsilon : Q \to (0, 1)$ be a continuous function. We can assume that $f(Q \setminus K) \subseteq \bigcap_{\gamma \in \Gamma} X_\gamma \setminus f(K)$. We choose a metric d on Q^N so that $d(x, x') \leq 2^{-k-2}$ if x and x' agree on the first k
coordinates. Let \(e' \): \(\beta^N \to (0, 1) \) be a Lipschitz function such that if maps \(f_1, f_2 : Q \to Q^N \) are \(e' \)-close, then \(\Phi^{-1} \circ f_1 \) and \(\Phi^{-1} \circ f_2 \) are \(\epsilon \)-close. Define \(\delta : Q^N \to [0, 1) \) by \(\delta(x) = \min\{\epsilon(x), d(x, \Phi \circ f(K))\} \). Let \(\phi_i \) be the \(i \)-th component of the map \(\Phi \circ f \). By local homotopy negligibility of \(Q \setminus \bigcap_{\gamma \in \Gamma} X_\gamma \) there exists a homotopy \(h : [0, 1] \times Q \to Q \) with \(h(0, x) = x \), \(h((0, 1] \times Q) \subset \bigcap_{\gamma \in \Gamma} X_\gamma \) and \(h(1, x) = * \). Define a homotopy \(H_k : [0, 1] \times Q \to Q \) by

\[
H_k(t, x) = \begin{cases} h(2t - 2t^k, x), & \text{if } \frac{1}{2} \leq t \leq 1, \\ h_k(2t, x), & \text{if } 0 \leq t \leq \frac{1}{2}, \end{cases}
\]

where \(h_k : [0, 1] \times Q \to Q \) is a homotopy such that \(h_k((0, 1] \times Q) \subset \bigcap_{\gamma \in \Gamma} X_\gamma \), \(h_k(0, x) = \phi_k(x) \) and \(h_k(1, x) = * \). For \(x \in \{ y \in Q : 2^{-k-1} \leq \delta(\Phi \circ f(y)) \leq 2^{-k} \} \), \(k = 1, 2, \ldots \), define

\[
f'(x) = (\phi_1(x), \phi_2(x), \ldots, \phi_k(x), H_{k+1}(-k - \log_2 \delta(\Phi \circ f(x)), x), x, x, h(-k - \log_2 \delta(\Phi \circ f(x)), x), *, *, \ldots)
\]

and extend \(f' \) on \(K \) by \(f'|K = \Phi \circ f|K \). By the construction \(f' : Q \to Q^N \) is a continuous, one-to-one map which is \(\epsilon' \)-close to \(\Phi \circ f \). Moreover, \((f')^{-1}(X_\gamma^N) \setminus K = X_\gamma \setminus K \) and \(f'(X_\gamma \setminus K) \subset W(X_\gamma, *) \). Hence, the map \(g = \Phi^{-1} \circ f' \) is a \(Z \)-embedding which is \(\epsilon \)-close to \(f \) and satisfies \(g^{-1}(X_\gamma) \setminus K = X_\gamma \setminus K \).

Let \(\Phi : \hat{R}^N \to (\hat{R}^N)^N \) be any map that simply rearranges coordinates. It is easily seen that with this map the system \(\Sigma \) satisfies the conditions of Lemma 6.2. So we have:

Theorem 6.3. The system \(\Sigma \) is \(\mathcal{F}_\sigma \)-absorbing and \(c_0 \) is an \(\mathcal{F}_\sigma \delta \)-absorber in \(Q \).

The space \(R_f^N \) is defined as \(W(R, 0) \). This space is homeomorphic to \(l_2^f \) and furthermore the pair \((\hat{R}^N, R_f^N) \) is homeomorphic to \((I^N, \sigma) \). This means, according to §3 that there exists a homeomorphism \(\alpha : Q \to Q^N \) such that for every \(k \in N \),

\[
\alpha(\Sigma_k) = \underbrace{R_f^N \times \cdots \times R_f^N}_{k \text{ times}} \times Q \times Q \times \cdots.
\]

Consequently, \(c_0 \) is mapped by \(\alpha \) onto \((R_f^N)^N \). In [9, Question 6.11] the following problem is posed. Does there exist a homeomorphism from \(R^N \) onto \((R^N)^N \) that maps \(c_0 \) onto \((R_f^N)^N \)? Such a homeomorphism cannot exist because \(c_0 \) is contained in the \(\sigma \)-compactum
consisting of bounded sequences where as \((\mathbb{R}_{f}^{N})^{N}\) contains a copy of \(\mathbb{R}^{N}\) that is closed in \((\mathbb{R}^{N})^{N}\).

Lemma 6.4. If \(A\) is strongly \(\mathcal{M}\)-universal in \(Q\) and \(X\) is locally homotopy negligible in a compact absolute retract \(M\) then \(A \times (M \setminus X)\) is strongly \(\mathcal{M}\)-universal in \(Q \times M\).

Proof. This is similar to the proof of Theorem 3.1. Let \(f = (f_{1}, f_{2})\) be a Z-embedding of \(Q\) in \(Q \times M\). Let \(K\) and \(C\) be subsets of \(Q\) such that \(K\) is closed and \(C\) is an element of \(\mathcal{M}\). Select a map \(\varepsilon: Q \to I\) such that \(\varepsilon^{-1}(0) = K\) and \(\varepsilon(x) \leq \rho(f(x), f(K))\) for each \(x \in Q\). Just as in the proof of Theorem 3.1 we can find a map \(g_{1}: Q \to Q\) such that \(f_{1}\) and \(g_{1}\) are \(\varepsilon\)-close, \(g_{1}^{-1}(A) \setminus K = C \setminus K\), \(g_{1}|Q \setminus K\) is a one-to-one map whose range is a \(\sigma Z\)-set. Since \(X\) is locally homotopy negligible we can find a map \(g_{2}: Q \to M\) such that \(f_{2}\) and \(g_{2}\) are \(\varepsilon\)-close and \(g_{2}(Q \setminus K) \subset M \setminus X\). The map \(g = (g_{1}, g_{2})\) is a Z-embedding of \(Q\) into \(Q \times M\) with \(g|K = f|K\) and \(g^{-1}(A \times (M \setminus X)) \setminus K = C \setminus K\).

Theorem 6.5. If \(X\) is a countable, nondiscrete metric space then \(C_{p}(X)\) is an \(\mathcal{F}_{\sigma\delta}\)-absorber in \(\hat{\mathbb{R}}^{X}\).

This means that there exists a homeomorphism \(\beta: \hat{\mathbb{R}}^{X} \to \mathbb{Q}^{N}\) such that \(\beta(C_{p}(X)) = (\mathbb{R}_{f}^{N})^{N}\).

Proof. It is well known (and easily verified) that \(C_{p}(X)\) is an element of \(\mathcal{F}_{\sigma\delta}\). Let \(A\) be a convergent sequence in \(X\). Observe that \(\bigcup_{n=1}^{\infty} \{f \in \hat{\mathbb{R}}^{X}: |f(a)| \leq n\) for every \(a \in A\)\) is a \(\sigma Z\)-set that contains \(C_{p}(X)\). It remains to be shown that \(C_{p}(X)\) is strongly \(\mathcal{F}_{\sigma\delta}\)-universal.

We first prove this for the convergent sequence \(\tilde{N} = \mathbb{N} \cup \{\infty\}\). In \(\hat{\mathbb{R}}\) and \(\hat{\mathbb{N}}\) we use the following arithmetic: \(1/0 = \infty\) and \(\infty + a = \infty\) if \(a\) is finite. Define the following continuous function from \(\hat{\mathbb{R}}\) into \(\hat{\mathbb{R}}^{\tilde{N}}\):

\[
\Psi(r)(n) = \text{sign}(r) \min\{|r|, n\}.
\]

Note that \(\Psi(r)(n)\) is finite if \(n \neq \infty\) and \(\lim_{n \to \infty} \Psi(r)(n) = \Psi(r)(\infty) = r\). This means that \(\Psi(\mathbb{R})\) is a subset of \(C_{p}(\tilde{N})\). If \(f \in \hat{\mathbb{R}}^{\tilde{N}}\) then \(\hat{f}\) is the extension of \(f\) over \(\tilde{N}\) that assigns 0 to \(\infty\). It is easily seen that \(\Phi(f, r) = \hat{f} + \Psi(r)\) is a well-defined map from \(\hat{\mathbb{R}}^{\tilde{N}} \times \hat{\mathbb{R}}\) onto \(\hat{\mathbb{R}}^{\tilde{N}}\). Observing that \(\Phi^{-1}(h) = (h - \Psi(h(\infty))|\mathbb{N}, h(\infty))\) we find that \(\Phi\) is a homeomorphism. Note that \(\Phi(c_{0} \times \mathbb{R}) = C_{p}(\tilde{N})\). According
to Lemma 6.4 \(c_0 \times \mathbb{R} \) is strongly \(\mathcal{F}_{\sigma_\delta} \)-universal in \(Q \times \mathbb{R} \) and hence \(C_p(\mathbb{N}) \) is strongly \(\mathcal{F}_{\sigma_\delta} \)-universal in \(\mathbb{R}\mathbb{N} \).

We use a similar argument to reduce the problem for \(C_p(X) \) to \(C_p(\mathbb{N}) \). Let \(d \) be a metric on \(X \) and let \(A \) be a convergent sequence in \(X \). We may assume that \(C_p(A) \) is strongly \(\mathcal{F}_{\sigma_\delta} \)-universal in \(\mathbb{R}^A \). Choose a retraction \(r \) from \(X \) onto \(A \). The formula

\[
\Psi(g)(x) = \text{sign}(g(r(x))) \min \{|g(r(x))|, 1/d(x, r(x))\}
\]

defines a continuous selection that extends every \(g \in \mathbb{R}^A \) to an element of \(\mathbb{R}^X \). The map \(\Psi \) has the following properties: \(\Psi(g)|A = g \), \(\Psi(g)|X \setminus A \) has its values in \(\mathbb{R} \) and \(\Psi(C_p(A)) \subset C_p(X) \). If \(f \in \mathbb{R}^X \setminus A \) then \(\hat{f} \) is the extension of \(f \) over \(X \) with zeros. As above it is easily seen that \(\Phi(f, g) = \hat{f} + \Psi(g) \) is a well-defined map from \(\mathbb{R}^X \setminus A \times \mathbb{R}^A \) onto \(\mathbb{R}^X \) and a homeomorphism. Let \(C_p(X, A) \) stand for \(\{f|X \setminus A : f \in C_p(X) \text{ and } f|A = 0\} \) and note that \(\Phi(C_p(X, A) \times C_p(A)) = C_p(X) \). It is easily seen that the complement of \(C_p(X, A) \) in \(\mathbb{R}^X \setminus A \) is locally homotopy negligible and hence Lemma 6.4 implies that \(C_p(X) \) is strongly \(\mathcal{F}_{\sigma_\delta} \)-universal in \(\mathbb{R}^X \). This completes the proof of Theorem 6.5.

\section*{References}

Received April 15, 1990 and in revised form May 3, 1991.

THE UNIVERSITY OF ALABAMA
Box 870350
TUSCALOOSA, ALABAMA 35487-0350
(J. J. Dijkstra and J. Mogilski)

AND

VRIJE UNIVERSITEIT
POSTBUS 7161
1007 MC AMSTERDAM, THE NETHERLANDS
(J. van Mill)

Current address, J. Mogilski: Bradley University
Peoria, IL 61625
Edoardo Ballico, On the restrictions of the tangent bundle of the Grassmannians .. 201
Edward Burger, Homogeneous Diophantine approximation in S-integers ... 211
Jan Dijkstra, Jan van Mill and Jerzy Mogilski, The space of infinite-dimensional compacta and other topological copies of \((l^2)^\omega \) 255
Mike Hoffman, Multiple harmonic series .. 275
Wu Hsiung Huang, Superharmonicity of curvatures for surfaces of constant mean curvature .. 291
George Kempf, Pulling back bundles .. 319
Kjeld Laursen, Operators with finite ascent .. 323
Andrew Solomon Lipson, Some more states models for link invariants 337
Xiang Yang Liu, Bloch functions of several complex variables 347
Madabusi Santanam Ragunathyan, A note on generators for arithmetic subgroups of algebraic groups .. 365
Marko Tadić, Notes on representations of non-Archimedean SL(n) 375